Corrigé de l'examen

Exercice 1

- (1) Quels sont les facteurs invariants du groupe fini $(\mathbf{Z}/16\mathbf{Z}) \times (\mathbf{Z}/12\mathbf{Z}) \times (\mathbf{Z}/2024\mathbf{Z})$?
- (2) Trouver une base adaptée pour le groupe abélien $L = \mathbf{Z} v_1 + \mathbf{Z} v_2 + \mathbf{Z} v_3 \subset \mathbf{Z}^3$ avec $v_1 = (-2, 1, 1), v_2 = (1, -2, 1)$ et $v_3 = (1, 1, -2)$.
- (3) Donner la structure du groupe abélien de type fini $G = \mathbf{Z}^3/(\mathbf{Z}(4,8,10) + \mathbf{Z}(6,2,0))$.
- (4) Construire une matrice $M \in SL_3(\mathbf{Z})$ dont la première ligne est (6, 11, 5).
- (5) Donner les invariants de similitude de la matrice :

(les composantes blanches correspondent à des zéros). Quel est son polynôme minimal?

Solution : (1) Posons $G = (\mathbf{Z}/16\mathbf{Z}) \times (\mathbf{Z}/12\mathbf{Z}) \times (\mathbf{Z}/2024\mathbf{Z})$. On a $16 = 2^4$, $12 = 2^2 \times 3$ et $2024 = 2^3 \times 353$ donc

$$G \simeq (\mathbf{Z}/16\,\mathbf{Z}) \times (\mathbf{Z}/4\,\mathbf{Z}) \times (\mathbf{Z}/3\,\mathbf{Z}) \times (\mathbf{Z}/8\,\mathbf{Z}) \times (\mathbf{Z}/253\,\mathbf{Z})$$

$$\simeq (\mathbf{Z}/4\,\mathbf{Z}) \times (\mathbf{Z}/8\,\mathbf{Z}) \times (\mathbf{Z}/16\,\mathbf{Z}) \times (\mathbf{Z}/3\,\mathbf{Z}) \times (\mathbf{Z}/253\,\mathbf{Z})$$

$$\simeq (\mathbf{Z}/4\,\mathbf{Z}) \times (\mathbf{Z}/8\,\mathbf{Z}) \times (\mathbf{Z}/12144\,\mathbf{Z})$$

en vertu du théorème des restes chinois : les facteurs invariants de G sont (4, 8, 12144).

- (2) On a $v_1 + v_2 + v_3 = (0, 0, 0)$ donc $L = \mathbf{Z}v_1 + \mathbf{Z}v_2$. Par ailleurs, on a $v_2 v_1 = 3e_2$ avec $e_2 = (1, -1, 0)$. Posons alors $e_1 = v_1$ et $e_3 = (0, 0, 1)$. On a $\det(e_1, e_2, e_3) = 1$, de sorte que (e_1, e_2, e_3) est une base de \mathbf{Z}^3 , et $L_1 = \mathbf{Z}e_1 \oplus 3\mathbf{Z}e_2$.
- (3) Posons $v_1 = (6, 2, 0) = 2e_1$ avec $e_1 = (3, 1, 0)$ et $v_2 = (4, 8, 10)$. On a $v_1 + v_2 = 10e_2$ avec $e_2 = (1, 1, 1)$, donc $\Lambda = \mathbf{Z} v_1 + \mathbf{Z} v_2 = 2 \mathbf{Z} e_1 + 10 \mathbf{Z} e_2 \subset \mathbf{Z}^3$. Posons $e_3 = (1, 0, 0)$. La famille (e_1, e_2, e_3) est une base adaptée à Λ , et on a $G = \mathbf{Z}^3 / \Lambda \simeq (\mathbf{Z} / 2\mathbf{Z}) \oplus (\mathbf{Z} / 10\mathbf{Z}) \oplus \mathbf{Z}$.
- (4) On a bien $\operatorname{\mathsf{pgcd}}(6,11,5) = 1$. On applique l'algorithme : posons $X = (6 \ 11 \ 5)$. On a $(\frac{11}{2},\frac{5}{1}) \in \operatorname{\mathsf{SL}}_2(\mathbf{Z})$, de sorte que $X = (6 \ 1 \ 0)M_1$ avec $M_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 11 & 5 \\ 0 & 2 & 1 \end{pmatrix} \in \operatorname{\mathsf{SL}}_3(\mathbf{Z})$. On a $(\frac{6}{-5},\frac{1}{1}) \in \operatorname{\mathsf{SL}}_2(\mathbf{Z})$, de sorte que $(6 \ 1 \ 0) = (1 \ 0 \ 0)M_2$ avec $M_2 = \begin{pmatrix} 6 & 1 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \operatorname{\mathsf{SL}}_3(\mathbf{Z})$. Cela

implique $X = (1 \ 0 \ 0)M_2M_1$: la matrice $M = M_2M_1 = \begin{pmatrix} 6 & 11 & 5 \\ 5 & 11 & 5 \\ 0 & 2 & 1 \end{pmatrix} \in \mathsf{SL}_3(\mathbf{Z})$ convient.

(5) Le K[X]-module associé est isomorphe à

$$(K[X]/\langle X^3\rangle)\times (K[X]/\langle X^2\rangle)\times (K[X]/\langle (X-1)^4\rangle)\times (K[X]/\langle (X-1)^2\rangle)\times (K[X]/\langle X-2\rangle).$$

En réordonnant les facteurs et en utilisant le théorème des restes chinois, il est isomorphe à

$$((K[X]/\langle X^2(X-1)^2\rangle) \times (K[X]/\langle X^3(X-1)^4(X-2)\rangle)$$

ce qui montre que les facteurs invariants (i.e. les invariants de similitude de la matrice) sont

$$(X^{2}(X-1)^{2}, X^{3}(X-1)^{4}(X-2))$$

et que le polynôme minimal de la matrice est $X^3(X-1)^4(X-2)$.

Exercice 2

Soient A un anneau principal, M un A-module libre de rang fini, et (e_1, \ldots, e_r) des éléments de M qui sont linéairement indépendants, et tels que le quotient $M/\langle e_1, \ldots, e_r \rangle$ soit sans torsion. Montrer qu'on peut compléter (e_1, \ldots, e_r) en une base de M sur A.

Solution: Notons N le sous-module de M engendré par $\{e_1, \ldots, e_r\}$. Le A-module M/N est de type fini (comme quotient d'un module de type fini), et sans torsion par hypothèse: il est donc libre de rang fini puisque A est principal. Notons $\pi \colon M \to M/N$ la surjection canonique, et soient $e_{r+1}, \ldots, e_n \in M$ tels que $(\pi(e_{r+1}), \ldots, \pi(e_n))$ soit une base de M/N.

Si
$$m \in M$$
, il existe $a_{r+1}, \ldots, a_n \in A$ uniques tels que $\pi(m) = \sum_{k=r+1}^n a_k \pi(e_k)$. L'élément

 $m' = m - \sum_{k=r+1}^{n} a_k e_k$ appartient donc à $\operatorname{Ker}(\pi) = N$: il existe $a_1, \dots, a_r \in A$ uniques tels

que $m' = \sum_{k=1}^{r} a_k e_k$. Cela montre qu'il existe $a_1, \ldots, a_n \in A$ uniques tels que $= \sum_{k=1}^{n} a_k e_k$, *i.e.* que (e_1, \ldots, e_n) est une base de M.

Exercice 3

Posons $A = \mathbf{Z}[\sqrt{5}] \subset K = \mathbf{Q}(\sqrt{5})$. Si $x, y \in \mathbf{Q}$ et $z = x + y\sqrt{5} \in K$, posons $N(z) = x^2 - 5y^2$.

- (1) Montrer que si $z_1, z_2 \in K$, on a $N(z_1 z_2) = N(z_1)N(z_2)$.
- (2) Soit $z \in A$. Montrer que $z \in A^{\times} \Leftrightarrow N(z) \in \{\pm 1\}$.
- (3) Montrer qu'il n'existe aucun élément $z \in A$ tel que $N(z) \in \{\pm 2\}$.
- (4) En déduire que 2 et $1 + \sqrt{5}$ sont irréductibles dans A. Sont-ils premiers [indication : construire soigneusement un isomorphisme d'anneaux $\mathbf{Z}[X]/\langle X^2 5 \rangle \xrightarrow{\sim} A]$?
- (5) L'anneau A est-il factoriel?
- (6) L'idéal $I = \langle 2, 1 + \sqrt{5} \rangle \subset A$ est-il principal?

Solution : (1) Soit σ l'automorphisme du corps K caractérisé par $\sigma(\sqrt{5}) = -\sqrt{5}$: on a $N(z) = z\sigma(z)$, donc $N(z_1z_2) = z_1z_2\sigma(z_1z_2) = z_1z_2\sigma(z_1)\sigma(z_2) = N(z_1)N(z_2)$ pour tous $z_1, z_2 \in K$.

- (2) Si $z = x + y\sqrt{5} \in K$ avec $x, y \in \mathbf{Q}$, on a $z \in A \Leftrightarrow x, y \in \mathbf{Z}$. Cela implique que $z \in A \Rightarrow N(z) \in \mathbf{Z}$. En particulier, si $z \in A^{\times}$, alors $1 = N(1) = N(zz^{-1}) = N(z)N(z^{-1})$ avec $N(z), N(z^{-1}) \in \mathbf{Z}$, ce qui implique que $N(z) \in \mathbf{Z}^{\times} = \{\pm 1\}$. Réciproquement, si $z \in A$ est tel que $N(z) \in \{\pm 1\}$, alors $z^{-1} = N(z)^{-1}\sigma(z) \in A$, ce qui montre que $z \in A^{\times}$.
- (3) Soient $x, y \in \mathbf{Z}$ et $z = x + y\sqrt{5} \in A$. Supposons $x^2 5y^2 = N(z) = \pm 2$: modulo 5, cela implique que ± 2 est un carré dans $\mathbf{Z}/5\mathbf{Z}$, ce qui n'est pas (les carrés de $\mathbf{Z}/5\mathbf{Z}$ sont $\overline{0}$, $\overline{1}$ et $\overline{4}$).
- (4) Soient $z_1, z_2 \in A$ tels que $z_1z_2 = 2$: on a $N(z_1)N(z_2) = N(2) = 4$. Comme on a $N(z_1) \notin \{\pm 2\}$ en vertu de la question précédente, on a $N(z_1) \in \{\pm 1\}$ ou $N(z_2) \in \{\pm 1\}$, soit encore $z_1 \in A^{\times}$ ou $z_2 \in A^{\times}$ (cf question (2)), ce qui montre que 2 est irréductible dans A. L'argument est exactement le même pour $1 + \sqrt{5}$ parce que $N(1 + \sqrt{5}) = -4$.

- On dispose du morphisme $f \colon \mathbf{Z}[X] \to \mathbf{Q}(\sqrt{5})$ d'évaluation en $\sqrt{5}$. Par définition, on a $A = \mathsf{Im}(f)$. On a $X^2 5 \in \mathsf{Ker}(f)$. Par ailleurs, comme $X^2 5$ est unitaire, on dispose de la division euclidienne par $X^2 5$ dans $\mathbf{Z}[X]$. Si $P \in \mathsf{Ker}(f)$, il existe $Q, R \in \mathbf{Z}[X]$ uniques tels que $P = (X^2 5)Q + R$ et $\deg(R) < 2$. Écrivons R = aX + b avec $a, b \in \mathbf{Z}$: on a $a\sqrt{5} + b = 0$. Comme $\sqrt{5} \notin \mathbf{Q}$, cela implique que a = b = 0, i.e. $P \in \langle X^2 5 \rangle$. Finalement, on a $\mathsf{Ker}(f) = \langle X^2 5 \rangle$: le morphisme f se factorise à travers un isomorphisme $\tilde{f} \colon \mathbf{Z}[X]/\langle X^2 5 \rangle \xrightarrow{\sim} A$, qui envoie la classe \overline{X} de X sur $\sqrt{5}$. Ce dernier induit un isomorphisme $\mathbf{Z}[X]/\langle 2, X^2 5 \rangle \xrightarrow{\sim} A/\langle 2 \rangle$. Comme $\mathbf{Z}[X]/\langle 2, X^2 5 \rangle \simeq \mathbf{F}_2[X]/\langle (X + 1)^2 \rangle$ n'est pas intègre, 2 n'est pas premier dans A. De même, comme $\tilde{f}(1 + \overline{X}) = 1 + \sqrt{5}$, l'isomorphisme \tilde{f} induit un isomorphisme $\mathbf{Z}[X]/\langle X + 1, X^2 5 \rangle \xrightarrow{\sim} A/\langle 1 + \sqrt{5} \rangle$. Comme $\mathbf{Z}[X]/\langle X + 1, X^2 5 \rangle \simeq \mathbf{Z}/4\mathbf{Z}$ n'est pas intègre, $1 + \sqrt{5}$ n'est pas premier dans A.
- (5) L'anneau ${\cal A}$ contient des éléments qui sont irréductibles mais pas premiers : il n'est pas factoriel.
- (6) Supposons I principal : il existe $\alpha \in A$ tel que $I = \langle \alpha \rangle$. Observons que $I \neq A$ (parce que $A/I \simeq \mathbf{Z}[X]/\langle 2, 1+X, X^2-5\rangle \simeq \mathbf{F}_2$, ou bien en observant que si $x,y \in \mathbf{Z}$, l'élement $x+y\sqrt{5}$ appartient à I si et seulement si x et y ont même parité). On a en particulier $\alpha \mid 2$ dans A, donc $N(\alpha) \mid N(2) = 4$. Comme $\alpha \notin A^{\times}$ (parce que $I \neq A$), on a $N(\alpha) \notin \{\pm 1\}$. Par ailleurs, on sait que $N(\alpha) \notin \{\pm 2\}$ (cf question (3)). On a donc nécessairement $N(\alpha) \in \{\pm 4\}$. En écrivant $2 = \alpha\beta$ avec $\beta \in A$, cela implique que $N(\beta) \in \{\pm 1\}$, de sorte que α et 2 sont associés dans A: on a $I = \langle 2 \rangle$. Il en résulte que $2 \mid 1 + \sqrt{5}$ dans A, i.e. que $\frac{1+\sqrt{5}}{2} \in A$, ce qui n'est pas. On a donc une contradiction : l'idéal I n'est pas principal.

Exercice 4 (bonus)

Soit A un anneau principal.

- (1) Soient $x, y \in A \setminus \{0\}$. Posons $d = \mathsf{pgcd}(x, y)$ et écrivons x = dx' et y = dy'. Montrer que si $f \in \mathsf{Hom}_A(A/\langle x \rangle, A/\langle y \rangle)$, alors $f(1) \in \langle y' \rangle / \langle y \rangle$.
- (2) En déduire que $\operatorname{Hom}_A(A/\langle x \rangle, A/\langle y \rangle) \simeq A/\langle d \rangle$.

Soit M, M_1 et M_2 des A-modules.

- (3) Montrer que $\operatorname{\mathsf{Hom}}_A(M,M_1\times M_2)\simeq \operatorname{\mathsf{Hom}}_A(M,M_1)\times \operatorname{\mathsf{Hom}}_A(M,M_2).$
- (4) Montrer de même que $\operatorname{\mathsf{Hom}}_A(M_1 \times M_2, M) \simeq \operatorname{\mathsf{Hom}}_A(M_1, M) \times \operatorname{\mathsf{Hom}}_A(M_2, M)$. On suppose désormais M de type fini et de torsion. Notons $x_1 \mid \cdots \mid x_n$ ses facteurs invariants.
 - (5) En utilisant tout ce qui précède, montrer que $\operatorname{End}_A(M) \simeq \bigoplus_{i=1}^n (A/\langle x_i \rangle)^{2(n-i)+1}$.

Solution: (1) Écrivons $f(1) = \alpha \mod \langle y \rangle$, avec $\alpha \in A$. On a xf(1) = f(x) = 0 dans $A/\langle y \rangle$, i.e. $x\alpha \in \langle y \rangle$, soit $x'\alpha \in \langle y' \rangle$: comme $\operatorname{\mathsf{pgcd}}(x',y') = 1$, on a donc $\alpha \in \langle y' \rangle$, et donc $f(1) \in \langle y' \rangle / \langle y \rangle$.

(2) D'après la question précédente, on dispose de l'application

$$\Phi \colon \operatorname{Hom}_A(A/\langle x \rangle, A/\langle y \rangle) \to \langle y' \rangle / \langle y \rangle$$
$$f \mapsto f(1)$$

C'est une application A-linéaire. Si $\alpha \in y'A$, notons $f_{\alpha} : A \to A/\langle y \rangle$ l'application composée

$$A \xrightarrow{\alpha} A \to A/\langle y \rangle$$

(où la première application est la multiplication par α et la deuxième la surjection canonique). On a $f_{\alpha}(x) = x\alpha \mod yA$, donc $f_{\alpha}(x) = 0$ vu que $x\alpha = x'd\alpha \in \langle y \rangle$ puisque

 $\alpha \in y'A \Rightarrow d\alpha \in \langle y \rangle$. L'application f_{α} se factorise donc via une application A-linéaire $\widetilde{f}_{\alpha} \in \mathsf{Hom}_A(A/\langle x \rangle, A/\langle y \rangle)$. L'application $\alpha \mapsto f_{\alpha}$ est A-linéaire, nulle sur $\langle y \rangle$: il en est de même de $\alpha \mapsto \widetilde{f}_{\alpha}$. Cette dernière se factorise donc en une application A-linéaire

$$\Psi \colon \langle y' \rangle / \langle y \rangle \mapsto \mathsf{Hom}_A(A/\langle x \rangle, A/\langle y \rangle)$$
$$\alpha + yA \mapsto \widetilde{f}_\alpha$$

On a $\Phi \circ \Psi = \operatorname{\mathsf{Id}}_{y'A/\langle y \rangle}$, et $\Psi \circ \Phi = \operatorname{\mathsf{Id}}_{\operatorname{\mathsf{Hom}}_A(A/\langle x \rangle, A/\langle y \rangle)}$, ce qui implique que Φ est un isomorphisme. Comme $\langle y' \rangle / \langle y \rangle \simeq A/\langle d \rangle$, on a donc $\operatorname{\mathsf{Hom}}_A(A/\langle x \rangle, A/\langle y \rangle) \simeq A/\langle d \rangle$. (3) Évident.

(4) Soit $f \in \operatorname{Hom}_A(M_1 \times M_2, M)$. Notons $\iota_1 \colon M_1 \to M_1 \times M_2$ (resp. $\iota_2 \colon M_2 \to M_1 \times M_2$) l'application définie par $\iota_1(x) = (x,0)$ (resp. $\iota_2(x) = (0,x)$). Les applications ι_1 et ι_2 sont A-linéaires : il en est de même de $f_1 = f \circ \iota_1 \colon M_1 \to M$ et $f_2 = f \circ \iota_2 \colon M_2 \to M$. On dispose donc de l'application

$$\Xi \colon \operatorname{Hom}_A(M_1 \times M_2, M) \to \operatorname{Hom}_A(M_1, M) \times \operatorname{Hom}_A(M_2, M)$$
$$f \mapsto (f_1, f_2)$$

Elle est A-linéaire. Pour tout $x=(x_1,x_2)\in M_1\times M_2$, on a $x=\iota_1(x_1)+\iota_2(x_2)$, donc $f(x)=f(\iota_1(x_1))+f(\iota_2(x_2))$, ce qui montre que $f=f_1\circ\pi_1+f_2\circ\pi_2$ où $\pi_1\colon M_1\times M_2\to M_1$ (resp. $\pi_2\colon M_1\times M_2\to M_2$) est la première (resp. deuxième) projection. Cela montre que Ξ est un isomorphisme (d'application réciproque donnée par $\Xi^{-1}(f_1,f_2)=f_1\circ\pi_1+f_2\circ\pi_2$).

(5) On a $M = \bigoplus_{i=1}^{n} A/\langle x_i \rangle$. D'après les questions (3) et (4), on a donc

$$\operatorname{End}_A(M) = \operatorname{Hom}_A(M,M) = \bigoplus_{1 \leq i,j \leq n} \operatorname{Hom}_A(A/\langle x_i \rangle, A/\langle x_j \rangle)$$

Comme $\mathsf{Hom}_A(A/\langle x_i\rangle,A/\langle x_j\rangle)\simeq A/\langle \mathsf{pgcd}(x_i,x_j)\rangle$ et $\mathsf{pgcd}(x_i,x_j)=x_{\min(i,j)},$ on en déduit que

$$\operatorname{End}_A(M) \simeq \bigoplus_{1 \leq i,j \leq n} A/\langle x_{\min(i,j)} \rangle \simeq \Big(\bigoplus_{i=1}^n A/x_i A\Big) \oplus \Big(\bigoplus_{1 \leq i < j \leq n} (A/\langle x_i \rangle)^2\Big) \simeq \bigoplus_{i=1}^n (A/\langle x_i \rangle)^{2(n-i)+1}$$