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Abstract

Let k be an algebraically closed field of characteristic p > 0. We
consider the problem of lifting p-cyclic covers of IP’}g as p-cyclic covers
of the projective line over some DVR under the condition that the
wild monodromy is maximal. We answer positively the question for
covers birational to w? —w = tR(t) for some additive polynomial R(t).

1 Introduction

Let (R,v) be a complete discrete valuation ring of mixed characteristic (0, p)
with fraction field K containing a primitive p-th root of unity ¢, and alge-
braically closed residue field k. The stable reduction theorem states that
given a smooth, projective, geometrically connected curve C/K of genus
g(C) > 2, there exists a unique minimal Galois extension M /K called the
monodromy extension of C'/K such that Cy := C' x M has stable reduction
over M. The group G = Gal(M/K) is the monodromy group of C/K.

Let us consider the case where ¢ : C' — PL is a p-cyclic cover. Let C be
the stable model of Cy;/M and Auty(C)# be the subgroup of Auty(Cy) of
elements acting trivially on the reduction in Cj of the ramification locus of
¢ x Idy : Cyr — P}, (see [Liu02] 10.1.3 for the definition of the reduction
map of Cj). One derives from the stable reduction theorem the following
injection

Gal(M/K) = Auty(Cp)*. (1)
When the p-Sylow subgroups of these groups are isomorphic, one says that
the wild monodromy is maximal. We are interested in realization of smooth
covers as above such that the p-adic valuation of | Auty(Cy)#| is large com-
pared to the genus of C; and having maximal wild monodromy. Moreover,



we will study the ramification filtration and the Swan conductor of their
monodromy extension.

Recall that a big action is a pair (X,G) where X/k is a smooth, pro-
jective, geometrically connected curve of genus g(X) > 2 and G is a finite
p-group of k-automorphisms of X/k such that |G| > %Q(X ). According
to [LMO5] Theorem 1.1 II f), if (X,G) is a big action, then one has that
|G| < (pf’;)Qg(X )2 with equality if and only if X/k is birationally given by
wP —w = tR(t) where R(t) € k[t] is an additive polynomial. In this case, G
is an extra-special p-group and equals the p-Sylow subgroup G 1(X) of the
subgroup of Autg(X) leaving ¢ = oo fixed.

This motivates the following question, with the above notations, given a
big action (C,G) such that |G| = (pf—q)gg(X)Q, is it possible to find a field

K and a a p-cyclic cover C/K of PL such that Cp ~ X, that G ~ Aut(Cp)?
is a p-Sylow subgroup of Aut(Cy)* and the curve C/K has maximal wild
monodromy ?

Let n e N, g =p", A =( —1and K = @;r()\l/u*q)). For any ad-
ditive polynomial R(t) € k[t] of degree ¢, let X/k be curve defined by
wP —w = tR(t). In section 3, we prove the following

Theorem 1.1. There exists a p-cyclic cover C/K of P} such that Cp ~ X,
one has Goo1(X) ~ Aut(Cp)¥ and the curve C/K has mazimal wild mon-
odromy M /K. The extension M /K is the decomposition field of an explicitly
given polynomial and the group Gal(M/K) ~ Auty(Cp)? is an extra-special
p-group of order pq?.

The group Goo1(Ci) = Auty(Cp)? is endowed with the ramification filtra-
tion (Guo,i(Ck))i>0 which is easily seen to be :

Goo0(Ch) = Goo(Cr) 2 Z(Goo0(Ch)) = Goop(Ch) = -+ = Goopg(Cr) 2 {1}

Moreover, G := Gal(M/K) being the Galois group of a finite extension of K,
it is endowed with the ramification filtration (G;);>o. Since G ~ G 1(Cx) it
is natural to ask for the behaviour of (G;);>o under (1), that is to compare
(Gy)i>o and (G i(Ck))i>0- In the general case, the arithmetic is quite tedious
due to the expression of the lifting of X/k. Actually we could not obtain
a numerical example for the easiest case when p = 3. Nonetheless, when
p = 2, one computes the conductor exponent f(Jac(C)/K) of Jac(C)/K and
its Swan conductor sw(Jac(C)/K) :

Theorem 1.2. Under the hypotheses of Theorem 1.1, if p = 2 the lower
ramification filtration of G is :

G:G():GlQZ(G):GQ::GHqQ{l}
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Then, f(Jac(C)/K) =2q+ 1 and sw(Jac(C)/Qy") = 1.
Remarks :

1. In Theorem 1.1, one actually obtains a family of liftings C/K of X/k
with the announced properties. It is worth noting that there are finitely
many additive polynomials Ry(t) € k[t] such that w? —w = tR(t) is k-
isomorphic to w? —w = tRy(t) (see [LMO5] 8.2), so we have to solve the
problem in a somehow generic way. In [CM11], we obtain the analogous
of Theorem 1.1 and Theorem 1.2 for p > 2 in the easier case R(t) = t9.

2. For p = 3, the easiest non-trivial case is such that [M : K] = 243, that
is why we could not even do computations using Magma to guess the
behaviour of the ramification filtration of the monodromy extension
for p > 2. Nonetheless, one shows that if p > 3, the lower ramification
filtration of G is

G:GQZGlQGZZ"‘:Gu:Z(G)Q{l}’
where u € 1 4 gN.

3. The value sw(Jac(C)/Qy") = 1 is the smallest one among abelian vari-
eties over Q)" with non tame monodromy extension. That is, in some
sense, a counter part of [BK05] and [LRS93] where an upper bound
for the conductor exponent is given and it is shown that this bound is
actually achieved.

2 Background

Notations. Let (R, v) be a complete discrete valuation ring (DVR) of mixed
characteristic (0, p) with fraction field K and algebraically closed residue field
k. We denote by mx a uniformizer of R and assume that K contains a prim-
itive p-th root of unity (,. Let A :=(, — 1. If L/K is an algebraic extension,
we will denote by 7 (resp. wvr, resp. L°) a uniformizer for L (resp. the
prolongation of v to L such that vy (7r) = 1, resp. the ring of integers of L).
If there is no possible confusion we note v for the prolongation of v to an
algebraic closure K*# of K.

1. Stable reduction of curves. The first result is due to Deligne and
Mumford (see for example [Liu02] for a presentation following Artin and
Winters).



Theorem 2.1 (Stable reduction theorem). Let C'/K be a smooth, projective,
geometrically connected curve over K of genus g(C) > 2. There exists a
unique finite Galois extension M /K minimal for the inclusion relation such
that Cyr /M has stable reduction. The stable model C of Cyy/M over M° is
unique up to isomorphism. One has a canonical injective morphism :

Gal(M/K) <5 Auty(Cy). 2)
Remarks :

1. Let’s explain the action of Gal(K®&/K) on Cy/k. The group Gal(K*&/K)
acts on Cy; := C' x M on the right. By unicity of the stable model,
this action extends to C :

g

C — C

|

M —T— M

Since k = k¥ one gets o x k = Id;,, whence the announced action. The
last assertion of the theorem characterizes the elements of Gal( K& /M)
as the elements of Gal(K®8/K) that trivially act on Cy/k.

2. If p > 2¢(C)+1, then C'/ K has stable reduction over a tamely ramified
extension of K. We will study examples of covers with p < 2¢(C) + 1.

3. Our results will cover the elliptic case. Let F/K be an elliptic curve
with additive reduction. If its modular invariant is integral, then there
exists a smallest extension M of K over which F/K has good reduction.
Else F/K obtains split multiplicative reduction over a unique quadratic
extension of K ( see [Kra90]).

Definition 2.1. The extension M /K is the monodromy extension of C/K.
We call Gal(M/K) the monodromy group of C/K. It has a unique p-
Sylow subgroup Gal(M/K); called the wild monodromy group. The extension
M /MGAM/E)L s the wild monodromy extension.

From now on we consider smooth, projective, geometrically integral curves

C/K of genus g(C) > 2 birationally given by Y? = f(X) := [[\_y(X — z;)™
with (p, E;:O n;) =1, (p,n;) = 1land V 0 < i < t,x; € R*. Moreover,

we assume that Vi # j, v(z; — z;) = 0, that is to say, the branch locus
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B = {zy,...,z;, 00} of the cover has equidistant geometry. We denote by
Ram the ramification locus of the cover.

Remark : We only ask p-cyclic covers to satisfy Raynaud’s theorem 1’
[Ray90] condition, that is the branch locus is K-rational with equidistant
geometry. This has consequences on the image of (2).

Proposition 2.1. Let T = Proj(M°[Xo, X1]) with X = Xo/X;1. The nor-
malization Y of T in K(Cy) admits a blowing-up Y which is a semi-stable
model of Cpy/M. The dual graph of yk/k 1s a tree and the points in Ram
specialize in a unique irreducible component Dy ~ P} of yk/k: There exists
a contraction morphism h = Y — C, where C is the stable model of Cy /M
and

where Auty,(Cy,)* is the subgroup of Auty(Cy) of elements inducing the identity
on h(Dy).

Proof. see [CM11]. O
Remark : The component Dy is the so called original component.

Definition 2.2. If (3) is surjective, we say that C' has maximal monodromy.
Ifv,(| Gal(M/K)|) = v,(| Auty.(Ck)¥|), we say that C has maximal wild mon-
odromy.

Definition 2.3. The valuation on K(X) corresponding to the discrete valu-
ation ring R[X|.) ts called the Gauss valuation vx with respect to X. We
then have

vx (Z aiXZ) = min{v(a;), 0 <i < m}.
=0

Note that a change of variables T = % for y,p € R induces a Gauss
valuation vyp. These valuations are exactly those that come from the local
rings at generic points of components in the semi-stables models of Pl .

2. FExtra-special p-groups. The Galois groups and automorphism groups
that we will have to consider are p-groups with peculiar group theoretic
properties (see for example [Hup67] Kapitel III §13 or [Suz86] for an account
on extra-special p-groups). We will denote by Z(G) (resp. D(G), ®(G)) the
center (resp. the derived subgroup, the Frattini subgroup) of G. If G is a
p-group, one has ®(G) = D(G)GP.



Definition 2.4. An extra-special p-group is a non abelian p-group G such
that D(G) = Z(G) = ®(G) has order p.

Proposition 2.2. Let G be an extra-special p-group.
1. Then |G| = p*™*! for some n € N*.

2. One has the exact sequence

0— Z(G) = G — (Z/pZ)™ — 0.

3. The group G has an abelian subgroup J such that Z(G) C J and
[/ Z(G)| = p".

3. Galois extensions of complete DVRs. Let L/K be a finite Galois
extension with group G. Then G is endowed with a lower ramification fil-
tration (G;);>—1 where G; is the i-th lower ramification group defined by
G;:={0c€G|vg(o(ny) —7m) > i+ 1}. The integers i such that G; # G; 11
are called lower breaks. For o € G — {1}, let ig(0) := vy (o(7) — 7). The
group G is also endowed with a higher ramification filtration (G%);>_; which
can be computed from the G;’s by means of the Herbrand’s function ¢y k.
The real numbers ¢ such that Ve > 0, G'*¢ = G* are called higher breaks.

Lemma 2.1. Let M/K be a Galois extension such that Gal(M/K) is an
extra-special p-group of order p*"*'. Assume that Gal(M* % /K), = {1},
then the break t of M/M?*) is such that t € 1+ p"N.

Proof. According to Proposition 2.2 3., there exists an abelian subgroup J
with Z(G) € J C G and |J/ Z(G)| = p™. Thus, one has the following diagram

M
[M: L] =p
L= MG
[L: K] =p™ Fi=M’

K- [F:K]=p"

Let t be the lower break of M/L, then t is a lower break of M/F and
oum/r(t) = wr/p(emyn(t)) is a higher break of M/F. Since ¢y (t) = t, one



has pu/p(t) = ¢r/r(t). Since Gal(L/K), = {1}, one has Gal(L/F), = {1}
and ¢ /p(t) = 1+ ’;—nl. The Hasse-Arf Theorem applied to the abelian ex-
tension M/F implies that 1 + i)_—nl € N— {0}, thus t € 1 + p"N.

U

4. Torsion points on abelian varieties. Let A/K be an abelian variety
over K with potential good reduction and ¢ # p be a prime number. We
denote by A[f] the (-torsion group of A(K®#) and by T(A) = Jim A[0"] (resp.
Vi(A) = Ty(A) @ Q) the Tate module (resp. (-adic Tate module) of A.

The following result may be found in [Gur03] (paragraph 3). We recall it
for the convenience of the reader.

Lemma 2.2. Let k = k¥ be a field with char k = p > 0 and C/k be a
projective, smooth, integral curve. Let £ # p be a prime number and H be a
finite subgroup of Autg(C) such that (|H|,¢) =1. Then

2¢(C/H) = dimg, Jac(C)[(]".

If ¢ > 3, then L = K(A[{]) is the minimal extension over which A/K has
good reduction. It is a Galois extension with group G (see [ST68]). We denote
by ¢ (resp. lg) the character of the regular (resp. unit) representation of
G. We denote by I the inertia group of K®8/K. For further explanations
about conductor exponents see [Ser67], [Ogg67] and [ST68].

Definition 2.5. 1. Let

ag(o) := —ig(o), o #1,
ac(1) =Y ia(o),

o#1

and swg == ag —rg + lg. Then, ag is the character of a Q[G]-module
and there exists a projective Zi[G]-module Sw¢ such that Swg ®z,Qp
has character swg.

2. We still denote by Ty(A) (resp. All]) the Z¢|G]-module (resp. F|G]-
module) afforded by G — Aut(T;(A)) (resp. G — Aut(A[(])). Let

sw(A/K) := dimg, Homg (Swe, A[]),
€(A/K) := codimg, Vi(A).

The integer f(A/K) = e(A/K) + sw(A/K) is the so called conductor
exponent of A/K and sw(A/K) is the Swan conductor of A/K.



Proposition 2.3. Let { # p, { > 3 be a prime number.
1. The integers sw(A/K) and e(A/K) are independent of €.

2. One has

sw(A/K) =Y ||g;|| dimg, A[¢]/A[(]%".

i>1
Moreover, for { large enough, €(A/K) = dimg, A[¢]/A[¢]%°.

Remark : It follows from the definition that sw(A/K) = 0 if and only if
G1 = {1}. The Swan conductor is a measure of the wild ramification.

5. Automorphisms of Artin-Schreier covers. See [LMO05] for further re-
sults on this topic. Let R(t) € k[t] be a monic additive polynomial and
Agr/k be the smooth, projective, geometrically irreducible curve birationally
given by w? — w = tR(t). There is a so called Artin-Schreier morphism
7 : Ag — P}. The automorphism ¢, of P} given by ¢ + ¢ + a with a € k has
a prolongation ¢, to Ap if there is a commutative diagram

ARtga’AR

m m
Bl e B
Proposition 2.4. Letn > 1, ¢ := p" and R(t) == 31—, upt? + 1 € klt].

The automorphism of P}, given by t — t+a with a € k has a prolongation to
Ag/k if and only if one has

—_

a? + (2u00)? + > (@la®" + (1xa)?"") + a = 0.
1

3

T

3 Main theorem

We start by fixing notations that will be used throughout this section.

Notations. We denote by m the maximal ideal of (K®¢)°. Let n € N*,
q:=p", ap = (=1)4(=p)PTP* Tt and V0 <i<n—1,d; = p" it - 4 q.
We denote by Q) the maximal unramified extension of Q, and we put



K = Qu(A\Y/9)) Let p:= (pg,...,pn1) where VO <k <n-—1, p; € K,
pe = upAP@P/049) and y(uy) = 0 or ux = 0. For ¢ € R, let

n—1
fep(X) 1= 143 X7 eX 04 X0,
k=0
n—1
and s1,,(X) :=2pg X + Zkapk + X1
k=1

One defines the modified monodromy polynomial L. ,(X) by

3
—

510X = i (X)1 e+ X) = (=)0 S (06X () £, (X)10" 11"

T

Let C.,/K and A, /k be the smooth projective integral curves birationally
given respectively by Y? = f. ,(X) and w? —w = ZZ;& Uttt 4 it

Theorem 3.1. The curve C.,/K has potential good reduction isomorphic to
A,k

1. Ifv(c) > v(\WW/U+D) then the monodromy extension of C.. ,/ K is trivial.

2. If v(c) < v(\/1+D) et y be a root of L. ,(X) in K*&. Then C., has
good reduction over K(y, fe,(y)"/?). If L.,(X) is irreducible over K,
then C. ,/K has mazimal wild monodromy. The monodromy extension
of C.,/K is M = K(y, f.,(y)"?) and G = Gal(M/K) is an extra-
special p-group of order pq?.

3. Assume that c = 1. The polynomial Ly ,(X) is irreducible over K. The
lower ramification filtration of G is

with w € 14 gN. Moreover, if p = 2, then u = 1+ ¢, one has
f(Jac(Cr,)/K) =2q+ 1 and sw(Jac(C4,)/Q5") = 1.

Proof. 1. Assume that v(c) > v(A\P/0+D)), Set \P/(HDT = X and \W +1 =Y.
Then, the equation defining C, ,/K becomes

n—1
AW 4+1)P =1+ Zpk)\p(Hp’“)/(lJrq)Tlerk + NP/ (Ha) a4 AP+
k=0



After simplification by AP and reduction modulo 7 this equation gives :

n—1
wP —w =Yt +at? + 19, a € k. (4)
k=0

By Hurwitz formula the genus of the curve defined by (4) is seen to be that
of C.,/K . Applying [Liu02] 10.3.44, there is a component in the stable
reduction birationally given by (4). The stable reduction being a tree, the
curve C,,/K has good reduction over K.

2. The proof is divided into eight steps. Let y be a root of L. ,(X).

Step I : One has v(y) = v(anc)/q¢>.

By expanding L. ,(X), one shows that its Newton polygon has a single slope
v(ayc)/q*. The polynomial L. ,(X) has degree ¢* and its leading (resp. con-
stant) coefficient has valuation 0 (resp. v(a,c)). One examines monomials
from a, f&1(X)(c+ X). Since v(c) < v(X/1F9), one checks that

v(an)

v(a,c)
¢ '

VI<i<g®—1, ’

- >

Then one examines monomials from (p; X)¥/?'p% f, ,(X)4#'=D/?" They have
degree at least q/p’, thus one checks that

q/p'v(p;) + dv(p) > v(anc)

Vi<i<n-—1, :
q* —q/p* ¢

The monomial X4 in s1,,(X)? corresponds to the point (0, 0) in the Newton
polygon of L. ,(X), the other monomials of s; ,(X)? produce a slope greater
than v(p;)/(q — p*) and one checks that

v(a,c) .

vo<i<n—1, 22 5
e A

Note that Step I implies that v(f. ,(y)) = 0, we will use this remark through-
out this proof.

Step II : Define S and T by \W/+IT = (X —y) = S. Then f.,(S +y) is
congruent modulo \’m[T] to

n—1 n—1

feo(y) +51,0(y)S + Z peST Z pryS”" + (¢ + y) ST+ S
k=0 k=1
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Using the following formula for A € K*#& with v(A) > 0 and B € (K*#)°[T]

k—

k>1, (A+ B = (A" + B” )" mod p*m[T],

one computes mod A\Pm|T]

n—1

Feo+S) =1+ pely + )™ + (y + S) + c(y + 9)?
k=0

n—1

= 1+poly +57+ Y prly+ )"+ )+ (y+ S+ o)y + 5Ty
k=1

Using Step I, one checks that forall 1 <k <n—1
pe(y” + 87 = pe(y” + SP) mod Aml[T],

and (y?/? 4+ S¥P)P = 9 4+ Smod APm[T]. It follows that

n—1

FerW+S) =14+ p0(y+ 82 +> ey + )W +S7) + (y+c+S)(y*+57).
k=1

One easily concludes from this last expression.

Step III : Let Ry := Kly]°. For all 0 < i < n, one defines A;(S) € R;[5]
and B; € Ry by induction :

c(y) B
Bn = —317p(y)7 V1 <i1<n-— 17 Bl = M — YPn—is

(=pfep())?

By 597"
 pfe(y) oD/
Then for all 0 < i < n —1, v(Biy1) = (1 4+ -+ p)o(p)/p’ + v(c)/p™" and

2
pq—_
modulo A«tim one has

Ap(S):= 0and V0 <i<n—1 SA;1(5) = SA)(S)

n—1

(_a;)q fep(y) B + Z(pky)q/pk(_p)dk fc’p(y)q(p’“fl)/p’“' (5)
k=1

B

We prove the claim about v(B; 1) by induction on i. Using Step I, one checks
that V0 < k < n—1, v(py?’) > v(y?), so v(B,) = v(y?). Assume that
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we have shown the claim for ¢, then one checks that v((B;11/p)?) < v(ypn—i)
and one deduces v(B;) from the definition of B;. According to the expression
of v(B;), one has V 0 < i < n, A;(S) € Ry[5].

Then we prove the second part of Step III. From the definition of the
B,;’s one obtains that for all 1 <i<n—1

Fep () VP (yp; + B,y _i(y)) /7" (6)

Using Step I and v(B,_1) one checks that V1 <k < ¢q/p—1

i—1

qul/le _ ( p)q/p

P! (ql{:p) (yp)* BT = 0mod Ao/,

50 pU(yp1 + Bu1)9/? = p((yp1)?/? + BY/") mod A¢*/0+0m. Thus, applying
equation (6) with ¢ = 1, one gets
() )
() )~

One checks using Step I and v(B,_;) that V1 <i<n—1land 1<k <
q/p' -1

Bl yp1 + By_1)"?

(yp1)q/p+BZ/,p1)mOd \P?/(4a) gy

(
(

prttar <q//€pz) quz/—pz‘iik(y/%)k = 0mod A\¢°/(1+)m

then by induction on ¢, using equation (6), one shows that modulo APa*/ ()

n—1
B = (=pl o) Bo + D (k) (=)™ feply) I
k=1
Step IV : One has modulo \’m|[T|
n—1

fc,p(5+y) = fqp( )+81p S+Zka ot +Zypk5p + BpS? + Sita,

Since L. ,(y) = 0, one has

3

-1
Slvp(y)q - anfc,p(y)q_l(c+y q pky q/p d’“f ( ) -1)/p* (7)
k=1

Using B,, :== —s1,(y), equations (5) and (7) one gets
anfep(y)? ' (c+y — By) = 0mod P2/ (@)

12



which is equivalent to S9(y + ¢ — Bg) = 0mod M\Pm[T]. Then, Step IV fol-
lows from Step II.

Step V : One has

n—1

JeolS +1) = (fep®)7 + SAS)) + D oS + S mod \m[T].
k=0

Let R:= Y 1—g peS'™" 4+ S+ 4+ 5, ,(y)S. Since B, = —s1,(y) one has

n—1

(Fep()VP + SAL(S))P + ZkaHpk 4 Glta

= (fop()Y? + SAL(S))? + B,S + R

B, S
_ 1/ S
= (o) 7 + S 40(8) ~ - )

~B,S
Plac(y)®=1m

>p+BnS+R

= g7 + S0 1(8))" + ) +B.S+R+T, (8)

where

-1

= < ) fenly 1/p+5An,1<5>>p*k(

k=1

“B

—-B,S k
dotr) O
Using the expression of v(B,) computed in Step III, one checks that the

terms with & > 2 in (9) are zero modulo Am[T]. It implies the following
relations

Y+ B,S=B,S ll _ (fqp(y)l/p + SAn_l(S))p1:|

fcp( )(p—l)/p

= fgpé% [fc oy ) )/p _ (fap(y)l/p + SAn_l(S))p—l]
= ﬁj—w [ - 2 <p ; 1) fc,p(y)(p*’f’/p(SAn,l(s)k}

= 0mod M\m[T], since for k > 1, B,S*™ = 0mod \m[T].
According to the definition of B,_; (see Step III) one obtains

(8) = (fep()V? + SAu1(S))" + R+ Bp1S” + yp1S” mod N'm[T].  (10)
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Using the same process, one shows by induction on i that (8) is congruent to

n—i—1
(fep )P+ S A1 ()P + By S™ 7 + > ypeS” + R mod Mm[T]. (11)
k=1
Thus, one applies equation (11) with i =0

n—1

(8) = (fep (1) + SALS))? + BiSY" + Y " ypiS” + R mod \ml[T].

k=1

One defines ' by (f.,(y)"/? + SAL(S))? = f.,(y) + (SAL(S))P + ¥'. From
Dfep(y)PV/PS A (S) = —B1SYP (see the definition of SA;(S)) one gets

p—1

S 4 Blsq/p — Z (Z) fc7p(y)(p_k)/p(SA1(S))k’

k=2

so using the expression of v(Bj) computed in Step III, one checks that
'+ B1SY? = 0mod APm[T]. From the definition of SA;(S) and By one has
(SAL(9))P = BySY, thus

n—1

(8) = fep(y) + BoST+ > ypeS” + Rmod N’m(TT.

k=1

Then, Step V follows from Step IV and this last relation.

Step VI : The curve C.,/K has good reduction over K (y, f. ,(y)"/?).
According to Step V, the change of variables in K(y, f.,(y)'/?)

X=XWIT Ly =Sty and Y =AW + f.,(y)"/? + SA.(S),

induces in reduction w? — w = Z;é Ut + 17 with genus g(Cep). So
[Liu02] 10.3.44 implies that this change of variables gives the stable model.
Note that the pi’s were chosen to obtain this equation for the special fiber
of the stable model.

Step VII : For any distinct roots y;, y; of L. ,(X), v(yi — y;) = v(AP/1+0),
The changes of variables \?/(F90T = X — y; and \?/3F90T = X — y; induce
equivalent Gauss valuations of K(C., ), else applying [Liu02] 10.3.44 would
contradict the uniqueness of the stable model. Thus v(y; — y;) > v(AP/119).

One checks that v(f; ,(y)) >0,VO<k<n-—1 v(pz/pkpqu/pk) > v(ay),
v(s1, (1) >0, v(s1,(y)) = v(y?) and v(gs1,(y)* s} ,(y)) > v(an), so

(Le, () = v(an) = (¢ = Do),
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Taking into account that L, ,(y;) = H#,‘(?/z‘ — y;) and deg L, ,(X) = ¢2, one
obtains v(y; — y;) = v(A\P/(1H+9),

Step VIII : If L. ,(X) is irreducible over K, then K(y, f.,(y)"/?) is the
monodromy extension M of C, ,/K and G := Gal(M/K) is an extra-special
p-group of order pg?.

Let (y;)iz1,..q2 be the roots of L. ,(X), L == K(y1,...,y,2) and M/K be
the monodromy extension of C.,/K. Any 7 € Gal(L/K) — {1} is such that
7(y;) = y; for some i # j. Thus, the change of variables

X = MWOOT 4y and YV = AW + fo ()" + SAL(S),

induces the stable model and 7 acts on it by :

X — s
Y hence T — 7(T)

o Yi — Yi
7(T) = \o/(+a)’

~ /e

According to Step VII, 7 acts non-trivially on the stable reduction. It
follows that L C M. Indeed if Gal(K®&/M) ¢ Gal(K*#/L) it would exist
o € Gal(K*¢/M) inducing & # Id € Gal(L/K), which would contradict the
characterization of Gal(K®8/M) (see remark after Theorem 2.1) .

According to [LMO5], the p-Sylow subgroup Auty(Cp)¥ of Aut(Cp)# is
an extra-special p-group of order pg?. Moreover, one has :

0 — Z(Autp(Co)T) — Auty(Co)T — (Z/pZ)*" — 0,

where (Z/pZ)*" is identified with the group of translations t — t+a extending
to elements of Autk(Ck)f Therefore we have morphisms

Gal(M/K) <5 Aut(Ci)¥ 5 Auty(Co)¥ /Z(Aut,(Co)P).

The composition is seen to be surjective since the image contains the ¢?
translations ¢ — ¢ + (y; — y1)/AP/0+9.  Consequently, i(Gal(M/K)) is a
subgroup of Aut,(Cy)? of index at most p. So it contains ®(Aut,(Cp)¥) =
Z(Auty(Cr)¥) = Ker . It implies that i is an isomorphism and [M : K] = pg?.

By Step VI, one has M C K (y, f,.(y)*/?), hence M = K (y, f,.(y)"/?).

We show that K(y;)/K is Galois and that Gal(M/K(y1)) = Z(G). In-
deed, M /K (y;) is p-cyclic and generated by o defined by :

a(yl) =l and O(fc,p(yl)l/p) = gpfqp(yl)l/p'

According to Step VI, o acts on the stable model by :
0(8) =5, oY) =Y =Ao(W) + G fep(mn)? + SAL(S).
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Hence

o(W) =W — fo,(y)"?.
It follows that, in reduction, o induces a morphism that generates Z(Auty(Cp)7).
It implies that K (y;)/K is Galois, Gal(M /K (y1)) = Z(G) and Gal(K (y1)/K) =~
(Z/pZ)*".

3. Let Ly(X) := Ly,(X), f(X) = fl (X)) 85(y) = 51,(y), y be a root of
L,(X) and b, := (=1)(—p)"*#+ """ Note that b2 = a,,, L = K(y) and we

do not assume p = 2 until Step E.

Step A : The polynomial L,(X) is 1rreduc1ble over K.

Let § := s,(y)—y?, 0 := > 1_, ({)sFy1@ " and Ry := Y"1 ( )y R /p(—p, )PF,
Since L,(y) = 0 one has

3
—

y" o = 5p(y)! = anfy (W) (L +y) + D () (=p) ™ (1) (y)

k=1
It implies that (y9°/? — b,)? equals
n—1
an [£o@) A+ 1) + (=17] + D (oen) ™" (=p)™ (1) £, (1)@ V" + Ry — 0.
k=1

We are going to remove monomials with valuation greater than v(a,y) in the
above expression by taking p-th roots. Note that if Vi > 1, p; = 0, then one
could skip most of Step A (see equation (14)). Assume that p; # 0 for some
i>1,let j:=max{l <i<n—1,p; # 0} and [ := min{l <7 < n—1,p; # 0}.
The following relations are straight forward computations using Step I :

v(fo(y)L+y) + (1) = vly), v(3) =v(py”), v(o)=qu(E), (12)
U(Zmy)q/p% Y (=1)1f, (y) 1@ =D/ )=v<<ply>p”‘lpdl>.

Then one checks that
v(Ry) > v(any) > v((py)”" p™) > v(o). (13)

It implies that v((y?/? — b,)?) = qu(5), so one considers (y?*/? — b, 4 §9/7)P.
By expanding this last expression, using (12), (13) and taking into account

q—1 p

G ()00 > vt o3 (1) )50 > ey

=1 k=1
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one obtains that pv(y?/? —b, 4+ 597) = v((py)?" 'p™), leading us to consider

(qu/p b, + gu/p 4 (ply)q/pl“(_p)dz/pfp(y)q(pl—l)/pl“)p'

By expanding this expression and using (12) and (13) one easily checks that
it has valuation v((p,y)*" "p™) where [} ;= min{l+1 <i<n—1,p; # 0}.
By induction one shows that

n—1

t .= qu/p b, + 5P Z(pky)q/p’““(_p)dk/pjfp(y)q(p’“fl)/p’““7 (14)
k=1

satisfies pv(t) = v(a,y). Then vL(pQQt*(P*U(qH)) =uvr(p)/¢®> = [L: Q;r]/qQ,
so ¢* divides [L : K|. It implies that L,(X) is irreducible over K.

Step B : Reduction step.
The last non-trivial group G;, of the lower ramification filtration (G;);>o of
G := Gal(M/K) is a subgroup of Z(G) ([Ser79] IV §2 Corollary 2 of Propo-
sition 9) and as Z(G) ~ Z/pZ, it follows that G;, = Z(G).

According to Step VIII the group H := Gal(M/L) is Z(G). Conse-
quently, the filtration (G;);>o can be deduced from that of M/L and L/K
(see [Ser79] TV §2 Proposition 2 and Corollary of Proposition 3).

Step C : Let 0 € Gal(L/K) — {1}, then v(o(t) — t) = ¢*v(7K).
Let y' := o(y), one deduces the following easy lemma from Step VII.
Lemma 3.1. For any n >0, v(y™ —y™) > nv(y).

Recall the definition § := 2pyy + ZZ: pkypk. First one shows that modulo
(y —/)7/Pm one has

n—1

o (5)1/P — 9P = (2p0) WP (3 9P — /P ZpZ/P(y/qpk/p _ yqpk/p)_ (15)
k=1

Indeed, let (m;)io,.n—1 € N® such that mg +m; + -+ 4+ m,—1 = ¢/p and
ti=mg+mip+---+m,_1p" !, then using lemma 3.1 one checks that

2
m m MMy — q
v(ppg ot ety =) > ;v(y —y).

This inequality implies (15).
Let 1 <k <n—1 and write fp(y)(pltl)q/pk+1 =14, @iry', for some

17



set [. Then

k41

y/q/p fp(y/)(p’“—l)q/p’““ _ ylz/p’““fp(y)(p’“—l)q/p‘“+1

=y LN gy - ).

i€},

Let ¢ € I;. Consider the case when v(a;)) > v(ps) for some 0 < h <
n — 1, then using Step VII, one checks that V 1 < k < n —1, v(ox) >
v(pn) > qu(y’ — y)/p"L. If this case does not occur, then according to the
expression of f,(y) one has i > ¢/p**! + ¢ and using lemma 3.1 one checks
that v(y”—y') > qu(y'—y)/p*". Tnany case v(aix(y"—y')) > qu(y'—y) /P!
and one checks that

k+1 . .
o™ (0 — ') > oy — ) /. (16)

Taking into account (14), (15) and (16), one gets mod (3’ — y)?/Pm

o(t)—t= y/qQ/p _ yq2/p + (on)q/p(y/tJ/p — y /P (17)
n—1
+ZpZ/P(y/qpk/p Yy /p ) + Z )dn/p q/P'““(y/q/p’“+1 yq/p’““)_
k=1

Using lemma 3.1, it is now straight forward to check the following relations
mod (y' —y)/Pm .

y,qz/p B yq2/p - (y/ . y)q2/p’
k k g
pz/p(y/qp /p _ P /p) = pz/p(y/ —y)" /p

k41

(=)™ Pp" ("

k41

k+1
—yP) = AT )

Using Step VII, one sees that each of these three elements has valuation
¢*v(y’ — y)/p, thus one gets

k+1 k+1

i
L

(o(t) =t =(y' —y)” + (2p0)"(y' — )"+ > Py —y)®"  (18)

1

i

_
B
Il

k k
+ 3 (=p) % p (i — )77 mod (Y —y)Tm
1

T

Now recall Step VII, the definitions of the p;’s and of A, then for some
veE R and ¥ € R

pr =uAP@P ) \PIO+D apnd = AP 4 pAY,
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Since ¢*v(y’ —y) = quv()\), equation (18) becomes

9 n—1

9" p q2p
(o(t) = )" = A5a [ + (2ugv)? + Y (ufo™ + (uw)?”")] mod AFom.
k=1

From the action of ¢ on the stable reduction (see Step VIII), one has that

the automorphism of P} given by ¢ — ¢ + v has a prolongation to A,/k, so
Proposition 2.4 implies that

3
—

7" + (2up0)" + Y (@l + (a0)"") + v = 0. (19)
1

B
Il

Assume that 99" + (2a0)? + Y41 (@lo®" + (440)9?") = 0, then from (19)
one has v = 0, which contradicts v € R*. It implies that v(o(t) — t) =
o)/ (1+q) = ¢*v(y —y)/p = ¢*v(mk).

Step D : The ramification filtration of L/K is :
(G/H)o = (G/H), 2 (G/H)y = {1}.

Since K/Qy" is tamely ramified of degree (p—1)(¢+1), one has K = Q)" (7x)

with Wg_l)(ﬁl) = p for some uniformizer 75 of K. In particular 2z := ng /t,

is a uniformizer of L. Let 0 € Gal(L/K) — {1}, then

2 2

t—ol(t t—o(t) wl =l
o(z) —z= 0-()77'?(: UQ()W—KWK.
o(t)t et oo(t)

Using Step C one obtains v(o(z) — z) = 2v(2), i.e. (G/H)y ={1}.

Step E : From now on, we assume p = 2. Let s := (¢ + 1)(2¢*> — 1). There
exist u,h € L and r € mim such that v (2y"?h) = s and

L)u? =1+ po 1y T+ 2920 4,

To prove the first statement we note that, from the definition of f,(y), one

has f,(y) =1+ T with v(T) = qu(y) and L,(y) = 0, thus

,_.

a/2 2 n- q/2" . .
() = )+ 3 O e,

T
I

and f,(v) " (1+y)=1+y+ z_: (q ; 1)T’“(1 + ).

k=1
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Then, we put ¥ := > 4"} (qkl)Tk(l + ) and

q/2 n—1 ( q/2'“+1
pk?/ k_1y/9k+1
k=1
Then one computes
n—1 q/2 k+1 9
h? = [ )4 Z ;ffym — oy )q(Z’“‘”/Q’““] +1-2(h+1)

1

n—1
SZ/ “(y) (ory) "

:( n—k
bn k122++2

e Fo) "V 8 1= 2(h 4 1)

a/2*
_2+y+22%fp( YD Ly S = 2(h+ 1),

In Step III, we proved that v(B,) = qu(y) = 2v(b,)/q where B, = —s,(y),
q/2
SO v(‘gpb—n(y)) = 0 and one checks using Step I that

(pry)”>
v(2) >v(y), andV1<k<n-1, U(W> >0, (20)
thus v(h 4+ 1) > 0 and v(2(h + 1)) > v(2) > v(y). One checks in the same
way that v(X;) > v(y). One has v(X) > v(T) > v(y), so v(h?) = v(y) and
v (2y9%h) = s.
To prove the second statement of Step E, we first remark that Vi > 1
) =1+ 35, (DTF = 1+ %, whence v(%;) > v(T). Since, for all
0<k<n—1,v(py"") > qu(y) one has mod mm

32/2@) /2 /2 — 2k q/2 2/9 y*/”?
—2y"? = [(2009)" + ) (o™ + 4" e (21)
" k=1

One also checks that Vi > 1, vy, (2y?/2%;) > s, then according to (20), Vi > 1
and 1 <k <n-1

q/2"*1 29 )4/29/
v, (%quﬂ&) > s and one checks that vL(;f_O_)ﬁffl) > 5. (22)

Thus, applying relations (21), (22) and the definition of h, one has

n—1
yq/2
2hy™* =[ 3 (o™ ) + 4" ] oy
k=1
n—1
(ory) "
t 2 T2y
k=1

2k+1

/2 _ 2492 mod 75m. (23)

20



Finally one puts

— ok

1 1/2 P 2’“(1+2Z) >
u=1-y 21+ 2k + Z Z 21+ T2r Y =1+4,
k=0 =1 k=n—i—1

and one checks that v(@) = v(y%/?). From the equality

n—1

Lo = 1= pey™™ + 7+ g4 (1+ T)20 + (1+ T)it?
k=0

taking into account that v (2Tw) > s, v (Ta?) > s, V 0 < k < n — 2,

vL(pkyHQk) > s and expanding @ and 4% one gets modulo 7§ m
2 1+q/2 2 — 2y2 () y? 1+
Foy)u® =1 =pp_1y"*"? — 277 +- 297 — Z T Z o T
=1 k=
n—1 n—2 2k(1+22 n—1 n—1 21@ 21@ 1+2

2
Y P21+ - ; _Z 22+ Py (24)

1=1 k=n—i—1

Arranging the terms of (24) , taking into account that vy (2y?) > s and for
all2<i1<n—-landn—i1<k<n-2

2
2k, 2F(1427)

and comparing with (23), one obtains f,(y)u*~1 = p,_1y*+72+2hy?? mod 75m.

Step F: The ramification filtration of M /L is
Hy=Hy=--=Hy,2{1}.

One has to show that UM(DM/L) = q + 2, we will use freely results from
[Ser79] V. If p,_1 = 0, then according to Step E, one has

foly)u? =1+ 2y"*h + 1,
and one concludes using [CM11] Lemma 2.1. Else, if p,—; # 0, one has

welx vr(fo(y)u® = 1) > v (paay'?),

then [LRS93] Lemma 6.3 implies that vy (Dasyr) < g+ 3. Using Step B,
Step D and [Ser79] IV §2 Proposition 11, one has that the break in the ram-
ification filtration of M/L is congruent to 1mod 2, i.e. vp(Dar/r) < q+ 2.
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According to Step D and lemma 2.1, the break ¢ of M/L is in 1+ ¢N. If
t = 1 then G5 = {1} and G1/Gy = G /G5 ~ G would be abelian, so t > 1+g,

Step G : Computations of conductors.
For | # 2 a prime number, the G-modules Jac(C)[l] and Jac(Cy)[l] being
isomorphic one has that for ¢ > 0 :

dimg, Jac(C)[I]% = dimg, Jac(Cy)[1]“

Moreover, for 0 < i < 14 ¢ one has Jac(Cy)[[]% C Jac(Cy)[l]%“ | then
from Cy/Z(G) ~ Pi and lemma 2.2 it follows that for 0 < ¢ < 1 + q,
dimg, Jac(Cy,)[1]% = 0. Since g(C') = q/2 one gets f(Jac(C)/K) = 2q+1 and
sw(Jac(C)/Qy") = 1. O

Example : Magma codes are available on the author webpage. Let
K = Qu(2Y°) and f(X) := 1+ 26/°X% + 2¢5X3 + X* + X° € K[X],
one checks that the smooth, projective, integral curve birationally given by
Y? = f(X) has the announced properties, that is the wild monodromy M /K
has degree 32 and one can describe its ramification filtration. The first pro-
gram checks that Step A and Step D hold for this example. The second
program checks Step F and is due to Guardia, J., Montes, J. and Nart, E.
(see [GMN11]) and computes vas(Dasyqu) = 194. Using [Ser79] 11T §4 Propo-
sition 8, one finds that UM(DM/K) = 66, which was the announced result in
Theorem 3.1 3.

Remarks :

1. The above example was the main motivation for Step F since it shows
that one could expect the correct behaviour for the ramification filtra-
tion of Gal(M/K) when p = 2.

2. The naive method to compute the ramification filtration of M/K in the
above example fails. Indeed, in this case Magma needs a huge precision
when dealing with 2-adic expansions to get the correct discriminant.

Acknowledgements : I would like to thank M. Monge for pointing out
lemma 2.1.
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