Université Bordeaux I - année 2010-2011 MHT201 "Algèbre 1" Liste d'exercices 4

Révisions

On notera $\mathbb{K} = \mathbb{Q}$ ou $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

Exercice 1. Soient $P(X) := \sum_{j=0}^n a_j X^j \in \mathbb{C}[X]$ tel que P(0) = 1, P(1) = 0 et $\omega_k := e^{\frac{2ik\pi}{n+1}}$.

- 1. Pour $0 \le j \le n$ calculer $\sum_{k=0}^{n} \omega_k^j$.
- 2. Montrer que $\sum_{k=0}^{n} P(\omega_k) = n+1$.
- 3. En déduire que

$$\sup_{|z|=1} |P(z)| \ge 1 + \frac{1}{n}$$

Exercice 2. Déterminer les triplets $(a,b,c) \in \mathbb{R}^3$ tels que $X^2 + cX - 1$ divise $X^3 + aX + b$.

Exercice 3. Soit $n \in \mathbb{N} - \{0\}$.

- 1. Déterminer $\operatorname{pgcd}(X^n, (1-X)^n)$.
- 2. Montrer qu'il existe un unique couple $(P(X), Q(X)) \in \mathbb{K}[X]^2$ vérifiant

$$(1-X)^n P(X) + X^n Q(X) = 1$$

avec $\deg P(X) < n$ et $\deg Q(X) < n$.

3. Montrer que P(1 - X) = Q(X) et que Q(1 - X) = P(X).

Exercice 4. Montrer que $X^3 - 2$ est irréductible sur \mathbb{Q} . Ecrire sa décomposition en facteurs irréductibles dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.

Exercice 5. Soit $P(X) := a_0 + \cdots + a_n X^n \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$. Montrer que

$$\varphi_{P,\mathbb{K}}(\alpha) = (\dots((a_n x + a_{n-1})x + a_{n-2})x + \dots + a_1)x + a_0$$

Combien faut-il d'opérations pour calculer ainsi $\varphi_{P,\mathbb{K}}(\alpha)$? Combien faut-il d'opérations pour calculer de manière naïve $\varphi_{P,\mathbb{K}}(\alpha)$?

Montrer qu'on obtient aussi un algorithme de factorisation de P(X) par X-x si P(x)=0.

Exercice 6. Soit $P(X) := (X^2 - X + 1)^2 + 1$.

- 1. Montrer que i est racine de P(X).
- 2. En déduire une factorisation de P(X) en produit de polynômes irréductibles sur \mathbb{C} puis sur \mathbb{R} .

Exercice 7. Soit $P(X) \in \mathbb{R}[X]$ tel que $\forall x \in \mathbb{R}, P(x) \geq 0$. Montrer qu'il existe $U(X), V(X) \in \mathbb{R}[X]$ tels que $P(X) = U(X)^2 + V(X)^2$.

Exercice 8. Soient $n \in \mathbb{N}$ et $P(X) := (X - \alpha_1)^{k_1} \dots (X - \alpha_n)^{k_n} \in \mathbb{C}[X]$. Calculer $\operatorname{pgcd}(P(X), P'(X))$.

Exercice 9. Pour quelles valeurs de $a \in \mathbb{C}$ le polynôme $(X+1)^7 - X^7 - a$ admet-il une racine réelle multiple ?

Exercice 10. Déterminer la multiplicité de j pour $X^8 + 2X^6 + 3X^4 + 2X^2 + 1$.