Université Bordeaux I - année 2010-2011 MHT201 "Algèbre 1" Liste d'exercices 5

Multiplicité des racines

On notera $\mathbb{K} = \mathbb{Q}$ ou $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

Exercice 1. Soit $P(X) := a_0 + \cdots + a_n X^n \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$. Montrer que

$$P(\alpha) = (\dots((a_n x + a_{n-1})x + a_{n-2})x + \dots + a_1)x + a_0$$

- 1. Combien faut-il d'opérations pour calculer ainsi $P(\alpha)$? Combien faut-il d'opérations pour calculer de manière naïve $P(\alpha)$?
- 2. Montrer qu'on obtient aussi un algorithme de factorisation de P(X) par X-x si P(x)=0.

Exercice 2. Soit $n \in \mathbb{N} - \{0\}$, montrer que $nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$ admet une racine multiple. Trouver les racines de $3X^5 - 5X^4 + 5X - 3$.

Exercice 3. Déterminer la multiplicité de i et -i dans $X^4 + 2X^2 + 1$ de deux manières différentes.

Exercice 4. Soit $P(X) \in \mathbb{C}[X]$ et α une racine de P(X). Rappeler pourquoi il existe $T(X) \in \mathbb{C}[X]$ tel que $P(X) = (X - \alpha)T(X)$. Montrer que $P'(\alpha) = T(\alpha)$

Exercice 5. 1. Factoriser en produits d'irréductibles sur \mathbb{C} puis sur \mathbb{R} et \mathbb{Q} les polynômes X^6+1 et X^8+X^4+1 .

2. Donner une condition nécessaire et suffisante sur $(p,q) \in \mathbb{R} \times \mathbb{R}$ pour que $X^8 + X^4 + 1$ divise $X^{24} + pX^{12} + q$.

Exercice 6. Soit $P(X) := (X^2 - X + 1)^2 + 1$.

- 1. Montrer que i est racine de P(X).
- 2. En déduire une factorisation de P(X) en produit de polynômes irréductibles sur $\mathbb C$ puis sur $\mathbb R$.

Exercice 7. Soient $n \in \mathbb{N}$ $n \geq 2$, $a \neq b \in \mathbb{C}$ et $A(X) := (X - a)^{2n} + (X - b)^{2n}$, $B(X) := (X - a)^2 (X - b)^2$. Soit R(X) le reste de la division euclidienne de A(X) par B(X).

1. Montrer qu'il existe $S(X) \in \mathbb{C}[X]$ avec deg $S \leq 1$ tel que

$$R(X) - (a - b)^{2n} = (X - a)(X - b)S(X)$$

2. Montrer que $S(X) = 2n(b-a)^{2n-2}$.

Exercice 8. Soit $P(X) \in \mathbb{Q}[X]$.

- 1. Montrer que $\operatorname{pgcd}(P(X),P'(X))=1$ si et seulement si P(X) n'a que des racines simples.
- 2. Montrer que si P(X) est irréductible sur $\mathbb{Q}[X]$ alors P(X) n'a pas de racines complexes multiples.