Université Bordeaux I - 2012 N1MA5011 Liste d'exercices 3

Polynômes

Soit A un anneau commutatif (unitaire).

Exercice 1. Soient $n, m \ge 1$ et $P(X) := \sum_{k=0}^{n} a_k X^k \in A[X]$.

- 1 Prouver que P(X) est nilpotent si et seulement si a_0, \ldots, a_n sont nilpotents.
- **2-a** Soit $Q(X) := \sum_{k=0}^{m} b_k X^k \in A[X]$ tel que P(X)Q(X) = 1. Montrer que pour $0 \le k \le m, \ a_n^{k+1} b_{m-k} = 0$. En déduire que a_n est nilpotent.
- **2-b** Montrer que $P(X) \in A[X]^{\times}$ si et seulement si $a_0 \in A^{\times}$ et a_1, \ldots, a_n sont nilpotents.

Exercice 2. Soit $P(X) \in \mathbb{Z}[X]$ et $\underline{m} \in \mathbb{Z}$. On note $\overline{P(X)}$ la réduction de P(X) mod m (i.e. si $P(X) = \sum_{i=0}^{n} a_i X^i$, $\overline{P(X)} = \sum_{i=0}^{n} \overline{a_i} X^i$ où \overline{a} désigne la classe de a modulo m).

1 Montrer qu'on a un isomorphisme :

$$\mathbb{Z}[X]/(m, P(X)) \simeq (\mathbb{Z}/m\mathbb{Z}[X])/(\overline{P(X)}).$$

- **2** Montrer que si m = p est un nombre premier et que $\overline{P(X)}$ est irréductible alors l'idéal (p, P(X)) est maximal dans $\mathbb{Z}[X]$.
- **Exercice 3. 1** Soit A un anneau principal et soit I un idéal propre de A (c'est à dire $I \neq \{0\}$ et $I \neq A$). Prouver que I est maximal si et seulement si I est premier.
- **2** Soit \mathbb{K} un corps commutatif. Montrer que $\mathbb{K}[X]$ est principal. Quels sont les idéaux premiers et les idéaux maximaux de $\mathbb{K}[X]$?

Exercice 4. Déterminer les idéaux de l'anneau

$$\mathbb{R}[X]/(X^2(X^2+1)).$$

Exercice 5. Soient \mathbb{K} un corps commutatif et $\alpha \in \mathbb{K}$. On note $I_{\alpha} := (X - \alpha Y)\mathbb{K}[X, Y]$.

1 Soit $P(X,Y) \in \mathbb{K}[X,Y]$, montrer qu'il existe $Q(X,Y) \in \mathbb{K}[X,Y]$ et $R(Y) \in \mathbb{K}[Y]$ tels que $P(X,Y) = (X - \alpha Y).Q(X,Y) + R(Y)$.

2 Soit Φ le morphisme :

$$\Phi : \mathbb{K}[X, Y] \to \mathbb{K}[T]$$

$$k \in \mathbb{K} \mapsto k$$

$$X \mapsto \alpha T$$

$$Y \mapsto T$$

Montrer que Ker $\Phi = I_{\alpha}$.

- 3 En déduire que $\mathbb{K}[X,Y]/I_{\alpha} \simeq \mathbb{K}[T]$ et que I_{α} est un idéal premier.
- 4 Déterminer un idéal maximal de $\mathbb{K}[X,Y]$ contenant I_{α} .

Exercice 6. Soit \mathbb{K} un corps commutatif et $A := \mathbb{K}[X_1, \dots, X_n]$.

- 1 Pour $\mathbf{z} := (z_1, \dots, z_n) \in \mathbb{K}^n$, on note $\mathfrak{m}_{\mathbf{z}}$ l'idéal $(X_1 z_1, \dots, X_n z_n)$. Montrer que $\mathfrak{m}_{\mathbf{z}}$ est le noyau du morphisme d'évaluation en \mathbf{z} (i.e. le morphisme qui à X_i associe z_i et vaut l'identité sur les éléments de \mathbb{K}).
- 2 En déduire que \mathfrak{m}_z est un idéal maximal et que $\mathfrak{m}_z = \mathfrak{m}_{z'}$ si et seulement si z = z'.
- **3** Soit \mathfrak{m} un idéal maximal de $\mathbb{K}[X_1,\ldots,X_n]$ tel que la composée des applications naturelles $\mathbb{K} \to A \to A/\mathfrak{m}$ soit un isomorphisme, montrer qu'il existe $z \in \mathbb{K}^n$ tel que $\mathfrak{m} = \mathfrak{m}_z$.