Université Bordeaux I - 2012 N1MA5011 Liste d'exercices 5

Irréductibilité des Polynômes

Soit A un anneau commutatif (unitaire).

Exercice 1. Soit $P(X) := X^3 - X + 2 \in \mathbb{Q}[X]$ et I l'idéal de $\mathbb{Q}[X]$ engendré par P(X).

- 1 Montrer que l'anneau $\mathbb{Q}[X]/I$ est un corps.
- **2** Soit x l'image de X dans $\mathbb{Q}[X]/I$. Calculer l'inverse de x.
- **3** Montrer que $1 + x + x^2$ est non nul et calculer son inverse.

Exercice 2. 1 Montrer qu'il existe des polynômes irréductibles dans $\mathbb{Q}[X]$ de degré arbitraire.

2 Soit p un nombre premier. Montrer que $X^{p-1} + X^{p-2} + \cdots + X + 1$ est irréductible sur $\mathbb{Q}[X]$.

Exercice 3. Soient A un anneau factoriel et $P(X) \in A[X]$ un polynôme primitif non constant. Soit $\pi \in A$ un élément irréductible. Supposons que le coefficient dominant de P(X) ne soit pas divisible par π et que P(X) mod π soit irréductible sur l'anneau quotient $A/(\pi)$. Montrer que P(X) est irréductible dans l'anneau A[X].

Exercice 4. 1 Déterminer la liste des polynômes irréductibles sur \mathbb{F}_2 de degré 2 puis de degré 3.

- **2** Montrer que le polynôme $X^4 + X + \overline{1}$ est irréductible sur $\mathbb{F}_2[X]$.
- 3 En déduire que $X^4 X + 1 \in \mathbb{Q}[X]$ est irréductible.

Exercice 5. Les polynômes suivants sont-ils irréductibles ?

- 1 $X^4 + 1$ dans $\mathbb{Q}[X]$.
- **2** $X^3 5X^2 + 1$ dans $\mathbb{Q}[X]$.
- **3** $X^5 + 5X + 10 \text{ dans } \mathbb{Q}[X].$
- 4 $Y^2 X(X-1)(X-2)$ dans $\mathbb{R}[X,Y]$.
- **5** $X^2Y^3 + X^2Y^2 + Y^3 2XY^2 + Y^2 + X 1$ dans $\mathbb{C}[X, Y]$ et dans $\mathbb{F}_2[X, Y]$.
- **6** $Y^7 + Y^6 + 7Y^4 + XY^3 + 3X^2Y^2 5Y + X^2 + X + 1$ dans $\mathbb{Q}[X, Y]$.

Exercice 6. Soient $a_1, a_2, \ldots, a_n \in \mathbb{Z}$, $a_i \neq a_j$, $F(X) := (X - a_1)(X - a_2) \ldots (X - a_n)$. Alors $1 + F(X)^2$ est irréductible sur $\mathbb{Z}[X]$ et sur $\mathbb{Q}[X]$.

- 1 Soit $1 + F^2 = PQ$ une factorisation dans $\mathbb{Q}[X]$ avec P et Q unitaires. Montrer que $P, Q \in \mathbb{Z}[X]$ et que les fonctions polynômiales correspondantes sont de signe constant sur \mathbb{R} .
- **2** Montrer qu'il existe $\epsilon \in \{\pm 1\}$ tel que pour $1 \le i \le n$ on ait $P(a_i) = Q(a_i) = \epsilon$.
- **3** Supposons $P \epsilon \neq 0$ et $Q \epsilon \neq 0$. Montrer que $F = P \epsilon = Q \epsilon$.
- 4 Conclure.

Exercice 7. Montrer que l'anneau $\mathbb{R}[X,Y]/(X^2+Y^2+1)$ est intègre.

Exercice 8. Soit $N \ge 2$ un entier, on va montrer qu'il existe une infinité de nombres premiers appartenant à $1 + N\mathbb{N}$. Soit $\Phi_N(X)$ le N-ième polynôme cyclotomique.

- **1** Montrer que $X^N 1 = \Phi_N(X)P(X)$ avec $P(X) \in \mathbb{Z}[X]$ et que $X^d 1$ divise P(X) dans $\mathbb{Z}[X]$ pour tout d|N et $d \neq N$.
- **2** Montrer qu'il existe A > N tel que pour tout x > A, $|\Phi_N(x)| > 2$.
- **3** Soient $(p_k)_{k\geq 0}$ la suite strictement croissante des nombres premiers, k tel que $p_k\geq A, c:=p_1\ldots p_k$ et q premier tel que $q|\Phi_N(c)$. Montrer que $q>p_k$.
- 4 Soient $\rho: \mathbb{Z} \to \mathbb{Z}/q\mathbb{Z}$ la surjection canonique et $\tau: \mathbb{Z}[X] \to \mathbb{Z}/q\mathbb{Z}[X]$ la surjection qu'elle induit. Montrer que $\rho(c)^N = 1$ que $\tau(P)(\rho(c)) \neq 0$ et que $\rho(c)^d \neq 1$ pour tout $d|N, d \neq N$. En déduire que l'ordre de $\rho(c)$ dans $(\mathbb{Z}/q\mathbb{Z})^{\times}$ est N et donc que N|q-1. Conclure.