Université Bordeaux I - 2012 N1MA5011 Liste d'exercices 9

Corps de rupture, corps de décomposition.

Exercice 1. Soient \mathbb{L} une extension algébrique finie de \mathbb{K} , $P(X) \in \mathbb{K}[X]$ un polynôme irréductible de degré m et $n := [\mathbb{L} : \mathbb{K}]$. Montrer que si $1 = \operatorname{pgcd}(m, n)$ alors P(X) est un irréductible de $\mathbb{L}[X]$.

Exercice 2. Montrez que $\mathbb{Q}[\sqrt[3]{2}]$ n'est pas un corps de décomposition de $X^3 - 2$ sur \mathbb{Q} . Quel est le corps de décomposition \mathbb{L} de ce polynôme sur \mathbb{Q} ? Calculer $[\mathbb{L}:\mathbb{Q}]$.

Exercice 3. Soit $\alpha := \sqrt{1 + \sqrt{5}}$.

- 1. Déterminer le polynôme minimal P(X) de α sur \mathbb{Q} . Quel est le degré de α sur \mathbb{Q} ?
- 2. Déterminer les racines de P(X).
- 3. Montrer $\mathbb{K} := \mathbb{Q}(\alpha, i)$ est un corps de décomposition de P(X).
- 4. Calculer le degré de K sur Q.

Exercice 4. Soit $P(X) = X^{3} - X + 1$.

- 1 Montrer que P(X) est irréductible sur \mathbb{Q} .
- 2 Montrer que P(X) possède une racine réelle et deux racines complexes.
- **3** Le discriminant d'un polynôme de la forme $X^3 + pX + q$ étant $-4p^3 27q^2$, calculer le discriminant de P(X). Soit \mathbb{L} un corps de décomposition de P(X), montrer que $\sqrt{-23} \in \mathbb{L}$.
- 4 Montrer que $[\mathbb{L}:\mathbb{Q}]=6$ et que $\mathbb{L}=\mathbb{K}(\sqrt{-23})$ où \mathbb{K} est un corps de rupture de P(X).

Exercice 5. Comment exprimer un corps de décomposition en fonction des corps de rupture d'un polynôme $P(X) \in \mathbb{K}[X]$? Soient n le degré de P(X) et \mathbb{L} un corps de décomposition de P(X), montrez que $[\mathbb{L} : \mathbb{K}] \leq n!$.

Exercice 6. Décrire un corps \mathbb{K} à 4 éléments. A-t-on un isomorphisme $\mathbb{K} \simeq \mathbb{Z}/4\mathbb{Z}$?

Exercice 7. 1 Montrez que $X^3 - 3$ est irréductible dans $\mathbb{Z}[X]$.

- **2** Montrez que $X^3 3$ est irréductible dans $\mathbb{K}[X]$ pour toute extension quadratique \mathbb{K}/\mathbb{Q} .
- **3** Déterminez une base d'un corps de décomposition de X^3-3 sur \mathbb{Q} .
- 4 Soit $P(X) = X^6 + 9$ et soit $\mathbb{L} = \mathbb{Q}[x]$ un corps de rupture de P(X) avec P(x) = 0. Montrez que \mathbb{L} contient $\mathbb{Q}[i]$.
- 5 Montrez que $\mathbb L$ contient une racine du polynôme $Y^3-3.$
- **6** Montrez que P(X) est irréductible sur \mathbb{Q} .