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The objective of this work is to develop numerical tools useful for the understanding of
fundamental phenomena in Blood Flow, including some biochemistry and cellular dynam-
ics. An open problem that may benefit from multi-scale numerical tools is for example the
understanding of the relation ship between inflammation and cholesterol plaque. The cor-
responding topics we address in this paper are (1) Heterogeneous Domain Decomposition
for Multi-Scale Problem (2) Fluid-Structure Interaction in the Boundary Layer and (3)
Immersed Boundary Method for the dynamic of cells (ref. C.Peskin et Al). In this present
paper we concentrate on (1) and give preliminary results on (2) and (3) in the framework
of heterogeneous domain decomposition.

I. Introduction and Motivation

The understanding of blood flow phenomena relevant to vascular diseases is a critical and yet difficult
issue. The initial formation of arteriosclerosis plaques, for example, depends on a combination of various
factors. The impact of physical and geometrical properties is well documented experimentally. There is a
number of evidence relating shear stress to the pathophysiology of arteriosclerosis: arteriosclerosis plaques are
frequently located at or near regions of bifurcations, multiple intersections, and high vessel wall curvatures.1, 2

However, arteriosclerosis is a slow process influenced accumulatively by many parameters, including chemical
agents, mutagen, hypoxemia, immunological factors, and microbiological factors such as bacteria, virus, or
endotoxin, which act on a much shorter time scale and in a localized manner. Therefore, in order to perform
realistic simulations for cardiovascular physiology, one must address issues related to fluid and vessel wall
interactions, and coupling of the aforementioned disparate time scales and length scales. Furthermore, one
should develop a systematic way of calibrating the simulation to the medical imaging data. The mathematical
problems to be solved are:

• The Navier-Stokes equation to describe incompressible flow and eventually quasi non-Newtonian flow.

• The coupling between the fluid flow equation and the soft tissue model for the artery wall.

• The boundary layer in fluid flow, and multiple scales in reaction diffusion convection of chemical species
between the fluid flow and the multi layer material wall.

• The parameters identification and calibration of the mathematical model to medical imaging data or
experimental data.

Such an endeavor involves substantial challenges arising from mathematical modeling, numerical tech-
niques, computational modeling, image analysis, and experimental validation.
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Figure 1. Structure of an artery

Figure 2. Structure of an Artery and Diffusion

Convection Processes.

Figure 3. Detail modeling of the Intima for Wall Absorption.

The aim of this paper is to present a set of domain decomposition tools that will allow to develop
numerical efficient computation of multi-scale complex blood flow phenomena. We restrict ourself to two
space dimension while most of the concept can be extended to three space dimensions. In Section II, we
review the model and show that its numerical solution is amenable to the design of fast solver for two
classical operators. In Section III, we give the main concepts allowing us to build the heterogeneous domain
decomposition. In Section IV, we present an heterogeneous domain decomposition that can match the
boundary layers. In Section V, we apply our technique to Incompressible Navier-Stokes flow. Section VI
gives some conclusions and perspectives.

II. Model

First, we will review briefly the different PDEs used to described some blood flow in main large arteries
with bio-chemistry. In particular we would like to refer to the pioneer work of C. Peskin et Al,3 A. Quarteroni
et Al,4, 5, 6 and P. Fischer et Al.7

The artery can be naturally decomposed into four subdomains that are the lumen, the intima, the
media and the adventice more or less arranged into concentric layers. We recall that each layer has different
biological functions and physical properties. For arteries of diameter more than few millimeters we can use
the incompressible Navier-Stokes equations (NS),

∂tu+ u.∇u+ ∇p− ν∆u = F,

∇.u = 0 (1)

that is only valid a priori in the lumen. In these equation u is the velocity and p the pressure. We have the
no-slip boundary condition on the wall and prescribed boundary condition on inflow and outflow that must
be derived somehow.

Let us extend continuously the blood flow speed u to zero in the artery wall.
Navier-Stokes can be coupled to the reaction-convection-diffusion of chemical components transported

by the blood flow in the lumen and diffused in the different layers of the artery wall,

∂tC + ∇.(uC) = ∇.(D∇C) +Q(C,E, t),
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where C is a vector of these chemical components, D stands for the solute diffusivity. D is usually
a diagonal matrix (di) with coefficients that are smooth piecewise functions in space. As a matter of fact,
di(x, t) have discontinuities across the interface between the different subdomains because values may differ
drastically depending on the space location x in the lumen, the intima, the media, the adventice areas or
outside the vessel. The source term Q might be either a source or a sink attached to the wall location.

The Reynolds number in main arteries is in the range 100-3000, and the blood flow can exhibit a
complex unsteady structure with attachment and detachment of boundary layers. For chemical components,
We may expect boundary layers much thinner than the boundary layer for the fluid flow - see Figure 2 and
Figure 3.

In Navier-Stokes equations, the body force can take into account many different phenomena. If one
follow the immersed boundary method approach, F may represent the action of the wall into the flow: when
the wall is assimilated to an elastic membrane the force takes the following form:

F (x, t) =

L∫

0

f(s, t)δ(x−X(s, t))ds,

where L is the length of the membrane, s is a natural parametrization of the interface, X(s, t) is the
time dependent location of the membrane, δ is the Dirac function, and f(s, t) describes the elastic properties
of the membrane.

The relation ∂X
∂t

(s, t) = u(X(s, t), t) stands for the no-slip boundary condition. We can assimilate
the vessel wall as a network of elastic and muscle fibers. The elastic-contractile properties of the smooth
muscle fibers might be modulated by concentration of vasoactive agents. Inside the lumen, F may represent
a cohesion force density produced by interpolated bonds between activated platelets or by some adhesion-
detachment of cells on the wall.

Using a semi-implicit projection scheme for the Navier-Stokes, and a semi-implicit or Newton scheme
for the chemical components, it is easy to see that the computation of the multi-scale problem relies on the
design of fast linear solvers for the following two operators:

∂tV + (~a.∇)V −∇.(D∇V ) + γV, (2)

Σiα
∂2V

∂x2
i

, (3)

where V can be a vector and x = (xi) is the space variable.
Further in each subdomain each operator (2) or (3) may have coefficients with different scalings. The

artery walls are essentially thin cylindric domains with strong anisotropic properties between space direction
parallel to the artery axis and to the normal direction to the wall. Further in arteries of radius larger than
few millimeters, the Reynolds number is relatively large, up to few thousands, and one has a boundary
layer. A biologically motivated Domain Decomposition (DD) consists then to decompose the lumen into a
Boundary Layer subdomain (BL), where the gradient of flow speed is large, the chemical exchange with the
wall is critical, the fluid structure interaction is strong, and into a Regular Domain (RD) that capture the
main part of the flow outside the BL.

Our goal is then to build an heterogeneous DD for the two types of solvers corresponding to (2) and
(3) in two types of subdomain such as BL or RD. One can further notice that walls subdomains are by
nature BL like subdomains.

In our work we focus on the multi-scale properties of the model and make extensive used of the
asymptotic analysis in the numeric. Such method are so-called Asymptotic Induced Domain Decomposition

Method. In the next section, we show the link between domain decomposition and singular perturbations.

III. Domain Decomposition and Singular Perturbation

To illustrate the concept, let us consider the momentum equation in Navier-Stokes equation. The
time integration of

∂tU + (~a.∇)U −∇.(D∇U),
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leads to the singular perturbation problem,

−ε∇.(D∇U) + ν(~a.∇)U + U = F,

with boundary conditions such as the no-slip condition along the walls, and prescribed velocity at inlet and
outlet. The singular perturbation parameter is ε = dt

Re
� 1, ν = dt � 1. Similarly, for steady problem, the

corresponding problem is
−ε∇.(D∇U) + ν(~a.∇)U = F,

with analogous boundary conditions but ε = 1
Re

� 1.
Small ε , i.e. large Reynolds number are responsible for Boundary Layers.
Singular perturbation analysis of such operators has been extensively reported in the literature.

One popular technique is the Matched Asymptotic Expansion method.8, 9, 10 This method can be seen
as an analytical equivalent of the domain decomposition method for the numerical solution of PDEs -
http://www.ddm.org. From the matched asymptotic method, we have:

• The domain Ω should be decomposed into

Ω = ΩR ∪ ΩBL.

where ΩBL stands for a thin domain where fast scales gives large variation of the solution, and ΩR

stands for the subdomain where the solution has derivatives of order one.

• The Boundary Layer approximation uses a local orthogonal coordinate system η, ξ in ΩBL attached to
the wall ∂Ω, with normal-tangential coordinates.

• Most often, the normal variable should be stretched as

ξ =
η

εp
,

where εp is the so-called thickness of the layer.

• The choice of the space variable coordinate system in each subdomain is such that the solution has a
regular asymptotic expansion in each subdomain:

UR = Σj=1..nδ
R
i (ε)UR

i , U
BL = Σj=1..nδ

BL
i (ε)UBL

i ,

• Regular expansion means separation of variable between space and ε parameter: in other words Ui is
independent of ε

• Both asymptotic expansion of U in ΩR and ΩBL should be asymptotically valid in an overlap area
ΩR ∩ ΩBL 6= 0

• Matching conditions define a composite uniform expansion:

U = HUR + (1 −H)UBL,

where H is a partition of unity, consistent with the PDE problem.

• A stability estimate is necessary to prove the convergence of this formal composite asymptotic expan-
sion.

One can motivate a DD numerical procedure using these analytical results. Our objective is to get a
numerically efficient numerical method from the matched asymptotic method idea. This is particularly easy
to do with the Schwarz algorithm as a DD solver.

Following the asymptotic analysis framework, we discretize ΩR and ΩBL with grids topologically
equivalent to Cartesian meshes using the local coordinate system: the overall grid is composite. Because we
have regular data structure, we can use cache efficient numerical algorithm that leads to dramatic perfor-
mance improvement on scalar processors. ΩR is the restriction of a Cartesian grid to a polygonal domain.
The background Cartesian grid on the box can be used as a preconditioner with fictitious domain decom-
position.11 Difference in space scaling is taken care by the DD which avoid possible local FV cells with
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flat angles. The Schwarz algorithm is an iterative scheme providing automatically the matching condition
between subdomains. Artificial interfaces in the Schwarz method with (artificial boundary layers) give su-
perlinear speed of convergence. The first order asymptotic approximation of the operator in the subdomain
is a good preconditioner.

However, conservativity of the physical quantities with overset grids might be an issue. We refer
to the work of G. Chesshire and W. Henshaw for a general discussion of this problem that is common to
the Chimera approach. In this paper we use interface conditions derived from interpolators that satisfy a
maximum principle. The maximum principle allows us to keep the convergence properties of the Schwarz
method for the non matching grid case analogue to the matching grid case. We have relied on extensive
solution verification here to check that these non conservative interface boundary conditions leads, in our
benchmark problems, to second order accuracy provided that the grids is fine enough. Further the DD that
is driven by the singular perturbation problem, does not provide a priori a fast convergence of the elliptic
solver. As a matter of fact the Multiplicative Schwarz algorithm has slow convergence for the elliptic operator
(3) as opposed to singular perturbation problems corresponding to (2). In the next section, we discuss the
optimized choice of subdomain algebraic solvers and an acceleration method for the multiplicative Schwarz
algorithm.

IV. Heterogeneous Domain Decomposition for Navier-Stokes

We are going to present successively results on the performance of subdomain algebraic solver, interface
solver for the domain decomposition.

A. Fast subdomain solver

Let us consider an incompressible Navier-Stokes flow in a curved pipe. We present performances for the
Poisson solver used in a pressure solve, that is the most time consuming part of the code. As mentioned
earlier, we generate a composite mesh with the classical normal-tangential coordinate system in Boundary
Layer theory and a regular mesh in the regular domain (Figure 11).

• On figures 4 and 5 are represented the performance of different solvers in Cartesian and curvilinear
subdomain. In each figure, the left bar is for LU decomposition, middle bar for BICGSTAB with incomplete
LU preconditioning and right bar is for Algebraic multigrid. These results show that the optimum choice of
the algebraic solver depends critically on the nature of the subdomain.
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Figure 5. Comparison of the elapsed time for each

subdomain with a precomputed preconditioner

We notice that the (naive) use of algebraic multigrid is much slower solver than LU decomposition in
the boundary layer domain. We can conclude from extensive experiments and performance modeling12 that

• For the Poisson solver multigrid gives the best result for the polygonal domain ΩR, while direct solvers
can be used advantageously in the boundary layer. As a matter of fact, since the Poisson operator does
not change in time stepping, the LU decomposition can be computed once and for all. Further the
boundary layer subdomain have many more grid points in the tangential direction than in the normal
direction. We can then take advantage of the fact that the matrix of the linear system has a small
bandwidth relative to the global size of the problem.
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• For the momentum’s equation solver, we can use as a preconditioner in the boundary layer the one
dimensional approximation of the operator that neglect all tangential derivatives. It is indeed the first
order term in the asymptotic expansion of the operator with respect to ε. Multigrids give also excellent
result in the regular domain.

The Schwarz iterative solver for the pressure equation needs still to be speed up. We report on the
next section on the performance of the Aitken acceleration method.

B. Iterative scheme for the domain decomposition

In this section we illustrate the performance of our iterative scheme for the DD with the test case of a flow
past a cylinder.

• The implementation is keeping modular and easy to debug by using a multiplicative Schwarz algorithm.

• The convergence of the Schwarz algorithm is fast for the momentum or vorticity equation since operator
is a perturbation of identity.13, 14

• The convergence is slow for the pressure or stream function equation:

We accelerate the convergence by an Aitken like method15, 16

We get a better initial guess for the interface solution by using extrapolation in time.

We need then an average of two to three iterates of the multiplicative Schwarz algorithm per time
step for the flow past a cylinder in a 2D channel with a Reynolds ∼ 300 using the ω − Ψ formulation.
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Figure 6. Composite mesh for a two D flow past

a cylinder in a long channel.
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300.

The next section gives some accuracy assessment of our solution.
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V. Solution verification

A. Description of the test case and conservativity issue

Let us consider the Navier-Stokes model in ω − Ψ formulation.

∂ω

∂t
+ (u · ∇)ω − ν∇2ω = 0 (4a)

∇2Ψ + ω = 0 (4b)

∂Ψ

∂η
= −uη ,

∂Ψ

∂ξ
= uξ (4c)

+B.C. (4d)

where ω stands for the vorticity, ψ for the stream, u = (uξ, uη) for the velocity field, and ξ and η the
coordinates within a given referential (i.e. ξ = x, η = y in Cartesian coordinates, and ξ is the tangential
coordinate, η the normal coordinate in curvilinear coordinates). We use a classical discretization method:

• A finite centered difference scheme of order 2 for diffusion and convection terms.

• A Euler scheme with implicit diffusion and explicit convection for equation (4a).

• An Poisson Problem for equation (4b) with ω solution of 4a at the current time.

The algorithm for solving Navier-Stokes equations writes:

1. Generate the mesh for the different subdomains

• Boundary layers meshes are generated first.

• The remaining space is meshed using a Cartesian grid overlapping the boundary layers grids. The
size of the overlap is two Cartesian cells.

For each time step:

2. Solve vorticity (ω) equations in the whole domain using multiplicative Schwarz:

• Compute the RHS for equation (4a) in curvilinear and Cartesian domains.

• Solve equation (4a) for curvilinear domains.

• Send the new virtual boundaries to the Cartesian domain using a bilinear interpolation.

• Solve equation (4a) for Cartesian domain.

• Send the new virtual boundaries to the curvilinear domains using a bilinear interpolation.

• Continue the process until the boundary residue go below the fixed tolerance.

3. Solve stream (Ψ) equations in the whole domain using multiplicative Schwarz:

• Compute the RHS for equation (4b) in curvilinear and Cartesian domains.

• Solve equation (4b) for curvilinear domains.

• Send the new virtual boundaries to the Cartesian domain using a bilinear interpolation.

• Solve equation (4b) for Cartesian domain.

• Send the new virtual boundaries to the curvilinear domains using a bilinear interpolation.

• Continue the process until the boundary residue go below the fixed tolerance.

4. Check the divergence of the velocity

7 of 11

American Institute of Aeronautics and Astronautics Paper 2005-1092



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Heterogeneous mesh in a stenosis

Figure 10. Overset mesh for NS’s flow in a steno-

sis.
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Figure 11. Overset mesh for NS’s flow in a pipe.

Figure 12. Vorticity field for NS’s flow in a steno-

sis.
Figure 13. Vorticity field for NS’s flow in a pipe.

The solution given in this code is tested on the two configurations given in Figure 10 and Figure 11.
The vorticity field of the domain for a Reynolds number equal to 100, is given in Figure 12 and

Figure 13.
The computations are done with three different Reynolds numbers: Re = 1, Re = 50, Re = 100. The

velocity at the inlet is defined by ux = (0.5 − y)(0.5 + y), uy = 0. We also apply this boundary condition at
the outlet. No-slip boundary conditions are applied at other boundaries.

Each run is repeated on three sets of grids. Let us denote G0 = (Nx × Ny) for the Cartesian grids
where Nx and Ny are the number of nodes respectively in x and y directions, Gk = (Ni × Ne) for the
curvilinear grids where Ni and Ne are the number of nodes respectively in tangent and normal directions to
the boundary k. These three grids are

G0 = (25 × 20), G1 = (25× 15), G2 = (25 × 15)

G0 = (50 × 40), G1 = (50× 30), G2 = (50 × 30)

G0 = (75 × 60), G1 = (75× 45), G2 = (75 × 45)

The order of convergence in L2 norm for each test case are given in Figure 14 and Figure 15.
One can notice that, as expected, the computed order of convergence in L2 norm based on these three

overset grids, deteriorates as the Reynolds number increases. In practice, refining the grid improves the
convergence order toward its asymptotic prediction.

We also notice that in both cases, the maximum error are localized next to the artificial and physical
boundaries.

B. Grid convergence and solution verification with Adina Software

Despite the fact that the results in section V.A exhibit grid convergence, we still need to do comparison with
numerical solutions produced independently of our code. For this purpose, we use The ADINA System -
http://www.adina.com/. The ADINA System is a finite element analysis software for multi-physics problems.
It allow us to solve Navier-Stokes solver in velocity-pressure formulation.
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Figure 14. Convergence’s order for the vorticity

field for NS’s flow in a stenosis.
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Figure 15. Convergence’s order for the vorticity

field for NS’s flow in a pipe.

The following procedure gives the different steps done to verify the solution produce by the heteroge-
neous domain decomposition method:

• First, we compute the numerical solution (ω,Ψ) using our algorithm.

• Then, we compute the numerical solution (ua,pa) using ADINA Software on unstructured mesh (quadri-
lateral bilinear elements).

• Thus, we can calculate the vorticity (ωa) and stream (Ψa) fields on the unstructured ADINA grid using
the solution (ua,pa).

• The next step it is to interpolate the calculated fields (ωa,Ψa) on the heterogeneous structured grids
using bilinear interpolation. We obtain (ω̃a,Ψ̃a).

• The last step is to compute the relative errors in L2 norm eω = ||ω − ω̃a||2 and eΨ = ||Ψ − Ψ̃a||2

Our calculations show that the relative errors eω and eΨ decreased as the grid become finer for both
codes. However, this comparison between the error doesn’t provide the convergence order of our method.
Indeed, errors eω and eΨ can be decomposed into consistency error, interpolation error from one grid to an
other, and the change of variable ((ua,pa)→ (ωa,Ψa)).

In the next section, we discuss briefly the potential applications of our method to fluid-structure
interaction.

VI. Future work and conclusion

We are currently expanding this work to include fluid structure interactions.

A. Basic equation of fluid structure interaction

The general equations used to describe the deformation of the structure17 are

ρstt −∇ · τ = b in Ωs(0) (5a)

n · τ = g in Γfs (5b)

where τ is the stress tensor, s is the displacement, ρ is the density.
This equation are coupled with Navier-Stokes equations, either in pressure-velocity formulation or

vorticity-stream formulation.
The interface condition between the fluid domain and the solid domain is given by

φ = s (6a)

ϕ = s. (6b)

n · τ = ν(∇u+ ∇uT ) − pI)n (6c)
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where ϕ, φ, u ,p are respectively the flow domain speed, the mapping of the fluid domain, the velocity
of the fluid the pressure.

To solve the coupled problem, the fluid-structure algorithm used is the following :

• First, assuming that the geometry is constant with fixed boundary conditions for the flow, we solve
Navier-Stokes problem. And so, we can update (6)

• Then we solve the structure problem

• In a third step, we update the interface conditions of equations (6), and we determine the function φ,
and the speed of the fluid domain.

• The resulting displacement velocity ṡ is then used as a boundary condition for the fluid domain.

• We continue until convergence.

The advantage of our domain decomposition is that it allow us to consider fluid-structure interaction
only in the boundary layer instead of considering the influence of the wall displacement in the whole domain.
Further the BL mesh is well adapted to the nature of the interface condition18, 19 . In the mean time, we are
implementing the Peskin’s method in this framework.

B. Application to Peskin Method

The Immersed Boundary Method (IBM), originally developed by C.S. Peskin,3 is a very elegant method
of simulating fluid-structure interactions. It combines Eulerian and Lagrangian descriptions of flow and
moving elastic boundaries using Dirac delta functions. Incompressible Navier-Stokes and Elasticity theory
can be unified by the same set of equations to get a combined model of the interaction. There are numerous
applications of the IBM in Bio-Engineering or in more general Computational Fluid Dynamics applications.
The numerical study of the stability and accuracy of the method is based on the implementation of several
mathematical tools such as Fourier filters, multigrid solvers, Newton-Krylov methods, numerical methods
for ordinary differential equations with singular source terms, domain decomposition methods or multilevel
discretization.20

In order to apply the IBM in the framework we defined in this paper, a curvilinear mesh is built along
the moving boundaries (the membrane in Figure 17 for example) and a Cartesian grid to fill the remain of the
domain. At each iteration, using the Peskin’s model in the curvilinear domain, we can compute the external
force in NS’s equations. Once the NS’s equations solved, we can recompute the position of the moving
boundary. Thanks to the low displacement of the boundary, the curvilinear mesh need to be recompute only
every few time steps instead of each time step.

Since Peskin’s method is very sensitive to discontinuity on mesh stepping, one should be careful to
the position of the moving membrane with respect to the virtual boundaries between domains.

This preliminary work is completed by some fluid experiments for future validation studies as well as
for calibrating our model.

C. Description of the experimental system

We consider a pipe split (partially) in two parallel channels by a solid wall. In the middle of this wall, an
elastic membrane is placed. We are testing different configurations with pulsating flow on one side and free
flow on the other side.

To conclude, we can sum up the features of our approach with heterogeneous domain decomposition
as follows:

1. Each subdomain can use a fast solver that takes full advantage of either the stretching of the mesh
in one space direction for boundary layer domains, or the regular data structure with Cartesian grids
used for the main part of the flow.

2. Simplicity of the implementation, grid generation, and memory allocation due to the use of the additive
Schwarz method for the iteration process between overlapping non matching grids.
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Figure 16. Experimental device

Channel

Membrane

U

Figure 17. Schema of the experimental device

3. Fast convergence of the domain decomposition algorithm thanks to the use of an acceleration procedure
to speed up the convergence of the Schwarz method.

4. Biologically motivated domain decomposition.

References

1Zarins, C., Giddens, D., Bharadvaj, B., Sottiurai, V., Mabon, R., and Glagov, S., “Carotid bifurcation atherosclerosis:

quantitative correlation of plaque formation with velocity profiles and wall shear stresses,” Circulation Research, Vol. 53, 1993,

pp. 502–514.
2R.Krams, “Evaluation of endothelial shear stress and 3d geometry as factors determining the development of arte-

riosclerosis and remodeling in human coronary arteries in vivo,” Thrombosis and Vascular Biology , Vol. 117, 1997, pp. 2061–

2065.
3C.Peskin, “The Immersed Boundary Method,” Acta Numerica, Vol. 11, 2002, pp. 1–39.
4Quarteroni, A., Tuveri, M., and Veneziani, A., “Computational Vascular Fluid Dynamics: Problems, Models and

Methods,” Computing and Visualization in Science, Vol. 2, 2000, pp. 163–197.
5Quarteroni, A., Veneziani, A., and Zunino, P., “Mathematical and Numerical Modeling of Solute Dynamics in Blood

Flow and Arterial Walls,” SIAM Journal on Numerical Analysis, Vol. 39, No. 5, 2001, pp. 1488–1511.
6Quarteroni, A., Veneziani, A., and Zunino, P., “A Domain Decomposition Method for Advection-Diffusion Processes

with Application to Blood Solutes,” SIAM Journal on Scientific Computing , Vol. 23, No. 6, 2002, pp. 1960–1981.
7Fischer, P., Kruse, G., and Loth, F., “Spectral Element Methods for Transitional Flows in Complex Geometries,”

Journal of Scientific Computing , Vol. 17, 2002, pp. 1–3.
8Eckhaus, W., Asymptotic Analysis of Singular Perturbations, North–Holland, Amsterdam, 1979.
9J.Kevorkian and J.D.Cole, Perturbation Methods in Applied Mathematics, Springer Verlag, New York, 1981.

10R.J.O’Malley, Singular Perturbation Methods for Ordinary Differential Equations, Vol. 89, Springer Verlag Applied

Mathematical Sciences, 1991.
11Marchuk, G., Kuznetsov, Y., and Matsokin, A., “Fictitious domain and domain decomposition methods,” Soviet

Journal of Numerical Analysis and Mathematical Modelling , Vol. 1, 1986, pp. 3–35.
12Garbey, M., Shyy, W., Hadri, B., and Rougetet, E., “Efficient Solution Techniques for CFD and Heat Transfer,”

ASME Heat Transfer/Fluids Engineering Summer Conference, 2004.
13Garbey, M., Kuznetsov, Y. A., and Vassilevski, Y. V., “A Parallel Schwarz Method for a Convection-Diffusion

Problem,” SIAM Journal on Scientific Computing , Vol. 22, No. 3, 2001, pp. 891–916.
14Garbey, M. and Vassilevski, Y. V., “A parallel solver for unsteady incompressible 3D Navier-Stokes equations,”

Parallel Computing , Vol. 27, No. 4, 2001, pp. 363–389.
15Garbey, M. and Dervout, D. T., “On some Aitken like acceleration of the Schwarz Method,” International Journal

for Numerical Methods in Fluids, Vol. 40, 2002, pp. 1493–1513.
16Garbey, M., “Acceleration of the Schwarz method for elliptic problem,” SIAM Journal on Scientific Computing , To

appear.
17Ciarlet, P., Mathematical Elasticity Volume I:Three Dimensional Elasticity , Elsevier, North-Holland, 1988.
18Fast, P. and Shelley, M., “A moving overset grid method for interface dynamics applied to non-Newtonian HeleShaw

flow,” Journal of Computational Physics, Vol. 195, No. 1, 2004, pp. 117–142.
19Fast, P. and Henshaw, W., “Time accurate simulation of viscous flow around deforming bodies using overset grids,”

32nd AIAA Fluid Dynamics Conference, No. AIAA-20012604, 2001.
20Pacull, F. and Garbey, M., “A Numerical Experimental Study of the Immersed Boundary Method,” Proceedings of

the 16th Intl. Conf. on Domain Decomposition Methods, 2005, To appear.

11 of 11

American Institute of Aeronautics and Astronautics Paper 2005-1092


	Introduction and Motivation
	Model
	Domain Decomposition and Singular Perturbation
	Heterogeneous Domain Decomposition for Navier-Stokes
	Fast subdomain solver
	Iterative scheme for the domain decomposition

	Solution verification
	Description of the test case and conservativity issue
	Grid convergence and solution verification with Adina Software

	Future work and conclusion
	Basic equation of fluid structure interaction
	Application to Peskin Method
	Description of the experimental system


