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ion Verification

@ Simulation is a bridge between theory and experiments
DOE report from D. Keyes.

@ How to make them reliable ?

@ How reliable decision can be based on the outcome of a
software expressing a mathematical model ?

@ These issues raise the concept of Solution Validation and
Verification.
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Definition
" Quantitative evaluation of the numerical error of a given solution
Juee = to the PDEs (ref. Oberkampf, Trucano)

@ Estimate the accuracy of a given solution is the primary goal
of solution verification
@ ltis often impossible to perform a complete and rigorous
analysis for complex PDEs.
@ The problem can be addressed by
@ Explicit discretization robustness and convergence studies
@ Formal error estimation procedures
© Inference from test problem suites and from previous
experience
@ Numerical error estimation is strongly dependent on the
quality and completeness of code verification.
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Introduction A Posteriori error estimates

A posteriori error
estimator

-y Concept of A posteriori error
estimates

Solution Verification

A Posteriori error D efi n iti on

estimates

From word-net : A posteriori : involving reasoning from facts
or particulars to general principals or from effects to causes.

Consequently, A Posteriori error estimates make use of

@ A priori information

@ Computational results from a previous numerical solution
using the same numerical algorithm on the same PDE and

initial and boundary data.
@ Information extracted can be estimates or convergence
characteristics.
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Introduction A Posteriori error estimates

Examples of A Posteriori
estimates

@ AIAA Guide for the Verification and Validation of
Computational Fluid Dynamics Simulations.
@ Finite Elements

@ ZZ recovery method - see Zienkiewicz et Al, and ref.

o Equilibrated residual method for FE .- see Ainsworth & Oden
and ref.

@ A posteriori Finite-Element free constant output bounds - see
Patera and ref.

@ Extrapolation Based methods
@ Richardson Extrapolation (h-extrapolation)
o Order Extrapolation (p-extrapolation)

@ Stochastic method in the Bayesian framework - ref Glimm et
Al..
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Introduction Richardson Extrapolation

Facts on Richardson
extrapolation

@ |t is a popular method in Computational Fluid Dynamics
(CFD) because of its straightforward implementation that is
code (and " PDE ") independent.

@ It uses a sequence of meshes with distinct refinement to
estimate the spatial discretization error.

@ Can be extend to temporal discretization.
@ Can be apply to large variety of discretization method
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Introduction Richardson Extrapolation

Overview of RE

@ Let E be a normed linear space, || || its norm, v € E, p > 0,

and h € (0,h). u' € E, i = 1..3 have the following asymptotic
expansion,

U = v+ C(=—) +6,

h
2i—1
with C positive constant independent of , and ||5|| = o(h”).
@ For known p, Richardson extrapolation formula,

) )4 ui+1 _ ui )
Vi, = ﬁ, 1= 1,2
@ Provides improved convergence:
v =vil| = o(i")
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Introduction Richardson Extrapolation

Potential pitfalls

@ Are the (3D) meshes fine enough to satisfies accurately the a
priori convergence estimates that are only asymptotic
relations in nature?

@ What can be done, if the order of convergence of a PDE
code is space dependent and eventually physical
parameter’'s dependent?

@ Can we afford three grid levels with a coarse grid solution
that has a satisfactory level of accuracy, to be used in RE?

@ Can we use RE to provide a posteriori error estimates?

@ Richardson’s method produces different estimates of error
and uses different norms
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A code that provides a set of discrete approximations of a (set of)
PDE(s) for example Navier Stokes equations or Heat transfer
equations.

o @ Provided that one can obtain the definition of the residual of
the PDE approximation, the existence of a stability estimate
on the approximation of the PDE’s problem and two grid
solutions, find automatically the order of convergence

@ Using two or three different grid solutions (not necessarily
with uniformly increasing mesh resolution), obtain a solution
with improved accuracy

@ Derive reliable a posteriori error bounds from coarse grid
approximation of complex PDE problems.
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Introduction Goals

Solution Procedure

@ Simple to implement and works with a code independent
from the main code procedure.

@ With arithmetic cost negligible compare to a direct
computation of a very fine grid solution.

@ A general tool that can be applied to variational, FV or FD
formulations, with irregular meshes, non linearities etc...

@ Able to enhance the numerical accuracy and efficiency of
simulation with complex physical model and trust in the
context of code verification.

@ Able to increase the overall numerical efficiency of the

solution procedure when combined to multilevel procedure.
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Definitions

Results

OES for elliptic problems (Garbey,Shyy) Definitions

Problem

@ This concept was introduced by Garbey and Shyy in 2002.
@ Boundary value problem (2 is a polygonal domain and n = 2

or3):
Lux)] =f(x),xe QCR" u=g on 0NQ.

Assume that the PDE problem is well posed and has a
unique solution.

We consider an approximation on a family of meshes M (h)
parametrized by 4 > 0 a small parameter.

We denote symbolically the corresponding family of linear
systems

AU, = Fy.

Let p,, denotes the projection of the continuous solution u
onto the mesh M(h). We assume a priori that (||.|| is a given
discrete norm):

U = pu()|| = 0, as h—0,

Christophe Picard (University of Houston) A posteriori error estimator framework for PDEs January 13, 2008 14/58



A posteriori error
estimator
framework for
PDEs

Christophe
Picard

Definitions

Results

OES for elliptic problems (Garbey,Shyy) Definitions

Optimized Extrapolation
Technique
@ Let M(hy) and M(h,) be two # meshes used to build two
approximations U, and U, of the PDE problem.
@ A consistent linear extrapolation writes

OéU] + (1 — Oé)Uz,

where « is a weight function.
@ In classical Richardson Extrapolation (RE) « is a constant.

@ In our optimized extrapolation method « is a function solution
of the following optimization problem:
P.: Find o € A(Q) C Lo, such that G(aU, + (1 — a)U,) is
minimum.
@ For computational efficiency, A(2) should be a finite vector
space of very small dimension compared to the dimension of
Ap.
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One can choose to work with a posteriori FE error estimates:

From now on, and to make our technique general, we will
work with discrete value functions and discrete norms:
Defions Why is it possible?

Our ambition: a numerical estimate on ||U; — Uy|,j = 1,2,
without computing U.

@ M(h) should capture a priori all the scales needed.
@ In practice ho, << hy, hy.
@ The solution U; can be verified, assuming convergence of the

approximation method, i.e Uy, — u, as hyo — 0.

Reuse extensive knowledge of Physics and Asymptotic
Analysis.

Reuse Stability Theory from Linear Algebra.
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Definitions

Results

OES for elliptic problems (Garbey,Shyy) Definitions

Practical Consequences

@ Both coarse grid solutions U; and U, must be projected onto
M(hoo).
@ The objective function is a discrete norm of the residual:

G(U*) = ||An. U™ — Fy__||, whereU® = aU; + (1 — a)U,

The Optimized Extrapolated Solution (OES) if it exists, is
denoted V, = . U; + (1 — ) Us.

@ The choice of the discrete norm depends on the property of
the solution.

@ One can choose to work in a subspace:

@ Estimate on a functional of the solution.
o Estimate in sub-domain.
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Gonclusion Figure: Stiff poisson problem on a fine grid (Garbey and Shyy)

References and
other projects

@ p =~ 100 in the disc, one elsewhere.

@ Domain has a L-shape.

@ coarse grid solutions: hy = 1/14,h, = 1/20,h3 = 1/26.
e fine grid: h° = 1/128.
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@ Assumption: well posed parabolic problem with a unique
solution.

=N, (1) € 9% (0.7), (1
Uon = g(t)7t € (OaT)a (2)
u(x,0) =v(x),x € Q. (3)

@ The coarse grid solution used in the numerical solution
corresponding to the discretization (i, dt), (h/2,dt),
(h,dt/2),(h/2,dt/2) are vl ,,j=1...3

@ The fine grid M(h ) used in OES corresponds to (h/4,dt/4).

@ The coarse grid solutions v’dx 4 are projected on the fine grid
with second (or third order) accuracy. We denote them by
de,dz
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@ Find the three weight functions «;, j = 1..3 such that the
residual
- .
Z ajUZx,dt - H( Z Qj U:il.ndt)a
j=1..4 j=1..4
ot is minimum in the discrete norm on the space time grid
Thermal Wave 1D
C[»;,‘ ve Shock

{idx}i—1. n x {0, 0" + dt, " + 2dt, " + 3dt, "'}

where H is some objective function
@ The asymptotic expanstion writes

de,dt —u= Cldxp‘ + Czdl‘p’ + O(dqu, dtq’), (4)
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Theorem
Ifoy € CO(Q x ), j=1...3, and v}, 4, —vi, 4, = O(dx", d") then
Formulation there exists M such that
i 4 '
w=>" oMV, +0(d d") x O(M™") (5)
j=1

@ In practice only an approximation to order e = M~ is needed
to compute «;.
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Theorem
There exists a unique linear combination of the coarse grid
solutions U; ,, with constant weights o, cw, a3, as such that
il aiUp) + aUsy + a3Uip 4+ asUsp — u = O(dx") + O(dr),  (6)
L The (o)i=1..3 are:
o] = ! Qy = 2
T D -1 T (2D —1)
2px
a3 = —

@ =D - 1)

Further, the consistency of the extrapolation formula implies

ay=1—a; —ay — as.

4
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Theorem
If the following two assumptions are true
@ the asymptotic expansion is valid in the discrete L> norm for

Formulation

S the coarse grid solution used in OES,
Reactive Shock
- @ the consistency error for the one-step scheme is

asymptotically equivalent to the error on the solution

then the OES solution for the «; coefficients is asymptotically
equivalent to the RE solution within order 2.
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@ Thermal wave problem similar to Ropp et Al in JCP 2004,

% = AT —2T(T — 1)(2T — 1).

@ Benchmark problem exhibits a traveling wave

ormulation T(x,y,1) =1 — tanh(x +y — 2¢)

Reactive Shock

with wave speed is of order one.
@ Experiment with constant extrapolation coefficient.
@ Post-processing of fine grid solution by few SSOR.

@ We use the unconstrained minimization subroutine of matlab,
to compare results with different choices of the norm, i.e
either discrete L, norm or maximum norm.

@ We have three unknown coefficients and start the search
from the set of RE coefficients.
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Formulation 3

Thermal Wave 1D

Reactive Shock
Layer it/

Figure: Optimization path from
Richardson Extrapolation in red
to the LSE optimum solution in
blue for a Crank-Nicholson
scheme

Figure: Evolution of the residual
of in time with a Crank Nicholson
scheme
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@ The model we are using is the one proposed by Majda

ou O &u
E*'E[F(M)—CIOZ]—E@ (7)
Zx = E_ld)(u)z (8)
R @ Experiment with constant extrapolation coefficient.

Layer

@ Post-processing of fine grid solution by few SSOR.

@ We use the unconstrained minimization subroutine of matlab,
to compare results with different choices of the norm, i.e
either discrete L, norm or maximum norm.

@ We have three unknown coefficients and start the search
from the set of RE coefficients.
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Formulation 1
Thermal Wave 1D

Reactive Shock
Layer

Figure: Solution for Reactive Shock Layer equation using finite
differences
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Figure: Optimization path for Reactive Shock Layer equation using finite
differences
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Reactive Shock Layer

Solution using PPM

Fieative Shock Layer using PPM

Formulation

Thermal Wave 1D 1 T T T

Reactive Shock 05
Layer

Figure: Solution for Reactive Shock Layer equation using PPM
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Optimization Procedure using
PPM
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Figure: Optimization path for Reactive Shock Layer equation using PPM
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OES for parabolic equations (Picard,Garbey) Reactive Shock Layer

Conclusions

@ RE does not work on the fine grid G*, but may work well on
the coarse grid G, ; at time steps kdT, where dT is the coarse
time step.

@ One requires few SSOR smoothing of U;; on G* solutions to
have OES performing better than the fine grid solution U, ».

@ One can have OES better than RE for G* and in the same
time OES worst than RE as an approximation of the exact
solution.

@ the higher the order of the scheme, and/or the finer the
discretization, the more iterates of SSOR we need.

@ OES gives best results for under resolved solutions with low
order scheme.

@ smaller residual on G* does not lead to smaller errors. The
post-processing step with SSOR is then essential to recover
this monotonic relationship between residual and errors.

@ filtering the residual and/or the solution in space, might be
beneficial for large time step.
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@ Let us assume that V, exists and has been computed.

@ Let U; be one of the coarse grid approximations; We look for
a global a posteriori estimate of the error

10 — pa(u)|
@ Recovery method:

N IF||V, — pu(u)|]2 << [|U; — pu(u)|]2,
THEN||U; — V||2 ~ [|U; — pa(u)]|2

provides a good lower bound on the error in our numerical
experiments with steady incompressible Navier Stokes (NS).

@ But there is no guarantee that a smaller residual for V, than
for U, on the fine grid M (h,) leads to a smaller error.
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General OES.

Algorithm/Result witt

OES for general code (Garbey, Picard) General OES

General Principle (2)
From a stability estimate with the discrete operator:
Ve = Usc|| < 1ooG(Ve), wherept > ||(An., ) ']
We conclude
102 = Uscll2 < uG(Ve) +[|Ve = Ualf2.

Uses extrapolation on py, 2, 113 10 get = pio.

L, norm: the estimate on i uses a standard eigenvalue
iterative procedure to get the smallest eigenvalue.

L, norm: see N J.Higham papers.
Additional Test: Verify that the upper bound on ||U., — U5
increases toward an asymptotic limit as M(h..) gets finer.

Feasible test because the fine grid solution is never
computed in OES.
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N non linear (discrete) operator from E to F.

Assuming the problem N(u) = s is well posed for s € B(S, d),
and N(U,) € B(S,d), for some discrete solution Uj,.

Defining p the residual and e the error, an upper bound of the
error is given by

_ K
lelle < llollr (IVNTHS +p)lle + 5 llollr)-
2

General OES.
Al hm/Result witk

Let {bf, i = 1..N}, be a basis of E, and ¢ € R such that
e=o(l).
Let (V;7)=1.~, be the family of solutions of the following

problems N(U, FeV;) =S+ p Feb; .
We get from finite differences the approximation

IVsN=H(S + p)|| ~ H(%(Vj+ = V7 )Di=1all + O().
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@ g is least square g L
approximation of the .“ residual
solution u in E, acting as a | d RIS
a filter on the solution !
. . . . 2eb, 2 Be,
@ g Is a projection in E. ‘ ‘
General OES " & "

The construction of gr and gg, respectively ¢ and gr does not
consider the nature of the approximation space of the code C
since the implementation details are most of the time unavailable:
the mappings involve only the discrete representations of the
functions.
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General OES.

OES for general code (Garbey, Picard) General OES

Algorithm :ldea

@ Compact representation of unknown weight functions: m is
much lower than the number of grid points on any coarse grid
used.

@ Estimate on the number of iterates to regularized U;,j = 1..p

@ Generalization to non-linear elliptic problems via a Newton
like loop.

@ Difficulties: A posteriori Error estimate depends then on the
function used to linearized the operator.

@ Generalization to L, and L, with appropriate minimization
procedure.
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@ Let us denote N[u] = 0 the supposedly well posed PDE
problem to be solved, and its unsteady companion problem,
O = Nlu].

@ The algorithm is as follow:

@ Step 1 Call coarse Mesh : We generate the (coarse) meshes
G, and G,. If h; is the average space step for the grid G; we
s should have h, < h; but this is not necessary.

Nedo e @ Step 2 Call fine Mesh : We generate a fine mesh G, that is
supposed to solve all the scales of the problem. G, might be
a structured mesh or not. We must have h., << hy, h,.

@ Step 3 Call Solver : We solve the problem on G, and G,
possibly in parallel. The solutions are denoted respectively u,
and u, on G; and G,.
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@ Step 4 Call Projection : We project these coarse solutions u;
and u, onto G.. We denote these projections #{° and #5°.

@ Step 5 Create sample : We create sample solutions

u® = [ami® + (1 — )is°]. We smooth out the spurious high
frequency components of the build solution with few explicit
time steps of d,u = N(u) starting from the initial condition:
e u%°. The choice of the Optimum Design Space in which « is

taken is one the main item of our research.

@ Step 6 We compute the best o that minimizes the L, norm of
the residual. We may use a surface response technique.
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Figure: Contour of velocity

Figure: Coarse mesh magnitude on fine grid: Adina

R&D
Q'%WI'“G"‘:“G"‘“ @ In this simulation, the number of elements are respectively
Hoat Tarir 10347 on the fine grid G*°, 1260 on the coarse grid G, and

2630 on the coarse grid G,. The steady solutions are
obtained using a transient scheme for the incompressible
Navier-Stokes equation.
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@ The energy equation (9) that governs the model is:
0 oT oT
— | ki —_ = pc, (T)—
Ox; (k’(T) 6x,-) T =My, ©

No detail code

P on 2 x (0,1)
Heat Transfer
problem
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@ The boundary conditions
or 4 b
.— kija n=h(T)(T —Tw)+o0e, (T* —Ts) onTy,
i

(radiation, convection)

°— <kij(‘?£) n=hy(T)(T — Tos) + 052 (T* — TS ) on Ty,
J

R (radiation, convection)
N tail code
ki
cat Transter oT
it o — (kj=— | -n="h3(T)(T — T )on Ty,
Ox;j '
(convection)

eSymmetric boundary condition on 'y,
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@ In our procedure, there is a need to compute form a large
number of solution in order ot perform the minimization.

@ These computations have an embarrassing parallelism.

@ On the other hand, given a code that is portable to different
platform, there is a large amount of resources that are

Distributed available.
computation
(e gy @ The question to be answered is can a distributed version of

the verification procdeure be designed to take advantage of
this two facts?
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Figure: Time performances: OES versus computation of fine grid
solution with a Pentium 4, 2.4GhZ, running a Linux OS.
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@ A new extrapolation method for PDEs.

@ A better tool for solution verification than RE when the
convergence order is space dependent or far from the
asymptotic rate of convergence.

@ Solution Verification Method with Hands off Coding.

Conclusion
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@ Expand OES to other multiphysics case, ie Chimera method
and IBM.
@ Expand OES to compute stability estimates for unsteady
problems.
@ Integrate OES in applications as a plugin/tool.
Conclusion
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@ Investigation on numerical method for heterogeneous
domain decomposition.

@ Investigation on numerical method for fluid-structure
interaction
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COSC 3662 (Numerical Analysis)
© Developement of the Intelligent Data and Visualization Desk :
RS e Application for a patent 2483-00501
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