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Introduction Solution Verification

Impact of numerical simulation

Figure: 1999 : Storm system Lothar over Europe
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Introduction Solution Verification

Interrogations

Simulation is a bridge between theory and experiments
DOE report from D. Keyes.
How to make them reliable ?
How reliable decision can be based on the outcome of a
software expressing a mathematical model ?
These issues raise the concept of Solution Validation and
Verification.
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Introduction Solution Verification

Concept of solution verification

Definition
Quantitative evaluation of the numerical error of a given solution
to the PDEs (ref. Oberkampf, Trucano)

Estimate the accuracy of a given solution is the primary goal
of solution verification
It is often impossible to perform a complete and rigorous
analysis for complex PDEs.
The problem can be addressed by

1 Explicit discretization robustness and convergence studies
2 Formal error estimation procedures
3 Inference from test problem suites and from previous

experience

Numerical error estimation is strongly dependent on the
quality and completeness of code verification.
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Introduction A Posteriori error estimates

Concept of A posteriori error
estimates

Definition
From word-net : A posteriori : involving reasoning from facts
or particulars to general principals or from effects to causes.

Consequently, A Posteriori error estimates make use of
A priori information
Computational results from a previous numerical solution
using the same numerical algorithm on the same PDE and
initial and boundary data.
Information extracted can be estimates or convergence
characteristics.
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Introduction A Posteriori error estimates

Examples of A Posteriori
estimates

AIAA Guide for the Verification and Validation of
Computational Fluid Dynamics Simulations.
Finite Elements

ZZ recovery method - see Zienkiewicz et Al, and ref.
Equilibrated residual method for FE .- see Ainsworth & Oden
and ref.
A posteriori Finite-Element free constant output bounds - see
Patera and ref.

Extrapolation Based methods
Richardson Extrapolation (h-extrapolation)
Order Extrapolation (p-extrapolation)

Stochastic method in the Bayesian framework - ref Glimm et
Al..
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Introduction Richardson Extrapolation

Facts on Richardson
extrapolation

It is a popular method in Computational Fluid Dynamics
(CFD) because of its straightforward implementation that is
code (and " PDE ") independent.
It uses a sequence of meshes with distinct refinement to
estimate the spatial discretization error.
Can be extend to temporal discretization.
Can be apply to large variety of discretization method
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Introduction Richardson Extrapolation

Overview of RE

Let E be a normed linear space, || || its norm, v ∈ E, p > 0,
and h ∈ (0, h0). ui ∈ E, i = 1..3 have the following asymptotic
expansion,

ui = v + C(
h

2i−1 )p + δ,

with C positive constant independent of h, and ||δ|| = o(hp).
For known p, Richardson extrapolation formula,

vi
r =

2p ui+1 − ui

2p − 1
, i = 1, 2

Provides improved convergence:

||v− vi
r|| = o(hp)
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Introduction Richardson Extrapolation

Potential pitfalls

Are the (3D) meshes fine enough to satisfies accurately the a
priori convergence estimates that are only asymptotic
relations in nature?
What can be done, if the order of convergence of a PDE
code is space dependent and eventually physical
parameter’s dependent?
Can we afford three grid levels with a coarse grid solution
that has a satisfactory level of accuracy, to be used in RE?
Can we use RE to provide a posteriori error estimates?
Richardson’s method produces different estimates of error
and uses different norms
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Introduction Goals

Problem

A code that provides a set of discrete approximations of a (set of)
PDE(s) for example Navier Stokes equations or Heat transfer
equations.

Provided that one can obtain the definition of the residual of
the PDE approximation, the existence of a stability estimate
on the approximation of the PDE’s problem and two grid
solutions, find automatically the order of convergence
Using two or three different grid solutions (not necessarily
with uniformly increasing mesh resolution), obtain a solution
with improved accuracy
Derive reliable a posteriori error bounds from coarse grid
approximation of complex PDE problems.
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Introduction Goals

Solution Procedure

Simple to implement and works with a code independent
from the main code procedure.
With arithmetic cost negligible compare to a direct
computation of a very fine grid solution.
A general tool that can be applied to variational, FV or FD
formulations, with irregular meshes, non linearities etc...
Able to enhance the numerical accuracy and efficiency of
simulation with complex physical model and trust in the
context of code verification.
Able to increase the overall numerical efficiency of the
solution procedure when combined to multilevel procedure.
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OES for elliptic problems (Garbey,Shyy) Definitions

Problem
This concept was introduced by Garbey and Shyy in 2002.
Boundary value problem (Ω is a polygonal domain and n = 2
or 3) :

L[u(x)] = f (x), x ∈ Ω ⊂ IRn, u = g on ∂Ω.

Assume that the PDE problem is well posed and has a
unique solution.
We consider an approximation on a family of meshes M(h)
parametrized by h > 0 a small parameter.
We denote symbolically the corresponding family of linear
systems

AhUh = Fh.

Let ph denotes the projection of the continuous solution u
onto the mesh M(h). We assume a priori that (||.|| is a given
discrete norm):

||Uh − ph(u)|| → 0, as h→ 0,
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OES for elliptic problems (Garbey,Shyy) Definitions

Optimized Extrapolation
Technique

Let M(h1) and M(h2) be two 6= meshes used to build two
approximations U1 and U2 of the PDE problem.
A consistent linear extrapolation writes

αU1 + (1− α)U2,

where α is a weight function.
In classical Richardson Extrapolation (RE) α is a constant.
In our optimized extrapolation method α is a function solution
of the following optimization problem:

Pα: Find α ∈ Λ(Ω) ⊂ L∞ such that G(αU1 + (1− α)U2) is
minimum.

For computational efficiency, Λ(Ω) should be a finite vector
space of very small dimension compared to the dimension of
Ah.
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OES for elliptic problems (Garbey,Shyy) Definitions

General Idea

One can choose to work with a posteriori FE error estimates:
From now on, and to make our technique general, we will
work with discrete value functions and discrete norms:

Why is it possible?
Our ambition: a numerical estimate on ||Uj − U∞||, j = 1, 2,
without computing U∞.
M(h∞) should capture a priori all the scales needed.
In practice h∞ << h1, h2.

The solution Uj can be verified, assuming convergence of the
approximation method, i.e U∞ → u, as h∞ → 0.
Reuse extensive knowledge of Physics and Asymptotic
Analysis.
Reuse Stability Theory from Linear Algebra.
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OES for elliptic problems (Garbey,Shyy) Definitions

Practical Consequences

Both coarse grid solutions U1 and U2 must be projected onto
M(h∞).
The objective function is a discrete norm of the residual:

G(Uα) = ||Ah∞Uα − Fh∞ ||,whereUα = αŨ1 + (1− α)Ũ2

The Optimized Extrapolated Solution (OES) if it exists, is
denoted Ve = αeU1 + (1− αe)U2.

The choice of the discrete norm depends on the property of
the solution.
One can choose to work in a subspace:

Estimate on a functional of the solution.
Estimate in sub-domain.
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OES for elliptic problems (Garbey,Shyy) Results

div(ρ∇u) = f

Figure: Stiff poisson problem on a fine grid (Garbey and Shyy)

ρ ≈ 100 in the disc, one elsewhere.
Domain has a L-shape.
coarse grid solutions: h1 = 1/14, h2 = 1/20, h3 = 1/26.
fine grid: h0 = 1/128.
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OES for elliptic problems (Garbey,Shyy) Results

Error Estimate in L2 norm

Figure: Error estimation in L2 norm (Garbey and Shyy)
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OES for parabolic equations (Picard,Garbey) Formulation

Problem setup I

Assumption: well posed parabolic problem with a unique
solution.

∂u
∂t

= N[u], (x, t) ∈ Ω× (0,T), (1)

u|∂Ω = g(t), t ∈ (0,T), (2)
u(x, 0) = v(x), x ∈ Ω. (3)

The coarse grid solution used in the numerical solution
corresponding to the discretization (h, dt), (h/2, dt),
(h, dt/2),(h/2, dt/2) are vj

dx,dt, j = 1 . . . 3

The fine grid M(h∞) used in OES corresponds to (h/4, dt/4).
The coarse grid solutions vj

dx,dt are projected on the fine grid
with second (or third order) accuracy. We denote them by
Ũdx,dt.
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OES for parabolic equations (Picard,Garbey) Formulation

OES Formulation

Find the three weight functions αj, j = 1..3 such that the
residual ∑

j=1..4

αjŨn+1
dx,dt − H(

∑
j=1..4

αjŨn
dx,dt),

is minimum in the discrete norm on the space time grid

{idx}i=1...N × {tn, tn + dt, tn + 2dt, tn + 3dt, tn+1}

where H is some objective function
The asymptotic expanstion writes

Udx,dt − u = C1dxpx + C2dtpt + O(dxqx , dtqt ), (4)
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OES for parabolic equations (Picard,Garbey) Formulation

Theorem on continuous
functions

Theorem
If αj ∈ C0(Ωx ×Ωt), j = 1 . . . 3 , and vj

dx,dt − v4
dx,dt = O(dxpx , dtpt ) then

there exists M such that

u =
4∑

j=1

αM
j vj

dx,dt + O(dxpx , dtpt )× O(M−1) (5)

In practice only an approximation to order ε = M−1 is needed
to compute αi.
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OES for parabolic equations (Picard,Garbey) Formulation

Richardson Extrapolation in
space and time

Theorem
There exists a unique linear combination of the coarse grid
solutions Ui,n with constant weights α1, α2, α3, α4 such that

α1U1,1 + α2U2,1 + α3U1,2 + α4U2,2 − u = O(dxpx ) + O(dtpt ), (6)

The (αi)i=1...3 are:

α1 =
1

(2px − 1)(2pt − 1)
, α2 = − 2pt

(2px − 1)(2pt − 1)
,

α3 = − 2px

(2px − 1)(2pt − 1)

Further, the consistency of the extrapolation formula implies

α4 = 1− α1 − α2 − α3.
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OES for parabolic equations (Picard,Garbey) Formulation

On the precision of OES

Theorem
If the following two assumptions are true

the asymptotic expansion is valid in the discrete L2 norm for
the coarse grid solution used in OES,
the consistency error for the one-step scheme is
asymptotically equivalent to the error on the solution

then the OES solution for the αj coefficients is asymptotically
equivalent to the RE solution within order 2.
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OES for parabolic equations (Picard,Garbey) Thermal Wave 1D

Problem Definition
Thermal wave problem similar to Ropp et Al in JCP 2004,

∂T
∂t

= ∆T − 2T(T − 1)(2T − 1).

Benchmark problem exhibits a traveling wave

T(x, y, t) = 1− tanh(x + y− 2t)

with wave speed is of order one.
Experiment with constant extrapolation coefficient.
Post-processing of fine grid solution by few SSOR.
We use the unconstrained minimization subroutine of matlab,
to compare results with different choices of the norm, i.e
either discrete L2 norm or maximum norm.
We have three unknown coefficients and start the search
from the set of RE coefficients.
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OES for parabolic equations (Picard,Garbey) Thermal Wave 1D

Solution

Figure: Evolution of the residual
of in time with a Crank Nicholson
scheme

Figure: Optimization path from
Richardson Extrapolation in red
to the LSE optimum solution in
blue for a Crank-Nicholson
scheme
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OES for parabolic equations (Picard,Garbey) Reactive Shock Layer

Problem Definition

The model we are using is the one proposed by Majda

∂u
∂t

+
∂

∂x
[F(u)− q0Z] = ε

∂2u
∂x2 (7)

Zx = ε−1φ(u)Z (8)

Experiment with constant extrapolation coefficient.
Post-processing of fine grid solution by few SSOR.
We use the unconstrained minimization subroutine of matlab,
to compare results with different choices of the norm, i.e
either discrete L2 norm or maximum norm.
We have three unknown coefficients and start the search
from the set of RE coefficients.
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OES for parabolic equations (Picard,Garbey) Reactive Shock Layer

PDE solution using FDM

Figure: Solution for Reactive Shock Layer equation using finite
differences
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Solution using PPM

Figure: Solution for Reactive Shock Layer equation using PPM
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Figure: Optimization path for Reactive Shock Layer equation using PPM
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Conclusions
RE does not work on the fine grid G∗, but may work well on
the coarse grid G1,1 at time steps kdT, where dT is the coarse
time step.
One requires few SSOR smoothing of Ũi,j on G∗ solutions to
have OES performing better than the fine grid solution Ũ2,2.
One can have OES better than RE for G∗ and in the same
time OES worst than RE as an approximation of the exact
solution.
the higher the order of the scheme, and/or the finer the
discretization, the more iterates of SSOR we need.
OES gives best results for under resolved solutions with low
order scheme.
smaller residual on G∗ does not lead to smaller errors. The
post-processing step with SSOR is then essential to recover
this monotonic relationship between residual and errors.
filtering the residual and/or the solution in space, might be
beneficial for large time step.
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General Principle (1)

Let us assume that Ve exists and has been computed.
Let Uj be one of the coarse grid approximations; We look for
a global a posteriori estimate of the error

||Ũj − ph(u)||

Recovery method:

IF||Ve − ph(u)||2 << ||Ũj − ph(u)||2,
THEN||Ũj − Ve||2 ∼ ||Ũj − ph(u)||2

provides a good lower bound on the error in our numerical
experiments with steady incompressible Navier Stokes (NS).
But there is no guarantee that a smaller residual for Ve than
for U2 on the fine grid M(h∞) leads to a smaller error.
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General Principle (2)

From a stability estimate with the discrete operator:

||Ve − U∞|| < µ∞G(Ve),whereµ ≥ ||(Ah∞)−1||.

We conclude

||Ũ2 − U∞||2 < µG(Ve) + ||Ve − Ũ2||2.

Uses extrapolation on µ1, µ2, µ3 to get ≈ µ∞.
L2 norm: the estimate on µ uses a standard eigenvalue
iterative procedure to get the smallest eigenvalue.
L1 norm: see N J.Higham papers.
Additional Test: Verify that the upper bound on ||U∞ − U2||
increases toward an asymptotic limit as M(h∞) gets finer.
Feasible test because the fine grid solution is never
computed in OES.
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General Principle (3)
N non linear (discrete) operator from E to F.

Assuming the problem N(u) = s is well posed for s ∈ B(S, d),
and N(Uh) ∈ B(S, d), for some discrete solution Uh.
Defining ρ the residual and e the error, an upper bound of the
error is given by

|| e ||E ≤ ||ρ||F (||∇sN−1(S + ρ)||E +
K
2
||ρ||F).

Let {bE
i , i = 1..N}, be a basis of E, and ε ∈ IR such that

ε = o(1).
Let (V∓i )i=1..N , be the family of solutions of the following
problems N(Uh ∓ εVi) = S + ρ∓ εbi .
We get from finite differences the approximation

||∇SN−1(S + ρ)|| ≈ ||(1
2

(V+
j − V−j ))j=1..N ||+ O(ε2).
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Stability estimates

q̂E is least square
approximation of the
solution u in Ê, acting as
a filter on the solution
qE is a projection in E.

The construction of qE and q̂E, respectively qF and q̂F does not
consider the nature of the approximation space of the code C
since the implementation details are most of the time unavailable:
the mappings involve only the discrete representations of the
functions.
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Algorithm :Idea

Compact representation of unknown weight functions: m is
much lower than the number of grid points on any coarse grid
used.
Estimate on the number of iterates to regularized Ũj, j = 1..p
Generalization to non-linear elliptic problems via a Newton
like loop.
Difficulties: A posteriori Error estimate depends then on the
function used to linearized the operator.
Generalization to L1 and L∞ with appropriate minimization
procedure.
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Algorithm(1)

Let us denote N[u] = 0 the supposedly well posed PDE
problem to be solved, and its unsteady companion problem,
∂tu = N[u].
The algorithm is as follow:
Step 1 Call coarse Mesh : We generate the (coarse) meshes
G1 and G2. If hi is the average space step for the grid Gi we
should have h2 < h1 but this is not necessary.
Step 2 Call fine Mesh : We generate a fine mesh G∞ that is
supposed to solve all the scales of the problem. G∞ might be
a structured mesh or not. We must have h∞ << h1, h2.
Step 3 Call Solver : We solve the problem on G1 and G2,
possibly in parallel. The solutions are denoted respectively u1
and u2 on G1 and G2.
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Algorithm(2)

Step 4 Call Projection : We project these coarse solutions u1
and u2 onto G∞. We denote these projections ũ∞1 and ũ∞2 .
Step 5 Create sample : We create sample solutions
u∞α = [αũ∞1 + (1− α)ũ∞2 ]. We smooth out the spurious high
frequency components of the build solution with few explicit
time steps of ∂tu = N(u) starting from the initial condition:
u∞α . The choice of the Optimum Design Space in which α is
taken is one the main item of our research.
Step 6 We compute the best α that minimizes the L2 norm of
the residual. We may use a surface response technique.
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Adina Software

Figure: Coarse mesh
Figure: Contour of velocity
magnitude on fine grid: Adina
R&D

In this simulation, the number of elements are respectively
10347 on the fine grid G∞, 1260 on the coarse grid G1, and
2630 on the coarse grid G2. The steady solutions are
obtained using a transient scheme for the incompressible
Navier-Stokes equation.
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Results

Figure: LSE: error and residual
for Adina R&D in L2 norm

Figure: Performance of LSE and
Richardson Extrapolation
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Error bound for the back-step
flow

Figure: Evaluation of the stability
constant

Figure: Evaluation of the error
upper bound
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Solution I

The energy equation (9) that governs the model is:

∂

∂xi

(
kij(T)

∂T
∂xj

)
+ Q(T) = ρcp(T)

∂T
∂t

(9)

on Ω× (0, t)
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Solution II

The boundary conditions

• −
(

kij
∂T
∂xj

)
· n = h1(T)(T − T∞) + σε1

(
T4 − T4

∞
)

on ΓN1

(radiation, convection)

• −
(

kij
∂T
∂xj

)
· n = h2(T)(T − T∞) + σε2

(
T4 − T4

∞
)

on ΓN2

(radiation, convection)

• −
(

kij
∂T
∂xj

)
· n = h3(T)(T − T∞)on ΓN3

(convection)
•Symmetric boundary condition on ΓN4
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Solution

Figure: Steady state solution of the heat transfer problem.
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OES for general code (Garbey, Picard) Heat Transfer problem

Solution

Figure: Evolution of the error versus the fine grid solution with the L2

norm for the heat transfer problem
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Computational cost

In our procedure, there is a need to compute form a large
number of solution in order ot perform the minimization.
These computations have an embarrassing parallelism.
On the other hand, given a code that is portable to different
platform, there is a large amount of resources that are
available.
The question to be answered is can a distributed version of
the verification procdeure be designed to take advantage of
this two facts?
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Architecture

Figure: Software Architecture
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Distributed performances

Figure: Time performances: OES versus computation of fine grid
solution with a Pentium 4, 2.4GhZ, running a Linux OS.
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Error control and secure data
transfer
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Conclusion

Conclusions

A new extrapolation method for PDEs.
A better tool for solution verification than RE when the
convergence order is space dependent or far from the
asymptotic rate of convergence.
Solution Verification Method with Hands off Coding.
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Conclusion

Perspectives

Expand OES to other multiphysics case, ie Chimera method
and IBM.
Expand OES to compute stability estimates for unsteady
problems.
Integrate OES in applications as a plugin/tool.
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Activities

1 Investigation on numerical method for heterogeneous
domain decomposition.

2 Investigation on numerical method for fluid-structure
interaction

3 From Fall 2006 to Fall 2007 : Instructor for COSC 3661 and
COSC 3662 (Numerical Analysis)

4 Developement of the Intelligent Data and Visualization Desk :
Application for a patent 2483-00501
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