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In CFD community, a popular technique for a Posteriori error estimators consists of
combining mesh refinements with Richardson Extrapolation (RE). Despite the fact this
method is intuitive and simple, the validity and robustness remain questionable. In a
series of papers ([1],[2]), the Least Square Extrapolation method (LSE), that provides a
convenient framework to improve RE has been presented. Rather than an a priori Taylor
expansion like model of the error, LSE makes use of the PDE discretization information,
and thus on the research of the best linear combinations of coarse meshes solution. The
computation of these solutions presents a strong asynchronous parallelism. On the other
hand, there is an increasing interest in grid computation involving heterogeneous distri-
bution of computing resources. In this paper, we will focus on the application of LSE
method with a commercial CFD software on a network of heterogeneous computers. We
will present out approach to software architecture to map the LSE on to the computer
grid, and present measurement of performance gains compared to sequential execution.

1. Introduction and Motivations

In Computational Fluid Dynamic (CFD), a Posteriori error estimators are widely pro-
duced using Richardson extrapolation (RE) and variations of it ([6], [5], [7]). All these
methods rely on the a priori existence of an asymptotic expansion of the error such as a
Taylor formula, and make no direct use of the PDE formulation. As a consequence RE
methods are extremely simple to implement.

But in practice, meshes might not be fine enough to satisfy accurately the a priori
convergence estimates that are only asymptotic in nature. RE is then unreliable ([8]) or
fairly unstable and sensitive to noisy data ([2]).

On the other hand, a Posteriori estimates in the framework of finite element analysis
have been rigorously constructed. While most of the work has been limited to linear
elliptic problems in order to drive adaptive mesh refinement, more recently a general
framework for finite element a Posteriori error control that can be applied to linear and
non-linear elliptic problem has been introduced in ([4]).

RE method can be embedded into an optimization framework to cope with RE’s limi-
tations while retaining its simplicity. Least Square Extrapolation (LSE) ([1], [2], [3]) uses
grid meshes solutions that can be produced by any discretization. LSE sets the weights
of the extrapolation formula as the solution of a minimization problem. This approach
might be combined to existing a Posteriori estimate when they are available, but is still
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applicable as a better alternative to straightforward RE when no such stability estimate
is available.

The extrapolation procedure is simple to implement and should be incorporated into
any computer code without requiring detailed knowledge of the source code. Its arithmetic
cost should be modest compare to a direct computation of a very fine grid mesh solution.
Finally, the procedure should overall enhance the accuracy and trust of a CFD application
in the context of solution verification.

In this paper, we show how LSE can perform on a commercial code, without having any
knowledge on the source code. We emphasize this approach by using a basic network of
workstation to compute the weighted solutions and then solve the minimization problem
over the produce results.

In Section 2, the general idea of LSE method for steady problems is recalled. In
Section 3, we discuss how the network grid can be set to match LSE requirements. In
Section 4, we present some general numerical results about LSE when using a commercial
code and what are the advantages of using a grid of computers instead of performing a
sequential resolution.

2. LSE Method

Let Gi, i = 1..3, be three embedded grid meshes that do not necessarily match, and
their corresponding solutions Ui. Let M0 be a regular mesh that is finer than the meshes
Gi. Let Ũi be the coarse grid meshes solutions interpolated on the fine grid M 0.

The main idea of the LSE method is to look for a consistent extrapolation formula
based on the interpolated coarse grid meshes solutions Ũi that minimizes the residual,
resulting from Ũi on a grid M0 that is fine enough to capture a good approximation of
the continuous solution.

Defining the Navier-Stokes operator by N(u) = 0 for example, we can rewrite the
problem as follow :
Pα,β: Find α, β such that N(α U 1 + β U2 + (1− α − β) U 3 ) is minimum in L2 in

some Banach space.
Since minimizing the consistency error lead to the minimization of the solution error.
In practice, since we have access to solutions of discretized PDE problem, we work

with grid meshes functions. The idea is now to use the PDE in the RE process to find
an improved solution on a given fine grid mesh M 0, by post-processing the interpolated
functions Ũ i, by few steps of the relaxation scheme

V k+1 − V k

δt
= Lh[V k]− fh, V 0 = Ũ i, (1)

with appropriate artificial time step δt. For elliptic problems, this may readily smooth
out the interpolant. For a more complete description of the method and mathematical
aspects, one should refers to the work in [1], [2], [3], [8].

3. Mapping LSE method onto a grid of computer

The LSE method can be split in 4 main computational steps:
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Step 1 - Consists on defining the problem and solve it on 2 (or 3) different meshes.
While this step may be parallelized, in reality we may realize reduce error by solving it
sequentially since the result of one computation can be used as a guess for the next one.

Step 2 - Once the solutions are obtained on coarse grids meshes, we interpolate them
on a fine grid mesh G0, and form linear combinations with 1 (or 2 parameters) as initial
guess for step 3.

Step 3 - This is the most time and resource consuming step. The problems may be
solved independently on different nodes, and the error and residual of solutions are the
only output of interest.

Step 4 - In this part we find the minimum of residual and error with respect to param-
eters. We generate curve (or surface) responses. This should be kept open since it will be
subject to modification and optimization.

We would like to be able to re-launch calculation based on the same fine grid mesh, but
with different weights around the potential minimum, or plot the map of the residual/error
for optimal parameters in order to perform manual mesh refinements.

To solve the problem in Step 3 we are employing a grid of computers. Our grid consists
of a master node and several heterogeneous slave nodes. The steps 1 and 4 run on the
master. Step 3 is distributed on several nodes, depending on the number of nodes available
and the problem size.

The distribution of the computation across nodes involves some network challenges.
The result of step 2 is a set of files that can be pretty large (any where from 7 MB to
21 MB or more). Moving such large files across the network will be a major bottleneck
and will limit our capability to realizing any performance gains from parallelizing the
computations across grids of computers. By reordering some computations from step 2 to
step 3, we expect that the files size to be transmitted will be much smaller. Even though
each node may have to perform some extra computation, we think that the overall gain
from parallelization offsets that extra time spent.

In order to get a better utilization of nodes and to adjust for variations in performance
and availability of nodes, we employ dynamic load balancing of the computational task
across the nodes.

Figure 1 is a symbolic representation of the computational procedure describe in the
previous paragraph.

4. Realizing LSE method

In order to apply LSE on a grid of computers, we are looking for some applications
that can be used on different types of architectures and operating systems, and allowing
us to use a scripting shell language to launch and manipulate the data. A first step in
this process was to implement a 2D non-homogeneous diffusion equation.

The idea here is to have an implementation that is independent from the computational
code. Fig .2 shows what are the languages used to perform the different tasks.

4.1. Application to Laplace equation
We have tried different test cases. Here we show some results for non homogeneous

Laplace equations with a strong gradient in the diffusion coefficient (Fig. 4.1). The grid
meshes are regular Cartesian meshes. We first compute the solutions with ten different
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Figure 1. Software architecture realizing
LSE

Figure 2. Language architecture realiz-
ing LSE

value for α. The grid meshes were chosen as follow : G1 = 30 × 30, G2 = 40 × 40,
G2 = 50× 50 and G0 = 100× 100, where G0 is the fine grid.

To verify our solution, we also compute the solution on the finest grid mesh G0. This
solution allows us to compute the error we obtain using LSE versus the solution on the
fine grid mesh. In figure 4.1 we show residuals obtained after few relaxations steps, and
the corresponding error with the fine grid mesh solution. As we can see, there is an alpha
that minimizes the residual, but also the error.

Figure 3. Solution of Laplace equation Figure 4. Residual and error curve for
Laplace equation

For a two dimensions optimum design space for LSE optimization parameters, the
results obtain are shown on figure. As we can see, to obtain a good resolution on the
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Figure 5. Residual and error curve for Laplace equation for a 2D optimum design space

value of the optimal parameters, the number of of initial step parameters can be important.
When solving LSE in a sequential way, with 100 parameters, the time required for this

test case was 11.26 minutes , with roughly 80s for the Step 1, 5s for the Step 2, 600s for
the Step 3, and 10s for the Step 4. It appears that Step 3 is a bottleneck in the method.
Overall the solution verification procedure takes 615 s.

When mapping LSE onto a grid of computer, we manage to improve the performances
of the method. In order to check the efficiency of this mapping, we run our code with
three different scheme :

• on a single computer running Windows OS, using sequential LSE

• on a cluster of AMD Athlon running Linux OS, using a parallel version of LSE,

• on a heterogeneous grid running either Linux OS or Windows OS.

The speedup and scalability we obtain for the two parallel schemes are shown on fig.
4.1 and fig. 4.1. The speedup and scalability have a comportment close to the ideal one
for the grid application. The main issue in that case is the quality of the network that
is not homogeneous. For the cluster scheme, the comportment is becoming worst as we
increase the number of nodes. Indeed, LSE required a lot of disk access since all the data
have to be stored. Unfortunately, we didn’t use a cluster with a parallel I/O system.
Therefore, the scalability and the speedup reflect this characteristic.

The speed-up and scalability presented here are also relevant to the size of the grid
meshes: given a number of weight, if we increase the size of the mesh the quality of the
speedup should improve.
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Figure 6. Speedup for LSE mapped onto
a cluster and on a grid

Figure 7. Scalability for LSE mapped
onto a cluster and on a grid

4.2. Application to Navier-Stokes equations
The next step was to apply the same method to velocity equations in velocity-pressure

formulation of Navier-Stokes equations. The software used to solve Navier-Stokes equation
is ADINA R&D, a modeling software oriented to fluid-structure interaction. The test case
we tried in the driven cavity flow in square box with a Reynold number of Re = 100 and a
wall velocity of v0 = 1.0m.s−1. The grids meshes are three nodes finite elements meshes.
We first compute the solutions with ten different value for α. The grid meshes were chosen
as follow : G1 = 30× 30, G2 = 40× 40, G2 = 50× 50 and G0 = 100× 100, where G0 is
the fine grid.

The figures 8 and 9 show the coarse grid mesh G1 and the solution in velocity norm we
obtained before any post-processing on step 1 of the presented algorithm. We obtained
similar results for grids meshes G2 and G3.

Figure 8. Coarse grid mesh G1 Figure 9. Solution on Grid G1
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To verify our solution, we also compute the solution on the finest grid mesh G0. This
solution allows us to compute the error we obtain using LSE versus the solution on the
fine grid mesh. In figure 10 we show residuals obtained after few relaxations steps, and
the corresponding error with the fine grid mesh solution. As we can see, there is an alpha
that minimizes the residual, but also the error. On figure 11 the solution for the optimal
parameter α = 1.5 is presented.

Figure 10. Error and residual in L2 norm
for α ∈ [0.8; 1.7]

Figure 11. Solution on Grid G0 for the
optimal parameter

When solving LSE in the sequential time we obtained is 22 minutes, with roughly 130s
for Step 1, 26s for step 2, 1200s for step 3 and 10s for step 4. For a parallelism on 10
nodes, Step 1 and Step 3 will have the same time as before, but the time for Step 2+3
will be 150s, since we will compute the interpolation only once per node. We expect the
speedup to be then 8.4 for the solution verification.

5. Conclusion

LSE is new extrapolation method for PDE that can be a solution verification method
with hands off coding. It has be shown to be more efficient than Richardson extrapolation
when the order of convergence of the CFD code is space dependent. In this paper, our
objectives were to map the LSE method on a grid of computer and report the performance
gains. We successfully managed to achieve those goal for a simple application.

This first step toward a grid application with Navier-Stokes equations is encouraging.
It is obviously an interesting advantage to be able to perform a solution verification on 3D
grid meshes using a grid of computer: most of the application time will then be spend into
computation and not in communication. Some other aspects of LSE that are currently
under consideration and that can influence the mapping onto a grid of computer are the
optimum design space objective functions that can be higher order.
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