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Abstract

The Least Square Extrapolation (LSE) method for solution verification was intro-

duced in 2002. Since then, the method has forked into three areas. The method

was extended to the study of stiff elliptic problems. Techniques developed in this

new framework allow having a rigorous upper-bound error estimator to predict very

fine grid solutions. This work is applicable to the pressure solver in the Immersed

Boundary Method. But the equations are still steady. In this dissertation, we ex-

panded the method to two more types of problems. First, the LSE method was

extended to parabolic equations by using coarse grid solutions that have different

meshes in space and time, with minimum overhead on memory. Finally, we designed

a new method that offers a general framework to do solution verification efficiently

by processing the underlying set of discrete (non)-linear equations without using a

priori information on the approximation theory framework that is applied to solve

the PDE. A library was developed to compute the optimized extrapolation using a

surface response methodology. Any 3D Navier-Stokes code can be plugged into it

to compute the optimum without knowledge of the internal structure of the code.

This work has evolved by establishing the conditioning number of the problem in a

reduced space that approximates the main feature of the numerical solution, thanks

to a sensitivity analysis. Overall our method produces an a posteriori error estima-

tion in this reduced space of approximation. Standard benchmark problems showed

that more information can be extracted than by using Richardson Extrapolation.
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Chapter 1

Introduction

1.1 Concept of solution verification

On December 26th, 1999, the winter storm Lothar (Figure 1.1) passed over France

and Germany causing more than $6.2 billion in damages and more than 100 deaths.

The short-range weather forecasting model used by the German Weather Service

had failed to predict the path of the storm, increasing the damages. Later analysis

concluded that the automated system had found some outliers data that were unusual

for European weather and had discarded them. Later simulations were unable to

correctly predict the impact of the storm. Research on weather forecasting is still an

active topic.

While not exactly a software problem, the Intel Pentium bug of 1994 is one of

the most well-known bugs in history. An error in the look-up table for floating-point
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Figure 1.1: Lothar winter storm system over Europe.

divisions created errors ranging from one out of 10,0000 to one out of one quadrillion.

The cost of this bug was evaluated at $400 million.

In September 1999, Mars Climate Orbiter crashed on Mars instead of reaching

a safe orbit. The underlying cause of this accident was a failure to convert English

measures to metric measures.

On February 25th, 1991, at Dhahran, Saudi Arabia, a Patriot missile defense
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system failed to track and intercept an incoming Iraqi Scud. The Scud hit an army

barrack, killing 28 soldiers. The post-accident investigation found that the failure was

due to an inaccurate calculation of the time since boot, due to computer arithmetic

errors.

On August 23rd, 1991, in North Sea, during the lowering process below the ocean

surface, the hull of the Sleipner A oil platform sprang a leak and sank into the 220 m

fjord (Figure 1.2). This event triggered seismic waves at the magnitude of 3.0 on the

Richter scale. Post-accident investigation concluded that the loss was due to a failure

in a cell wall, leading to a leakage that the deballasting pumps could not handle.

The root cause for this failure was an inaccurate finite element approximation of the

linear elastic model of the tricell in the program NASTRAN. The shear stresses on

the ballast chambers were underestimated by 47%. The investigations that followed

evaluated the cost of the accident to be $700 million. After the accident, a more

careful finite element analysis has been capable of predicting the water depth at

which failure occurred.

Each of these examples illustrates differently a particular type of problem. The

failure in predicting the storm system in Europe is a consequence of a defective

model. The problem of the Intel chip is an example of accuracy error. The crash of

the Mars probe is a coding error.

The last two examples are examples of arithmetic errors that could have been

detected by careful error analysis.

They all illustrate the impact of simulations in the real world. As mathematical
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Figure 1.2: Sleipner A offshore platform under construction

models gain in complexity and as the available computing resources increase, it is

important to consider the reliability of simulations when making decisions.

As mentioned in [1, 2], simulations share common points with both the experimen-

tal approach and theory. However, it also has its own particularities. For instance,

simulation allows testing and improvement of theoretical models. On the other hand,

simulation is experimental since an engineer can modify the input at will to generate

new data. As such, most people often have considered it to be a peer methodology

of the two more traditional approaches.
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One of the strengths of simulation is to enable a way of performing any virtual

experimentation for problems or systems for which real experimentation is not pos-

sible at a reasonable cost. Weather forecasting is such an application; it is hardly

possible, if not impossible, to reproduce a specific atmospherical state in a controlled

environment. It is therefore essential to ensure the reliability of solutions produced

by simulations.

Questions that arise include these:

• Are there any tools that allow applied mathematicians to verify multiphysics

and multiscale problems?

• If yes, what are these tools ?

• What are the industry standards for these tools?

These questions lead to the concepts of validation and verification.

It is important to make a distinction between code validation, code verification

and solution verification. From [3], whenever code verification applies to simulation

codes, it consists of finding and removing mistakes in the source code, finding and

removing errors in the numerical algorithms, and improving software quality assur-

ance practice. Code validation performs the assessment of the accuracy of the model

compared to its intended usage. Finally, solution verification deals with the accu-

racy of input and output data and provides an estimate of the error for numerical

solutions. In other words, the goal of solution verification is to give a quantitative

evaluation of the numerical error of a given solution to partial differential equations

5



(PDEs). An exhaustive and rigorous analysis of this error is not always possible for

complex PDEs. Some of the methods addressing this problem are explicit discretiza-

tion, robustness and convergence studies, formal error estimation procedures, and

inferences from test problem suites and from previous experiments.

In order to estimate errors in a numerical solution to a PDE, two methods are at

our disposal: a priori and a posteriori error estimates. A priori error estimates use

only information about the discretization, the initial condition, and the boundary

conditions. A posteriori error estimates make use in addition of anterior numerical

solutions. In the following, we will focus only on a posteriori error estimates.

1.2 Concept of a posteriori error estimates

1.2.1 A priori error estimates

The first step in estimating the error produced by a numerical method is of a predic-

tive nature. Indeed, one can attempt to estimate the error before actually performing

the computation by analyzing the partial differential equation, the initial condition,

and the boundary conditions. These types of estimations are a priori error estimates.

The goal is to successively bound the error produced by each step of the approxima-

tion, and then by accumulation phenomena obtain a global error estimate.

In the context of solution verification, a priori error estimates serve as guidelines,

since they cannot give any numerical evaluation of the errors [3].
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One of the underlying requirements in the computation of an a priori error esti-

mate is the consistency of the discretization method. One of the constraints to obtain

consistency in the discretization is the smoothness of the PDE solution. The lack of

regularities on the discretization limits the application of truncation error estimates.

For instance, in [4] the authors show that for some incompressible transient flows the

solutions lack smoothness, making a priori estimates inaccurate.

An added condition for the convergence is the stability of the discretization.

Under limited conditions, among which is linearity, a problem converges to the correct

solution if and only if it is stable. So being able to prove that a complex non-linear

discretization is stable will lead to convergence properties, enabling the use of a priori

error estimates for the problem.

A priori error estimates have only theoretical meaning. They show that the ap-

proximation method is correct in principle. However, in practice we are strongly

interested in the error for the concrete approximation on the concrete mesh. More-

over, it is possible to merge a priori information with data acquired from previous

computations. This leads to the notion of a posteriori error estimates.

1.2.2 Error estimates and Richardson Extrapolation

A definition of a posteriori taken from word-net is

A posteriori: involving reasoning from facts or particulars to general

principles or from effects to causes.

Consequently, a posteriori error estimates for PDEs could be defined as methods

7



for evaluating the error present in an approximated solution of a partial differential

equation from

• a priori information;

• computational results of a previous numerical solution using the same numerical

algorithm on the same PDE from initial and boundary data; and

• information extracted, such as estimates or convergence characteristics.

In using a posteriori error estimates, the goal is to detect errors in the discretiza-

tion. In order to detect errors introduced by the model, the original data, or the

code, engineers should refer to other techniques. The governing differential equations

and the approximated solutions are means of providing an accurate estimate of the

amount of error in the problem domain.

A common aspect among a large majority of methods is their origin in Richardson

Extrapolation. It combines several meshes to approximate the error. These methods

rely on the assumption that a Taylor series expansion estimating the numerical error

exists such that:

eui
= u− uhi

=
n∑
k=1

αkh
pk
i , (1.1)

where u denotes the exact solution, uhi
is an approximated solution on specific mesh

i, n is the order of the expansion, αk is a constant in the Taylor expansion for the

given grid, hk is a parameter that characterizes the coarseness of the mesh on which

the approximation is performed, and pk is giving the order of accuracy of the method.

This leads to an equation with 2n+ 1 unknowns, hence the need to have 2n+ 1 grids

8



with a numerical solution to obtain an approximation of the error.

As specified in [5], most approaches have considered only the asymptotic range;

hence, only the first term of the Taylor expansion is required :

eui
= u− uhi

= α1h
p1
i , (1.2)

leaving only three unknowns to be estimated.

1.2.3 Richardson Extrapolation for known order

In this section, we look at a basic formulation of Richardson Extrapolation. Let E

be a normed linear space, ||.|| its norm, u ∈ E, p > 0, and hi ∈ (0, h0). ui ∈ E, i =

1 . . . 3 have the following asymptotic expansion:

ui = u+ αhpi + δi, (1.3)

with C a constant independent of hi, and ||δi|| = O(hpi ).

Let wi = hi

hi+1
.

For known p, the Richardson Extrapolation formula

uri =
wpi ui+1 − ui
wpi − 1

, i = 1, 2 (1.4)

provides improved convergence: ||u−uri || = o(hpi ). An a posteriori error estimate on

ui is then

||ui − uri ||. (1.5)

In practice, Richardson Extrapolation applies to grid functions rather than to con-

tinuous functions. Let Ei be a family of normed linear spaces, associated with a

9



mesh Mhi
. Equation 1.6 is the asymptotic model for the discrete grid functions:

U i = v + Cih
p
i + δi, (1.6)

with Ci = (1 + εi)C, and εi = O(1). δi is a model for the h independent numerical

perturbation induced by consistency errors and arithmetic error. The Richardson

Extrapolation

V r
2 =

wp2U3 − U2

wp2 − 1
, (1.7)

defined on grid points of M2 has then for error E2,

E2 = v − V r
2 =

1

wp2 − 1
((δ2 − wp2δ3) + C (ε2 − ε3)hp3) . (1.8)

The numerical perturbation is amplified by a factor
wp

2+1

wp
2−1

. Richardson Extrapolation

provides then an a posteriori error estimate on U i that is simply

||V r
2 − Ui||, i = 1 . . . 3. (1.9)

Richardson Extrapolation also supplies a formula to compute an approximation of a

finer mesh solution, for example:

U4 ≈ V r
2 + Chp4, (1.10)

where C is obtained from the identity

U3 = V r
2 + Chp3. (1.11)

For complex applications, it is no possible to know or to satisfy closely the order of

convergence on the computational grid. One may use the estimate:

p ∼ log2

||u1 − u2||
||u2 − u3||

. (1.12)
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An entirely similar analysis can be applied to the non-embedded refined grid solu-

tion U i in a normed linear space Ei, associated with a mesh Mhi
, provided that

one projects all grid functions to a fine grid M0 with an interpolation procedure.

However, this interpolation introduces an additional error term to add to the δi term

of Equation 1.6. This error still remains much less than the expected convergence

accuracy hpi .

In practice, all pointwise Richardson Extrapolation formulas, particularly in

Equation 1.6, are sensitive to numerical perturbation.

Richardson Extrapolation allows an easy description of the concept of a posteriori

error estimates, but it is limited in handling problems that are more complex. For

instance, Richardson Extrapolation alone might not be suitable for problems with

noisy data, for stiff problems or for meshes without enough regularity. In the next

section, an overview of different a posteriori error estimates is made.

1.3 Overview of methods in solution verification

A standard and well-known procedure to establish a posteriori estimates is to solve

local residual problems. The so-called “equilibrated residual method” is one of the

most reliable and accurate techniques [6, 7, 8]. However, theory for this method has

been essentially limited to linear PDEs. Examples of applications in the literature

include the Poisson problem, the linear singular perturbation problem with simple

boundary layers, the Stokes and Oseen equation, and linear elasticity theory. This

family of techniques has the advantage of being mathematically rigorous in the finite
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element framework. It can be generalized, up to a certain point and on a case per

case basis, to non-linear elliptic problems or hyperbolic equations [9, 10, 11, 12, 13,

14, 15, 16, 17, 18]. However, it may not apply to finite volumes computation, where

there is no equivalence theorem with finite element formulations. We also notice

that the estimates given by the theory do not provide a quantitative free bound on

the error. In practice, the unknown constants in the error estimates obtained by

this theory have naturally a bad asymptotic behavior for boundary layer problems

as the disparity of scales increases, unless one refines the grid. Also, the method has

to be significantly modified depending on the existence of additional length scales,

such as boundary layers or not, or to take into account the influence of the error in

discretization of non-homogeneous boundary conditions [7].

More recently, a general framework for finite element a posteriori error control

that can be applied to linear and non-linear elliptic problems has been introduced

by Patera et al. [19, 20, 21, 22]. This new theory focuses on the fact that one is not

necessarily interested in the solution u itself, but rather in a linear (local) functional

output Q(u) or a stress σ(u). For the Incompressible Navier-Stokes equation, it

is possible to build a posteriori finite element free constant output bounds. The

procedure to construct the a posteriori estimate on a given triangular mesh of step

‘H’ uses a fine grid solution ‘h’ as a reference solution. The construction of upper

and lower bounds of linear-functional outputs of the PDE solution demonstrates

the efficiency of the method. Examples considered are the Helmholtz problem and

the viscous Burgers equation in one space dimension, 1st order linear convection

in two-dimensional spaces, and the Navier-Stokes equations written in Boussinesq
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approximations in a highly convective flow regime.

This procedure uses the concept of duality that draws on an equivalent dual

adjoint formulation of the primal. Then, the adjoint variable associates the error

in the functional and the local residual errors of the primal solution. This method

is promising and technically impressive. Its implementation seems, at first sight,

complex, and is restricted to the finite element framework with appropriate so-called

“broken space” to relate the coarse mesh space with the fine mesh approximation.

The results on the bounds hold for H → h but for all H < H∗ where H∗ is generally

an unknown threshold discretization parameter [19]. A traditional drawback is the

fact that the coarse mesh solution H may not be good enough to provide useful

information, and that is why the method uses refinement to build confidence in the

output results. Therefore, a large Reynolds number is an issue in such a computation.

Furthermore, a reliable error estimate on the fine grid solution of step ‘h’ does not

necessarily lead to a reliable error estimate for the true solution, unless one has

external knowledge to guess what will be a good, fine grid solution. Notice that

[23] and [24] present a practical solution to the error estimate of functional outputs

that is used to drive grid refinement on complex CFD problems. In addition, an

adjoint-based error correction procedure is very close to the engineering point of

view.

It seems that there is a lot of new activity on a posteriori estimates based on resid-

ual methods for the problem and/or its adjoint in the variational theory framework,

but recovery methods that rely on building a better solution to derive an a posteriori

estimate are still very much in use in the engineering world. Among these methods
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are the Richardson Extrapolation technique [5] already discussed in the previous

section, and the so-called ZZ Super Convergence Patch Recovery Method [25, 26].

These methods are applicable to linear as well as non-linear problems [27, 28]. As

explained in [7] Sect 4.7 p82, this technique may require that the grid resolve the

smallest scale.

A third stream of work strongly related to a posteriori estimates [29, 30, 31, 32,

33, 34], concerns real complex phenomena that are non-linear, stochastic and multi-

scale with no clear cut between the different scaling. Problems with turbulent flows,

flow in porous media, or weather prediction are classical examples. The stochastic

method of Glimm et al. [29] for the prediction of complex phenomena divides them

into two components. One is the forward problem, starting from the governing equa-

tion and initial data; the other is the inverse problem for minimizing the uncertainties

in the model from given observations of the system. The main thrust of the method

is to predict functional output of the solution with a coarse grid solution based only

on a probability error model that includes error in numerical computation, error in

the observation or experiments used to calibrate the model, and error in the data

used in the model. Randomness occurs at several levels, such as the specification of

the model or the solution process itself. The solution process and the model must

support a probabilistic framework; that is why stochastic PDEs are a natural appli-

cation field. [34] gives a detailed description of the method applied to scale up flow

in porous media. To focus on the role of this method for a posteriori estimates of the

numerical error in direct computation of PDEs, the assumption is that the numerical

error can be divided into two components: first, a highly variable component with
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sensitive dependence on data, and second, a systematic component with smooth but

also unknown dependence on the data. Both components are present in the random

process that models the error. The randomness of the error process encompasses the

sensitive dependence of the error on the data. Further, the output functional, the

objective the method should predict, must not be sensitive to the global error. The

error estimate depends on the specific choice of the error statistic model. It seems

that this approach is very useful when uncertainties in the model are dominant versus

the numerical error, and when a fine grid solution is never accessible. In complex nu-

merical methods such as PDF/Monte Carlo for turbulent flows [35], the construction

of the real model for numerical accuracy is a difficult task. It is remarkable that after

completion, one may minimize the main component of the error that is random via

time averaging. Then Richardson Extrapolation can provide significant improvement

on the accuracy of the solution. Nevertheless, the theory developed by Glimm et al.

[29] is a giant step toward the understanding of the effect of combined observation

errors, model error, and numerical simulation error in effective prediction.

In the next section, we are looking briefly at some limitations of this methods.

1.4 Limitations of traditional approaches

The methods described in the previous section are an important axis of research

in building and understanding a posteriori error estimates. Each method has its

strength and weakness, and choosing one particular method results from having a

good understanding of the problem at hand and the resources available.
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In addition, numerical procedures might produce inadequate and inaccurate so-

lutions or might not capture some detail for complex physical problems. This leads

to the notion of under-resolved meshes where evaluating the numerical accuracy is

still a challenge [3]. As a matter of fact, in complex modeling, as described in the

ASCI project, best grid solutions provided by our best computing resources are fairly

under-resolved at least locally [36]. A posteriori estimates should now be redesigned

to provide solution verification assessment in this context [37, 38].

Furthermore, the analysis of errors is often incomplete because it often does not

take into account some basic physical mechanisms on propagation:

• diffusion terms cause slow isotropic error decay, but global error pollution may

occur from local irregularities;

• advection terms propagate local errors in the transport direction, but propagate

errors to decay exponentially in the crosswind direction;

• reaction terms cause isotropic exponential error decay, but stiff behavior may

occur in the coupling error components; and

• errors may occur in the coupling of the three components.

These same ideas lead to the development of efficient, parallel iterative domain

decomposition solvers that optimize fast decay of numerical errors introduced at

artificial interfaces.

Therefore, it might be useful to keep track of specific error propagation even for

models in which diffusion, convection and reaction terms are present; it is impossible
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to account for all error interactions by analytical means.

Finally, there are still possibilities of catastrophic failures of a posteriori esti-

mates in case of meta-stabilities or bifurcations. A good method for complex mod-

eling should therefore provide numerical indicators of ill-conditioned problems and

potential catastrophic errors.

1.5 Objectives

The goal of this work is to present a versatile framework to perform a posteriori error

estimates for complex PDEs. In order to be able to use this framework, we consider

a code that provides a set of discrete approximations of PDEs.

The questions that this work will try to answer are:

1. Given that one can obtain the definition of the residual of the PDE approxima-

tion, the existence of a stability estimate on the approximation and two grid

solutions, can we automatically find the order of convergence ?

2. Using two or three different grid solutions, not necessarily with uniformly in-

creasing mesh resolution, can we obtain a solution with improved accuracy?

3. Can we derive reliable a posteriori error bounds from coarse grid approxima-

tions of complex PDE problems?

In addition, there are strong requirements for the solution we want to provide to

answer those questions. First, it should be simple enough to implement or modify,
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and it should be a stand-alone procedure developed independently from the simu-

lation software. If it is possible to use the existing estimates, the developer could

integrate this new error estimate procedure more tightly with the simulation tool.

The second aspect driving the development of this a posteriori framework is that

the arithmetic cost is negligible compared to a direct computation of a very fine grid

solution. However, the solution should be general enough that software using varia-

tional formulation, finite volumes formulation or finite differences formulation, with

irregular meshes or non-linearities, can employ it. Additionally, it should enhance the

numerical accuracy and efficiency of simulation with complex physical models and

trust in the context of code verification; and it should increase the overall numerical

efficiency of the solution procedure when combined with a multilevel procedure.

1.6 Layout

This dissertation is organized in the following way.

Chapter 1 has given an introduction, including a literature review.

In Chapter 2, we present an overview of some flaws of Richardson Extrapolation

in the context of fluid mechanics. Then, the focus of the chapter will be on stiff

elliptic problems. It is a first generalization of the least square extrapolation method

and the introductory work of this dissertation.

In Chapter 3, the focus shifts from elliptic partial differential equations to de-

pendent problems and more specifically to parabolic problems. The introduction
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of the time dependency in the framework yields new problems. Several simplified

numerical models taken from the literature will illustrate some of the capabilities of

the optimized extrapolation method.

In Chapter 4, we present a general framework to perform solution verification on

simulation software even if the underlying set of discrete equations is unknown. A

by-product of the framework is the evaluation of the conditioning of the problem in

a reduced space at a reduced cost.

In Chapter 5, taking into consideration the main drawback of our method, we

expose a software solution that takes advantage of a distributed network to perform

solution verification. This chapter mainly focuses on implementation features and

performance evaluations.

Finally, Chapter 6 provides the conclusion of the dissertation, and presents some

possible improvements and investigations.
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Chapter 2

Least square extrapolation method

In this chapter, after a brief reminder of some of the limitations of the Richardson

Extrapolation method, we present the Least Square Extrapolation method for stiff

elliptic problems as done in [39].

2.1 Limitations of Richardson Extrapolation method

As presented in the introduction, Richardson Extrapolation is a technique that was

investigated in different communities to improve quantitative accuracy and the order

of accuracy. The CFD community is an example of such approaches. Several papers

cover the weaknesses and strengths of this method. The goal of this section is to

present an overview of some of the weaknesses and to introduce a novel approach

that is largely inspired by it.
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The first set of limitations was described in [40]. Their analysis was done on

Cartesian uniform meshes and thus does not represent a significant part of the sim-

ulation methods. Moreover, non-uniform or non-Cartesian grids might emphasize

some of the limitations. Here is a summary of the findings :

1. Richardson Extrapolation is limited to flow with large gradients in properties,

such as walls or polyphasic flows, for example. It can, in certain cases, worsen

the accuracy of the extrapolated solution.

2. High-order extrapolation schemes retain the accuracy of the original solution

at the cost of computational complexity.

3. The use of high order extrapolation schemes to retain the same accuracy re-

stricts the elimination of spurious frequency in complex geometry.

The overall conclusion is that smoothness of the solution is a prerequisite even for

the simplest flow computations.

Second, in [41], the authors address the problem of oscillatory convergence for

finite difference methods. They also suggest some solutions, such as using alternative

extrapolation schemes.

In [42], it is shown that to obtain higher order accuracy of the extrapolation, one

has to modify the Richardson Extrapolation method.

Thus, assumptions of smoothness and that local error is related to global errors

might not always be verified.
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2.2 Optimized Extrapolation method for elliptic

problems

In this section, we present the fundamentals of the Optimized Extrapolation method

for stiff elliptic problems. This work was previously presented in [39].

2.2.1 Stiff elliptic problems

We consider the elliptic problem

div(ρ∇u(x)) = f(x), x ∈ Ω ⊂ IR2 (2.1)

u = g on ∂Ω, (2.2)

with ρ(x) > ε, x ∈ Ω, ε > 0. Ω is a polygonal domain.

We assume that the elliptic problem is well-posed and has a unique solution which

is relatively smooth.

For the ease of presentation, we use, in this section only, a finite volume ap-

proximation of (2.1) on a uniform Cartesian mesh with square cells of size dx. The

problem is solved with centered finite volume cells with a classical order scheme. The

corresponding linear system is

AhUh = Fh. (2.3)

Equations similar to (2.1) are not purely academic problems.

For example, we can first look at the following problems which exhibits large

variations of ρ throughout the domain Ω:
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1. The pressure solver in a multiphase flow problem with large ratio of density

between fluids: for instance, bubbles of air rising in a liquid may have densities

several orders of magnitude different than the density of the fluid itself. The

same is true for drops of liquid falling in low-density gas [43, 44].

2. The pressure solver when simulating a flow in porous media through multi-layer

materials if the permeability ratio between the layers is too large.

3. The heat equation when studying heterogeneous material having large discon-

tinuity in the thermal conductivity between each media.

In these situations, we consider Ω to be partitioned into two subsets Ω1

⋃
Ω2,

such that

||ρ||2,Ω1 ∼ 1, (2.4)

||ρ||2,Ω2 ∼ τ, (2.5)

with τ � 1 or τ � 1. The larger the ratio of τ to one is, the larger is the condition

number of A, and the harder (2.3) is to solve efficiently with a good approximation

of the exact solution.

The second type of problems we are interested in is when the source term f(x)

is a collection of dipoles. An example of such a problem arises in the pressure

equation in the immersed boundary method of Peskin [45]. Peskin’s method is a

very elegant technique for the simulation of fluid-structure interaction and is widely

used in biological situations, but it suffers from a lack of accuracy. We will now

present the optimized extrapolation method in the context of an elliptic problem.
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2.2.2 Optimized Extrapolation method

2.2.2.1 Overview of the method

Let G1 and G2 be two regular Cartesian meshes used to build two finite volume

approximations of the elliptic problem (2.1). Let us denote h1 and h2 as the size

of the square cells for both meshes, and U1 and U2 to be the two corresponding

approximations of the continuous solution u ∈ (E, || ||). We assume the convergence

of these approximations, that is

U1, U2 → u in (E, || ||) as h1, h2 → 0. (2.6)

A consistent linear extrapolation formula should have the form

αU1 + (1− α)U2, (2.7)

where α is a weight function. In classical RE the α function is a constant. In our

optimized extrapolation method α is a space-dependent function. If U1 and U2 are

in a finite element space (Eh, || ||), α must be such that the linear combination is

still in (Eh, || ||).

We formulate the following optimization problem for the unknown function α:

(Pα): Find α ∈ Λ(Ω) ⊂ L∞ such that G(α U1 + (1 − α) U2) is minimum in

(Eh, || ||),

where G is an objective function to be defined. The Optimized Extrapolated Solution

(OES) is then Ve = α U1 + (1− α) U2.
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For computational efficiency, Λ(Ω) should be a finite vector space of very small

dimension compared to the size of matrix Ah defined in (2.3). The objective function

G can be any a posteriori existing error estimate, if it operates on the space of

approximation (Eh, || ||).

In the most general situation, i.e., in the absence of the knowledge of any rigorous

a posteriori estimate, we choose to minimize the consistency error for the numerical

approximation of (2.1) on a fine mesh M0 of step h0. The fine mesh M0 should be

set such that it captures all the scales of the continuous solution with the accuracy

required by the application. We have a priori h0 << h1, h2. Let us emphasize that

h1 and h2 do not have to be very different, and that the ratioh1

h2
does not have to be

an integer. Both coarse grid solutions U1 and U2 must then be interpolated onto M0.

We will denote Ũ1 and Ũ2 as the corresponding grid functions. One needs seconds

to get the approximation of the elliptic operator Ah0 . The objective function is then

G(U0
h) = ||Ah0 Uh0 − Fh0||, (2.8)

where U0
h = α Ũ1 + (1− α) Ũ2.

The choice of the space (Eh0 , ||.||) and its norm should depend on the property

of the solution. In LSE [46, 47] we chose the discrete L2 norm on M0. We will

investigate here other possibilities, such as the L1 or the L∞ norm.

One of the difficulties encountered with such a two-level extrapolation method is

the so-called cancellation problem [46]. In practice, there exist subsets of Ω where

U1 and U2 are much closer to each other than what the expected order of accuracy

based on local error analysis should provide. In such areas the sensitivity of the
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extrapolation to the variation of α is very weak and the problem is ill-posed. The

optimization computation procedure should consider these subsets as outliers only.

A potentially more robust optimization procedure consists of using three levels of

grid solutions. The optimization problem is then written

(Pα,β): Find α, β ∈ Λ(Ω) ⊂ L∞ such that G(α U1 + β U2 + (1 − α − β) U3) is

minimum in (Eh, || ||),

where G is an objective function to be defined. The optimized extrapolated solution

is then Ve = α U1 + β U2 + (1− α− β) U3.

We notice that if all Uj, j = 1 . . . 3, coincide at the same space location there

is either no local convergence or all solutions Uj are exact. In such a situation,

one cannot expect improved local accuracy from any extrapolation technique. The

robustness of the OES method should come from the fact that we do not suppose a

priori any asymptotic formula on the convergence rate of the numerical method as

opposed to RE.

Let us assume that the optimization problem Pα or Pα,β has been solved and that

we have computed Ve either from the two-level or three-level method. We are going

to discuss now its application to provide a posteriori error estimates.

2.2.2.2 A posteriori estimate

Let us denote Uj to be one of the coarse grid approximations at our disposal. A

global a posteriori estimate of the error (Uj − u) may come in two different ways.
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• The first way is the recovery method based on the idea that the optimized

extrapolated solution is more accurate than the coarse grid solution. Let us

denote Ũj the coarse grid solution projected onto the fine grid M0 via a suit-

able interpolation procedure. Let us assume that the extrapolated solution is

decisively more accurate than that based on interpolation from the coarse grid

solution, namely,

(Ve − u) << (Ũj − u), in (Eh, || ||). (2.9)

Then ||Ve− Ũ2|| is a good error indicator to assess the accuracy of G2 solution.

We have then

(Ũj − Ve) ∼ (Ũj − u), in (Eh, || · ||). (2.10)

We will show in our experiments that this method may give a good lower

bound error estimate. However, we do not know, in general, if hypothesis

(2.9) is correct. If G is chosen to be the residual on the fine grid, there is no

guarantee that a smaller residual for Ve than for U2 on the fine grid M0 will

lead to a smaller error.

• The second way is a global upper bound that follows from a stability estimate

with the discrete operator. Let us assume that the objective function is the

residual in the discrete norm || · ||, namely (2.8). Let us denote U0 to be the

fine grid solution on M0, and A0 to be the corresponding linear operator. We

have

||Ve − U0|| < µ G(Ve), (2.11)
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where µ ≥ ||(A0)−1||.

We conclude then

||Ũ2 − U0|| < µ G(Ve) + ||Ve − Ũ2||. (2.12)

The procedure to derive an estimate for µ will be discussed later.

Equation (2.12) is a good global a posteriori error estimate provided that

||U0 − u||2 << ||U0 − Ũ2||2. (2.13)

One way to test hypothesis (2.13) is to measure the sensitivity of the upper bound

(2.12) with respect to the choice of the fine grid M0. This is a feasible test because

the fine grid solution is never computed in OES. Our verification procedure then

checks that ||U0 − U2||2 increases toward an asymptotic limit as M0 gets finer.

We will now present, in detail, the solution procedure to obtain OES and a

posteriori error estimates. We will assume that G is a linear operator.

2.2.3 Procedure to construct the Optimized Extrapolation

Let ei, i = 1 . . .m be a set of basis functions of Λ(Ω). The solution process of Pα

and/or P(α,β) can be broken down into three steps:

1. Interpolation of the coarse grid solution from Gj, j = 1 . . . p to M0. We have

two coarse grids to interpolate for Pα, respectively, three for P(α,β).
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2. Evaluation of the objective function

G[ei (Ũj − Ũj+1)], i = 1..m, j = 1..p− 1, and G[Ũp] (2.14)

on the fine grid M0.

3. The solution of the optimization problem that has m unknowns for each weight

coefficient α and β used in the extrapolation procedure.

In practice, we should keep m much lower than the number of grid points on any

coarse grid used. If one chooses the discrete L2 norm, the optimization problem can

be solved easily and the arithmetic complexity of the overall procedure should be of

order Card(M0). In the general case, coding in a stand-alone program independent

of the main numerical code might implement the algorithm.

Remark 1: This procedure can be generalized to non-linear elliptic problems via a

Newton-like loop [46, 47].

We will now discuss the first step of the algorithm.

2.2.3.1 Projection on the fine grid and postprocessing

To compute the objective function properly, the interpolation procedure should pre-

serve the properties of the numerical solution.

For conservation laws, one may require that the interpolation operator should

satisfy the same conservation properties. In addition, the method can take into

account other constraints related to physical realization. For example, for reacting
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flow problems, one can require that the interpolating function preserve the positivity

of species. One may use, for example, a transform of the unknown variable,

Ψ = Φ(U), (2.15)

such that the inverse map Φ−1(αΨ1 +(1−α)Ψ2) intrinsically satisfies the constraint.

For positivity, one may use a bijective map Φ from IR+ to IR. For mass conser-

vation, in [47] we used the standard stream function transform.

As discussed in [46], the interpolated solutions Ũi on the fine grid contain spu-

rious high frequency components. Linear interpolation is much worse than spline

interpolation from this point of view. This problem is amplified by the fact that the

objective function usually requires the computation of the discrete derivatives of Ũj.

These spurious frequency components of the interpolated solution are obviously

carried on in all linear combinations Ve. The computation of the objective function

might then be polluted to the point where minimizing G(Uh) does not guarantee any

longer that one minimizes the numerical error.

One postprocessing procedure to overcome this difficulty is to filter out the ar-

tificial high frequency components of Uj that cannot be present on the coarse grid

Gj. However, for the elliptic problems (Equation 2.1) discretized by Equation 2.3 on

M0, it is convenient to postprocess the interpolated functions Ũj, by a few steps of

the artificial time stepping scheme

V n+1 − V n

δt
= A0V

n+1 − Fh0 , V
0 = Ũj, (2.16)

with appropriate artificial time step δt. This will readily smooth out the interpolating
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function. We will discuss later a criterion to stop this smoothing relaxation (Equation

2.16).

We will also compare our numerical experiments on Equation 2.1 with the nu-

merical results obtained with linear interpolation and spline interpolation. Let us

now discuss the choice of the objective function in OES.

2.2.3.2 Choice of the objective function

In principle, OES should be much cheaper than the computation of the fine grid

solution U0 on M0. The easiest solution is to choose the objective function to be the

residual computed in L2 norm. This choice presents two essential advantages.

The optimization problem to be solved is a least square problem that is well

understood, easy to solve, and easy to process with existing software libraries [48].

For problems with discontinuous solutions, the choice of the L2 norm might not

be best. We can devise an entirely similar approach using, for example, the L1 norm.

That choice might be more relevant for problems having a discontinuous solution.

Unfortunately, the minimization of the residual in the L1 norm is a more difficult

task because the objective function is non-differentiable. In this case, we have used

the simplex search of Nelder and Mead [49] implemented in Matlab starting from

the optimum solution obtained with the L2 norm. The computation of an estimate

of the L1 norm ||A−1
0 ||1 might be done with an iterative procedure as well. We refer

to the papers of Higham [50, 51] that present the method. A well-known procedure

that implements this algorithm is available in LINPACK. We have chosen for our
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numerical experiment to apply RE to the sequence of estimates ||A−1
hj
||1, j = 1, 2, 3,

to get an estimate of µ. This computation is less expensive than to compute ||A−1
0 ||1

directly. For problems where one is interested in the maximum of the error, we can

devise a similar OES using the L∞ norm.

Finally, one can use standard finite element a posteriori estimates [52, 53] in

place of the norm of the residual to define G. We will not discuss this approach in

this section, since we are working with finite volume discretization for which, to our

knowledge, such rigorous estimates for (2.1) are not available.

Remark 2: We emphasize that all fine scales that are not present in the two or

three coarse grid solutions will not be computed properly by the OES Ve. OES tries

at best to recover all the scales that are present in the provided coarse grid solutions.

Remark 3: In multiscale problems, the numerical error is often dominant in some

small local area of the domain where the solution is stiff. One example is a boundary

layer or a singularity at some corner of the domain. One criterion to choose the

objective function G is to be able to capture such singularities. We refer to the

literature in singular perturbation theory to give an extensive review of the choice of

the norms to analyze boundary layer problems and its numerical solution - see, for

example, [54, 55, 56].

Let us now discuss the representation of the weight function of Λ(Ω).
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2.2.3.3 Representation of the weight functions

We look for a compact representation of the weight function that can capture the

main features of the convergence order of the method with very few coefficients. Let

us assume for the time being that Ω is a square domain.

As presented in [46], one can use a trigonometric expansion of the weight functions

α and β that is adapted to the square domain. The set of trigonometric functions of

Equation 2.17 define the space of the unknown weight function:

α(x) =
∑

i=1..m, j=1..m

αi,j e
i(x1) ej(x2), (2.17)

with x = (x1, x2), e0 = 1, e1 = cos(πx1/2) and ei = sin((i− 2)πx1/2), for i = 3..m.

This set of trigonometric functions allows us to approximate at second order

in L2 norm any smooth non-periodic functions of C1[(0, 1)2], [57]. One additional

advantage of this choice of approximation space for the weight function is that it

allows us to interpret easily our numerical result in the frequency space.

We observe in practice that the higher order the expansion defined by Equation

2.17, the more amplified are the spurious modes in the interpolated solution Ũi.

Postprocessing is then particularly important to stabilize the OES.

In this section, we have tested a second alternative that might be better suited to

capture the local properties of the convergence rate. First, let us define ei,j to be the

set of Q1 basis functions of the square domain Ω on the very coarse grid of m ×m

cells. ei,j is then one at the center of the cell of coordinates (i, j) and zero elsewhere.

Second, we transform ei,j into ẽi,j, which is the interpolated function defined on the
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fine mesh M0. Our second solution is then to look for the weight functions as follows:

α(x) =
∑

i=1..m, j=1..m

αi,j ẽi,j(x1, x2). (2.18)

We will compare both representations of the weight coefficients in the numerical

experiments.

In the general case, Ω is a polygonal domain that can be embedded, after ap-

propriate rescaling, into a square (0, 1)2. Because the unknown weight functions of

the OES do not have boundary conditions, we can use exactly the same set of basis

functions. However, the OES problem depends only on the part of the interpolated

solutions that are the grid points contained inside the domain Ω. With the repre-

sentation given in (2.18), the OES formulation should not contain any coefficients of

the basis function ẽi,j that are identically null inside Ω.

We have now described all the components of the solution procedure to build the

OES.

We are going to show in the next section that the OES method provides robust

a posteriori global error estimates for the elliptic problem (2.1) with stiff coefficient

ρ.

2.3 Results

In this section, we present numerical results for the OES method on stiff elliptic

problems.
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We are going to consider eight test cases based on the homogeneous Dirichlet

problem

div(ρ∇u(x)) = f(x), x ∈ Ω ⊂ IR2 and (2.19)

u = 0 on ∂Ω, (2.20)

with the following smooth right-hand side function:

f(x) = exp
(
−2 (x1(i)− 0.5)2 − 2 (x2(j)− 0.5)2

)
. (2.21)

The first test case, T1, used as a basic reference is the Poisson problem into the

square (0, 1)2. All other test cases correspond to different distributions of the ρ

function and/or different geometry of the domain.

Let us define D1 (respectively, D2) the disc of center C = (0.38, 0.48) (C =

(0.64, 0.74)) and radius R = 0.15. The coefficient ρ is as follows:

ρ(x, y) = 1 + 0.5 (τ − 1) (1.+ tanh(−100 (dist((x, y), C)−R))) , x ∈ Ω, (2.22)

where dist((x, y), C) is the distance from the point of coordinates (x, y) to the center

C of the disc. ρ is close to τ inside the disc of center C and radius R, and 1 outside.

For the first five test cases Ti, i = 1 . . . 5, Ω is the unit square. The test cases T6

and T7 correspond to an L-shape domain (0, 1)2 \ (0, 0.5)2. The last test case, T8, is

for a Poisson problem with a circle of dipole source terms. This last example plays

the role of a reference test case in the analysis of the impact of the choice of the norm

in the error estimate. Figures 2.1, 2.2, 2.3, and 2.4 show, respectively, the solution

on the fine grid M0 for the test cases Ti, where i = 2, 6, 7, and 8.
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Figure 2.1: Solution of T2 with ρ ≈ 0.1 in the disc D1.

The test cases Ti, i = 1 . . . 7, are designed to be representative of the pressure

equation for a two-phase flow problem. The disc D1/2 is the analog of a bubble of

circular shape that has the relative density τ to its medium. Small τ are for bubbles

of gas immersed in liquid. Large τ can be interpreted as a liquid drop immersed in

air.

We see in Figure 2.1 that small τ gives a high-pressure peak in the disc. Large

τ in Figures 2.2 and 2.3, induces a plateau in the pressure that matches the disc

contours. In test case T6 the disc D1 intersects the wall, and the plateau matches

the zero boundary condition. In test case T7 the disc D2 stays inside the L shape

domain, and we have a strong interaction between the “bubble” and the singularity
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Figure 2.2: Solution of T6 with ρ ≈ 100 in the disc D1.

of the solution at the entry corner.

With homogeneous Dirichlet boundary conditions, complex geometry does not

play a significant role for small τ values. In fact, it can be observed that for small τ

the solution of the elliptic problem is of order τ outside the disc D.

We have done a large number of experiments with various grid resolutions for

Gi, i = 1 . . . 3 as well as M0. We focus this experimental section on the discussion

of the following:

• the postprocessing of the interpolated solution, i.e., the number of time steps

in the relaxation procedure 2.16;
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Figure 2.3: Solution of T7 with ρ ≈ 100 in the disc D2.

• the impact of the parameter τ ;

• the choice of the interpolating function: linear versus spline;

• the choice of the basis function for Λ(Ω), i.e., Fourier versus interpolated Q1;

and

• the choice of the norm L2 versus L1 in the objective function

G(Uh) = ||Ah Uh − Fh||. (2.23)

The pseudo-language chosen to develop these concepts is Matlab. In all the

graphics representing the performance of our method for these eight test cases, we
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Figure 2.4: Solution of the Poisson problem with a circle of dipole source terms.

have chosen for convenience and comparison purposes to fix the parameters of the

method as follows.

• The direct solver solves each test case on a Cartesian grid of the same space

step hi in both space directions. For the coarse grid G1, G2, and G3, we have

h1 = 1/14, h2 = 1/20, and h3 = 1/26, respectively.

This coarse grid does not resolve the sharp transition of the density function ρ

defined in (2.22). ρ appears to be almost a step function on these coarse grids.

• The fine grid solution M0 is chosen to be a grid of step 1/128. To verify the

quality of this fine grid solution we use as a benchmark solution the grid M∞
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of space step 1/256.

• The bilinear interpolation or the cubic spline interpolation of Matlab interpo-

lates the solution on M0.

• The time integration of the heat equation enables the postprocessing of these

interpolated solutions:

∂u

∂t
= div(ρ∇u(x))− f(x), x ∈ Ω ⊂ IR2, u = 0 on ∂Ω, (2.24)

on the interval of time length of order 10−2. To this end, we use time steps

of order δt = 10−3 in a first order implicit Euler scheme. Typically, each time

step requires two iterates of a biconjugate gradient method (BICGSTAB) with

an incomplete LU pre-conditioner.

The fine grid solution M0 is not resolved by this scheme by all means. We

will see that the quality of the OES improves dramatically with this relaxation

procedure.

In Figures 2.5,2.6, and 2.7, we use the following conventions. The left graph gives

an error estimate based on the recovery method Equation (2.9), while the right graph

gives an upper bound of the error based on the global estimate Equation (2.12). The

graph in the middle shows the residual obtained in the norm of choice for the OES

method.

To check the accuracy of the error prediction, we have computed the M0 fine grid

solution. The curves labeled with ‘* ’give the error ||Ũ3 − U0||.
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Figure 2.5: Error estimates with T3. τ = 0.01.

To check the accuracy of the M0 solution, the curve with ‘v’ labels gives the error

of the M0 solution versus the ground true solution M∞, that is ||U0 − U∞|| on M0.

We will systematically compare the OES with the two-level method using the

coarse grid solutions U2 and U3, and with the three-level method based on all three

coarse grid solutions. The influence of the time stepping used to postprocess all three

projected solutions Ũj, j = 1..3, is demonstrated by representing on the horizontal

axis of each graph the time variable of the postprocessing Equation (2.24).

The dashed curved ‘- -’ in the left and right graphs are the Aitken accelerations

of the sequences of error prediction versus the time step based on the three-level
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Figure 2.6: Error estimates with T6. τ = 100.

method. By construction, this Aitken acceleration improves the convergence of the

numerical approximation only if the sequence of error prediction has a linear rate of

convergence. Oscillations of the sequence of numbers generated by the Aitken process

reflect either the lack of linear convergence, or the point at which the accelerated

sequence is close to convergence within computer arithmetic accuracy.

We will now analyze the results that we obtained in our numerical experiments.

Let us report first on the results with the LSE method for all the test cases.

42



Figure 2.7: Error estimates with T7, τ = 100.

2.3.1 Energy Norm

All estimates here used the discrete L2 norm and the trigonometric expansion Equa-

tion (2.17) of α and β. Let us discuss the influence of the relaxation procedure

Equation (2.16).

2.3.1.1 Discussion on the postprocessing method

Both the recovery method and upper bound estimate provide accurate estimates for

the Poisson problem in a square. We should expect this minimum from a new method,
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since a basic second order Richardson Extrapolation already gives satisfactory results.

One notices, however, the prediction step reaches good accuracy after four time

steps, and that the spline interpolating function gives slightly better results than

the bilinear interpolating function. Further, for this Poisson problem, there is no

advantage to using a three-level extrapolation method versus a two-level method.

For the Laplace operator, one can easily derive a priori how many time steps are

required to damp the artificial frequency components of the interpolated solution

that were not present in the coarse grid solution.

Let us write algebraically

(Id− δt A0) Ũn+1 = Ũn − δt F 0
h , (2.25)

to be the time stepping Equation (2.16) applied to each interpolated coarse grid solu-

tion Ũj, j = 1, 2, 3. A0 is symmetric definite negative and we can order its eigenvalues

λk as follows

0 > λ1 > λ2 > . . . > λm. (2.26)

m = (N0)2 is the number of grid points on the fine Cartesian grid M0. Let us

denote vk, k = 1 . . . N as the corresponding orthonormal eigenvectors of A0.

The matrix B = (Id − δt A0)−1 has for eigenvalues µk with µk = (1 − δtλk)−1.

The eigenvalues of B are ordered as follows 0 < µm < µm−1 < . . . < µ1 < 1.

Let us express Ũn
j in the orthonormal eigenvector basis vk, with

Ũn
j =

∑
k=1..m

Ũn
j,k vk. (2.27)
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The following high frequency component of the solution

∑
k=mj+1..m

Ũn
j,k vk (2.28)

is an artifact of the interpolation procedure. It leads to the following error term that

is part of the residual Rn+1:

∑
k=mj+1..m

λk Ũ
n
j,k vk. (2.29)

Let us assume that we expect a priori an error on Ũj, j = 1..3, much larger than

the tolerance number tol in the L2 norm.

The high frequency component of the residual due to the interpolation process

will decay as

∑
k=mj+1..N

µqkλk Ũ
n
j,k vk (2.30)

after q time steps. q should be chosen such that

 ∑
k=mj+1..N

(µqkλk)
2

 1
2

< tol. (2.31)

A practical bound on q can be derived from Equation (2.31) and the analytical

formula of the eigenvalue of the discrete Laplacian operator. The same analysis is not

straightforward for stiff problems with an arbitrary ρ function in Equation (2.19). As

a matter of fact, the operator Ao is still negative definite but no longer symmetric.
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We use then the following heuristic argument. We know that for q large enough,

the decay of the numerical error En = Ũn − Uo satisfies the asymptotic estimate

En ∼ Ctµq1. (2.32)

Similarly, the residual satisfies

Rn ∼ Ctλ1µ
q
1. (2.33)

Once the spurious high frequency components of the error due to the interpolation

process have been damped enough, the error and the residual decay at the same

linear rate µ1. Further, the larger the number of time steps, the more accurate is

this convergence rate. This is the essence of the power method [58] to compute µ1.

We look then for a stop criterion that estimates how close the sequence is to its

asymptotic rate of convergence.

Our criterion to stop the iteration is to compute the discrete second order deriva-

tive in time of log10 ||Rn||2; that is,

Rn
tt =

log10(||Rn+1||2)− 2 log10(||Rn||2) + log10(||Rn−1||2)

(δt)2
, (2.34)

and ensure that this number is below some a priori tolerance value.

We are going to show that our heuristic stop convergence criterion is also consis-

tent with the use of the Aitken acceleration on our sequence of upper error bounds

µ ||A0V
n
e − F ||2 + ||Ve − Ũ2||2, (2.35)

where Ve is the LES based on Ũn
j , j = 1 . . . 3.
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Let us denote rn the sequence of numbers

rn = µ ||A0V
n
e − F ||2. (2.36)

The sequence rn has also a linear rate of convergence at the speed µ1.

The Aitken acceleration procedure that we apply to our upper-bound estimate

Equation (2.35) writes

sn = ||Ve − Ũ2||2 +
rn rn+2 − r2

n+1

rn+2 − 2 rn+1 + rn
. (2.37)

Let us rewrite rn as follows

rn+1 − r∞ = (µ1 + δn) (rn − r∞). (2.38)

We have δn → 0, as n→∞. We get

sn − s∞ = (rn − r∞)
(µ1 + δn+1) (µ1 + δn) − (µ1 + δn)2

(µ1 + δn+1) (µ1 + δn) − 2 (µ1 + δn)2 + 1
. (2.39)

We have then

sn − s∞ ∼ (rn − r∞)
µ1

(µ1 − 1)2
(δn+1 − δn). (2.40)

Since

||Rn||2 ≈ rn (2.41)

therefore

Rn+1 −R∞ ≈ (µ1 + δn) (Rn −R∞). (2.42)
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Using this estimate in Equation (2.42) and in Equation (2.34), we have

Rn
tt ≈ (δn+1 − δn). (2.43)

To ensure that Rn
tt is small is then a good stop criterion for the Aitken acceleration

because of Equation (2.40). This Aitken acceleration will systematically be applied

to enhance the upper bounds Equation (2.35).

We are now going to study the impact of the τ scale on the results obtained with

the LSE method.

2.3.1.2 Impact of τ on the LSE result

In Figures 2.5, 2.6, and 2.7, we presented the results with spline interpolation using

m = 4 in the trigonometric expansion of α, β. Let us consider the test cases T2

to T7. In all these test cases, we checked that the second order RE improves the

solution accuracy, but not consistently. The corresponding error estimate based on

the recovery method is thus unreliable. Because of the effect of the discrete operator

on the interpolation, the upper bound error based on the computation of the residual

is far too crude.

The LSE method always gives better results than RE with very few time steps

to postprocess the coarse grid solution on the fine grid. For these stiff problems, the

three-level method gives consistently better results than the two-level method.

In most cases, the recovery method gives an acceptable estimate from below of

the error after very few time steps, as shown in Figures 2.5 and 2.6. The test case T7,
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in Figure 2.7, is an exception. It can be checked and seen in this test case that the

code is not converging well, because ||U0−U∞|| is not much smaller than ||U3−U0||.

The Aitken acceleration of the sequence of estimates based on the recovery

method may sharpen this estimate, but not consistently. There is no obvious reason

for which ||Ve − Ũ3|| should converge linearly.

In all these test cases, the existence of oscillations might easily detect the failures

of the Aitken acceleration.

In all test cases, the upper bound overestimates the error by a factor of five to

ten at most, provided that we process the time integration of the solution with few

time steps for an interval of time of size 2 10−2.

The Aitken acceleration of this time sequence of estimate provides a faster im-

provement of the upper bound for large τ than for small τ . This is consistent with

the fact that the time stepping converges faster to the linear rate of convergence

for large τ than for small τ. In the test case T7 we have a strong oscillation of the

Aitken acceleration of the upper bounds sequence. We conjecture that this is a good

indicator of the bad convergence properties of the code due to the re-entry corner in

this specific situation.

We found in all test cases the LSE method is robust if the relaxation scheme of

(Equation 2.16) postprocesses the interpolated coarse grid solutions.

Let us now discuss the advantage of spline interpolation versus bilinear interpo-

lation.
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2.3.1.3 On the choice of the interpolating function

In principle, spline interpolation should preserve the smoothness of the solution and

should give better results than linear interpolation with LSE. On the contrary, if the

solution is very stiff, the spline interpolating functions smooth out the interpolated

solution where it should exhibit a sharp front. The result should then be worse

than linear interpolation with LSE. This is exactly what we have observed for the

numerical error after very few time steps. However, thanks to the relaxation process

the difference between both solutions after five time steps is marginal. In this case,

we would prefer bilinear interpolation that is easier to implement in more geometry

that is complicated. Let us discuss now the choice of the representation of the weight

function.

2.3.1.4 On the choice of the basis function to represent the weight func-

tion

We have also tested the impact of the choice of the basis function to represent the

unknown weight coefficients α and β. The general observation is that the accuracy

of the LES prediction increases when one increases the value of m from one to a few

units, typically four. The gain obtained in further increasing m becomes marginal

in the Fourier case (Equation 2.17). On the contrary, our numerical simulation with

m up to 12 shows slightly better convergence using Equation (2.18). However, the

postprocessing procedure may make this improvement marginal after a few time

steps. We speculate that the main contribution of the error with stiff problems is
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so dominant in some local area that even the coarser grid solution is good enough

outside the region of stiffness. In other words, the weight coefficient has very little

influence on the quality of the LSE outside the region of stiffness. The least square

extrapolation method can then capture the main component of the error with local

or non-local basis functions as well. When the computation provides the coarse grid

solutions on locally refined meshes, the hypothesis does not hold and needs revision.

Let us further notice that the representation in Equation (2.18) gives fewer unknowns

to compute for complex shape domains than Equation (2.17). We will now compare

the LSE method with OES using the L1 norm and the L∞ norm.

2.3.2 Discussion on the choice of the norm

In Figure 2.8, we compare the error estimate based on the recovery method obtained

with the L1, (curved with dashed lines) and the L2 norm (curved with continuous

line), for the test case T5. Curves labeled with � and o correspond to the two-level

methods and three-level methods. Except in the test case T5 reported here, we did

not find any significant advantages to using the L1 norm instead of the L2 norm for

the objective function. The recovery method gives similar results for all other test

cases with the L1 and the L2 norm.

In particular our conclusion on the impact of τ , the choice of the interpolating

function and the basis function to represent the weight function is identical to our

previous conclusion with LSE.

Further, the simplex search of the Nelder and Mead minimization procedure is
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Figure 2.8: Error estimates in L1 norm with T5, i.e τ = 100, based on linear inter-
polation and the recovery method.

obviously much more time-consuming than the least square method and is generally

less accurate at convergence. The Aitken acceleration of the upper bound estimate

is, therefore, not very effective. Figure 2.9 gives a representative example of our

result. While a more efficient optimization procedure to construct OES might be

used, we have also noticed that the upper bound obtained with the L1 norm is much

coarser than in the L2 norm case for all test cases. This is a major drawback of the

method.

There is, however, a significant interest in using the L1 norm for solutions of
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Figure 2.9: Upper error bounds in L1 norm with T4, i.e τ = 10, based on linear
interpolation.

PDE problems exhibiting discontinuities. Let us consider then the following test

case, denoted T8:

∆u = div(~a δΓ(x, y), (x, y) ∈ (−1, 1)2, u|∂Ω = 0, (2.44)

where Γ is a circle of center 0 and radius 1
2
.

This test case is designed to represent the pressure equation in the Peskin method

[45] when the membrane is the circle Γ. The force is distributed along the membrane

with a set of discrete Dirac delta functions. These force terms have the direction of

the radius of the circle. We choose then ~a to be the vector of components (2πx, 2πy).
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These force terms lead to a distribution of dipoles in the pressure equation. Let δh

be the discrete approximation of the Dirac delta functions based on the piecewise

cubic function given in [59] with a support of radius two space step h. The discrete

representation of Γ uses M points. To ensure that the space steps between these grid

points are of order h, we take M = 6N with N = 2/h. The source term in Equation

2.44 is then

δΓ(x, y) =
1

M

i=M∑
i=1

δh

(
x− 0.5 cos

(
2(i− 1)π

M

))
δh

(
y − 0.5 sin

(
2(i− 1)π

M

))
.

(2.45)

The solution of Equation 2.44 on the fine grid is given in Figure 2.4. One can

notice the severe oscillation of the solution at the Γ location. Equation 2.44 shows

our results using, successively, the L2, L1 and L∞ norms and linear interpolation for

the coarse grid projection on M0.

Spline interpolation gives less accurate results than expected from the disconti-

nuity of the solution.

One can notice, in Figure 2.10, that there is almost no advantage to using the

three-level solution instead of the two-level solution. We conjecture that Ũ2− Ũ3 and

Ũ1− Ũ3 have similar random behavior in the vicinity of Γ. There is no advantage to

using Ũ1 in the three-level method.

The two upper bounds of the errors in L2 and L∞ norm are accurate after five

time steps. The L1 error estimate is more accurate than in the previous test cases.

Although the error in the L∞ norm is very large, the L∞ error estimate gives a good

prediction of the error that comes from the inaccuracy in the interface location.
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Figure 2.10: Upper bound on the error with L2, L1, and L∞ norm with T8 based on
linear interpolation.

There is, therefore, no real advantage to using the L1 norm versus the L2 norm.

Further, the L∞ norm gives interesting complementary information to the L2 norm

estimate, on how inaccurate the solution can be near the circle of discontinuity. We

present in the next section our general conclusion of this study.

In this chapter, we have shown how to extend the least square extrapolation

method to a general optimization framework that allows one to use arbitrary norms

and/or objective functions.

We concentrate our work on giving a posteriori estimates. We have presented
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a rigorous upper bound error estimate technique to predict very fine grid solutions.

We have used an acceleration technique to sharpen this error estimate and/or detect

failures of convergence. We have applied the method to a multi-scale elliptic problem

and a Poisson problem with a singular source term to demonstrate the robustness of

the optimized extrapolated solution method.

In the next section, we study parabolic equations that are problems of a different

mathematical nature, but we try to make use of the methodologies developed for

elliptic problems.
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Chapter 3

Optimized extrapolation method

for parabolic problems

In this chapter, we focus on extending the Least-Square Etraxpolation method to

unsteady problem by using coarse grid solutions that have different meshes in space

and time.

3.1 Extrapolation method for parabolic problems

Following the same methodology as the one used in [46], we will consider problems

of the following form

57



∂u

∂t
= N [u], (x, t) ∈ Ω× (0, T ) (3.1)

u|∂Ω = g(t), t ∈ (0, T )

u(x, 0) = v(x), x ∈ Ω

where N is an elliptic operator. We will use the notation L instead of N if the

operator is linear. We assume the parabolic problem well-posed and that it has

a unique solution. For the simplicity of the presentation, we will assume that the

problem has one space dimension. However, our method is easily generalizable to a

higher dimension problem, as shown in the last section of our numerical experiments.

The main impact of a higher dimension problem will be the computational cost of the

method with respect to the optimization procedure and also the potential complexity

of the basis functions.

In the following sections, we first recall the principles of extrapolation for scalar

functions in space and time. Then, we extend the concepts to grid functions. Finally,

we introduce the optimized extrapolated solution method.

3.1.1 Extrapolation for continuous functions

Let (E, ||.||) be a normed linear space. Let px, pt, qx, qx be some positive integer.

Finally, let (dx0, dt0) be a couple of positive real numbers. Let u(x, t) be an element of

E. u(x, t) is the exact continuous solution in Ω of Equation 3.1. Let ui,n, i = 1 . . . 3,

n = 1 . . . 3 be elements of E that have the following asymptotic expansions:
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ui,n − u = C1

(
dx

2i−1

)px

+ C2

(
dt

2n−1

)pt

+ o(dxqx , dtqt), (3.2)

where C1 and C2 are constants independent of the discretization parameters dx and

dt. Therefore, the asymptotic expansion ui,n satisfies ||u− ui,n|| = O(dxpx , dtqt).

If the orders of asymptotic expansions in space or time are known, i.e., px or pt

are known, then uiπ defined by the Richardson Extrapolation formula in space is,

uiπ =
2pxui+1 − ui

2px − 1
, i = 1, 2 (3.3)

and satisfies ||u− uiπ|| = o(dxpx).

Similarly, unφ defined by the Richardson Extrapolation formula in time is,

unφ =
2ptun+1 − un

2pt − 1
, n = 1, 2 (3.4)

and satisfies ||u− unφ|| = o(dtpt).

Combining Equations 3.3 and 3.4, we can build the Richardson Extrapolation in

space and time, as follows:

un,ir =
2pt2pxui+1,n+1 − 2ptui,n+1 − 2pxui+1,n + ui,n

(2pt − 1)(2px − 1)
, i, n = 1, 2. (3.5)

The error between the solution u and ur, defined by Richardson Extrapolation

in space and time, satisfies ||u− un,ir || = o(dxpx , dtpt). An a posteriori error estimate

on ui,n will then be

||ui,n − un,ir ||. (3.6)
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In general, the method might not provide a way to know or ascertain the asymp-

totic orders of convergence in space and/or time on the computational grids. How-

ever, we can compute estimates of these orders independently by using Equations

3.3 and 3.4:

px(t) = log2
||ui − ui+1||
||ui+1 − ui+2||

and (3.7)

pt(x) = log2
||un − un+1||
||un+1 − un+2||

. (3.8)

Richardson Extrapolation is a particular case of an extrapolation method. We

should now introduce a general definition for extrapolation methods.

Let u be in E = L2(Ω). Let (vkdx,dt)k=1...4 be four approximations of u in E:

vkdx,dt → u ∈ E as dx, dt→ 0, k = 1 . . . 4. (3.9)

A linear extrapolation of these four functions will write

α1v
1
dx,dt + α2v

2
dx,dt + α3v

3
dx,dt + α4v

4
dx,dt. (3.10)

The consistency of the extrapolation requires having

lim
dx,dt→0

α1v
1
dx,dt + α2v

2
dx,dt + α3v

3
dx,dt + α4v

4
dx,dt = u. (3.11)

Therefore, the coefficients of the extrapolation are constrained by the equation

α1 + α2 + α3 + α4 = 1.
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So far, we have only recalled the principles behind Richardson Extrapolation in

space and time for scalar functions. In the next section, we extend this study to grid

functions.

3.1.2 Extrapolation for grid functions

In practice, we work with grid functions that approximate the continuous solutions

of discretized PDE problems on regular grids.

Let χ be the discretization step in space and τ the discretization step in time.

Let Ei,n be a family of normed linear spaces associated with a mesh (Mj)j=1...n. For

simplicity, we consider that the four meshes (Mj)j=1...n are embedded space time

meshes. Let U (i,n) be the numerical approximation of u on the mesh M2∗(i−1)+n.

We suppose that the discrete grid functions have the following asymptotic expan-

sion:

U (i,n) = u+ C1(χ)px + C2(τ)pt + o(χqx , τ qt), (3.12)

where C1 and C2 are independent of the discretization parameters χ and τ .

For Richardson Extrapolation in space and time, we have then the following

results.

Theorem 1: There exists a unique linear combination of the coarse grid solutions

U (i,n) with constant weights α1, α2, α3, α4 such that

α1U
(1,1) + α2U

(2,1) + α3U
(1,2) + α4U

(2,2) − u = o(χpx) + o(τ pt). (3.13)
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The (αi)i=1...3 are:

α1 =
1

(2px − 1)(2pt − 1)
, (3.14)

α2 = − 2pt

(2px − 1)(2pt − 1)
, and (3.15)

α3 = − 2px

(2px − 1)(2pt − 1)
. (3.16)

Further, the consistency of the extrapolation formula implies

α4 = 1− α1 − α2 − α3. (3.17)

Proof. Using the asymptotic expansion of Equation 3.2 for U (1,1), U (2,1), U (1,2), and

U (2,2), we have:

U (1,1) − u = C1χ
px + C2τ

pt + o(χqx) + o(τ qt), (3.18)

U (1,2) − u = C1χ
px + C2(τ/2)pt + o(χqx) + o(τ qt), (3.19)

U (2,1) − u = C1(χ/2)px + C2τ
pt + o(χqx) + o(τ qt), and (3.20)

U (2,2) − u = C1(χ/2)px + C2(τ/2)pt + o(χqx) + o(τ qt). (3.21)

Canceling the time-dependent reminder between equations (a) and (b) (respec-

tively (c) and (d)) allows us to derive the following two equations:

U (1,1) − 2ptU (1,2) = (1− 2pt)u+ 2ptC1χ
px + o(χqx) + o(τ qt); (3.22)

U (2,1) − 2ptU (2,2) = (1− 2pt)u+ 2ptC1(
χ

2
)px + o(χqx) + o(τ qt). (3.23)

Combining these two equations to cancel the space-dependent reminder, we have:

U (1,1) − 2ptU (1,2) − 2pxU (2,1) − 2pt2pxU (2,2) = (1− 2pt)(1− 2px)u+ o(χqx) + o(τ qt).

(3.24)
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Identifying the coefficients with Equation 3.13, we have

α1 =
1

(1− 2pt)(1− 2px)
,α2 = − 2pt

(1− 2pt)(1− 2px)
,

α3 = − 2px

(1− 2pt)(1− 2px)
, and α4 =

2px+pt

(1− 2pt)(1− 2px)
(3.25)

Taking the limit in Equation 3.13 when χ→ 0 and τ → 0, we obtain

α1u+ α2u+ α3u+ α4u− u = 0 (3.26)

Therefore,

α1 + α2 + α3 + α4 = 1, (3.27)

giving the consistency result.

One can use this result to approximate a fine grid solution Udx,dt. We have

Corollary 1: There is a unique linear combination of the coarse grid solutions U (i,n)

with constant weights α1, α2, α3, α4 such that

α1U
(1,1) + α2U

(2,1) + α3U
(1,2) + α4U

(2,2)+ (3.28)

C1dx
p + C2dt

q − Udx,dt = O(χp) +O(τ q) (3.29)

The αi are given by Theorem 1 and the constants C1 and C2 are the coefficient of

the asymptotic expansion of Udx,dt.

Proof. Using Equation 3.2 and replacing u in Equation 3.13 of Theorem 1, the result

is straightforward.
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Remark 4: One can notice that this asymptotic expansion is usable only if the term

C1dx
p + C2dt

q is not negligible with respect to the error term O(χp) +O(τ q).

In order to make the stability analysis of this time-space Richardson Extrapola-

tion, we use the following error model

U (i,n) − u = Ciχ
px + Cnτ

pt + δ2(i−1)+n, (3.30)

where Ci = c1(1 + εi) and Cn = c2(1 + ξn). c1 and c2 are constants. The parameters

εi, i = 1, 2 and ξn, n = 1, 2 are for the higher order term in the expansion of Equation

3.2, i.e., ε = o(1) ξ = o(1). Finally, δk stands for the numerical error coming, for

example, from the imperfect convergence of the iterative scheme used in implicit

time stepping. Using a similar approach as for the computation of Equation 3.5 in

the case of continuous functions, we can derive a similar formula for grid functions :

U (i,n)
r =

2pt2pxU i+1,n+1 − 2ptU i,n+1 − 2pxU i+1,n + U i,n

(2pt − 1)(2px − 1)
, i, n = 1, 2. (3.31)

Replacing the corresponding terms of Equation 3.31 by Equation 3.30, we obtain the

following model for the error:

U (i,n)
r − u =

χpx

(2pt − 1)(2px − 1)
c1(2p(ε1 − ε3) + (ε4 − ε2))

τ pt

(2pt − 1)(2px − 1)
c2(2p(ξ1 − ξ2) + (ξ3 − ξ4))

1

(2pt − 1)(2px − 1)
(2pt2pxδ4 − 2ptδ3 − 2pxδ2 + δ1) (3.32)

From Equation (3.32), we can see that the perturbation is amplified by the factor

2px+pt + 1

(2pt − 1)(2px − 1)
. (3.33)
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For small order of convergence in space and/or time, the amplification factor

given by Equation 3.33 shows that Richardson Extrapolation in space and time error

leads to deteriorated solutions.

Let us now describe the generalization of the least square extrapolation method

for space-time problems.

3.1.3 Optimized extrapolation for parabolic equations

The goal of the least square extrapolation methods is to improve the Richardson

Extrapolation method, addressing the following concerns:

• the lack of asymptotic expansion with a known order of convergence;

• the further uses of the PDE framework at the grid level; and

• the coefficient α in the Richardson Extrapolation is space-dependent.

For time-independent problems, it was shown in [39, 47, 46] that the method

obtained was more robust than the Richardson Extrapolation because it may apply

to problems where Richardson Extrapolation has not given convincing results.

Let us denote Un
dx,dt as the solution given at time tn by a one step time inte-

gration scheme. Let us now describe the optimized extrapolation method for space-

dependent problems.

The semi-discrete schema for the problem of Equation 3.1 is

Un+1
dx,dt = G(Un

dx,dt). (3.34)
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Let unk , k = 1 . . . 4 be for grid functions approximating the solution undx,dt. As

shown in the previous section, in Richardson Extrapolation, the coefficients αk,

k = 1 . . . 4 are constant. In this generalization of the optimized extrapolation, we

formulate the following problem for the unknown αk, k = 1 . . . 4 that is in general a

non-constant function:

(P t
α): Find the four weight functions αk, k = 1 . . . 4 such that the residual

4∑
k=1

αku
n+1
k −G(

4∑
k=1

αku
n
k), (3.35)

is minimum in L2(Ωx × Ωt).

This formulation of the problem does not take into account the nature of the

different meshes on which the grid functions un+1
k exist. The end of this section is

dedicated to adjusting this loose notation, and to examining some properties of the

OES.

Typically, αk, k = 1 . . . 4 are chosen in a set of polynomial functions for the space

Λ(Ωx × Ωt).

As a matter of fact, let us suppose that we do have the exact αk, k = 1 . . . 4 such

that u =
∑4

j=1 αjv
j
dx,dt. Any order ε approximation of αj with ε� 1 can be used for

our OES. More precisely:

Theorem 2: Let vjdx,dt, j = 1 . . . 4 be four grid functions approximating the solution

u. Let αj, j = 1 . . . 4 be four functions in Λ(Ωx×Ωt) such that u =
∑4

j=1 αjv
j
dx,dt. If

αj are continuous, and vjdx,dt− v4
dx,dt = O(dxpx , dtpt), then there exist αMj , j = 1 . . . 4
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approximations of αj to the order M−1, M � 1 such that

u =
4∑
j=1

αMj v
j
dx,dt +O(dxpx , dtpt)×O(M−1). (3.36)

Proof. From Weierstrass’s theorem on continuous functions, we can build a sequence

of polynomials (αMj )M≥0, j = 1 . . . 3 such that αMj − αj = O(M−1), j = 1 . . . 3. A

simple development of the previous expression gives

4∑
j=1

αMj v
j
dx,dt − u =

4∑
j=1

αMj v
j
dx,dt −

4∑
j=1

αjv
j
dx,dt (3.37)

=
3∑
j=1

(αMj − αj)v
j
dx,dt − (

3∑
j=1

(αMj − αj))(v4
dx,dt) (3.38)

=
3∑
j=1

(αMj − αj)(v
j
dx,dt − v

4
dx,dt) (3.39)

= O(M−1)×O(dxpx , dtpt). (3.40)

From this theorem, it is not required in practice to compute the αi exactly, but

only an approximation to order ε = M−1.

Now we will see how to build the OES from coarse grid solutions that use different

meshes.

The coarse grid solution used in the numerical solution corresponds to the dis-

cretization (χ, τ), (χ/2, τ), (χ, τ/2), (χ/2, τ/2). We will denote these coarse grids

(χ/i, τ/n)Mk, k = 1, . . . 4. The fine gridM∗ used in OES corresponds to (χ/4, τ/4).

The projected coarse grid solutions are denoted now as Ũ (i,n), i ∈ {1, 2}, n ∈ {1, 2}.
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First, we introduce an interpolation operator in space Idxχ , that projects the coarse

grid solution at each time step on the fine grid in space for the same time step:

Ũn
χ,τ = Idxχ [Un

χ,τ ]. (3.41)

Second, we introduce an interpolation operator in time Idtτ that interpolates the

coarse grid solution in time on the fine grid in time at the same physical location:

Ũχ,τ = Idtτ [Uχ,τ ]. (3.42)

For simplicity of the presentation, we use the generic notation Ũ for all types of

projection of U .

Let us assume once and for all that dt = τ/4. The goal is to have a construction

of the interpolation of the four coarse grid solutions on the fine grid (dx, dt) using

only the information in the time interval (tn, tn + τ).

OES in space-time will then combine ten vectors

Uχ,τ (t
n), Uχ,τ (t

n + τ),

Uχ/2,τ (t
n), Uχ/2,τ (t

n + τ),

Uχ,τ/2(tn), Uχ,τ/2(tn + τ/2),

Uχ,τ/2(tn + τ), Uχ/2,τ/2(tn),

Uχ/2,τ/2(tn + τ/2), and Uχ/2,τ/2(tn + τ). (3.43)

From Un
χ,τ and Un+1

χ,τ , one can compute Ũχ,τ at time steps tn+jdt, j = 1 . . . 3 using

linear interpolation. This method is second order in time.
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Higher order time interpolation can be built if one uses Equation 3.1 in order to

obtain the time derivative. Indeed, by providing the solution (Un
χ,τ ) , the derivative

in time of the solution (N [Un
χ,τ ]) one can use piecewise cubic Hermite interpolation

that is of order three in time:

Hi(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)2(t− ti+1), (3.44)

where ai, bi, ci, di are solutions of

Hn(tn) = Un
χ,τ , (3.45)

H ′n(tn) = N [Un
χ,τ ], (3.46)

Hn(tn+1) = Un+1
χ,τ , (3.47)

H ′n(tn+1) = N [Un+1
χ,τ ]. (3.48)

With Un
χ,τ/2 we have one more time set of coarse solutions to use.

Then, one can use either quadratic interpolation that is third order in time, or

Hermite interpolation that is fifth order in time.

Applying interpolation in time, followed by interpolation in space

Ũχ,τ = Idxχ [Idtτ [Uχ,τ ]], (3.49)

we are able to finally build, for each coarse time step (tn, tn + τ), a projection of all

four coarse grid solutions Ui,n on the fine grid of space step dx and time step dt.

We recall that thanks to the consistency of the extrapolation method, we have

α4 = 1−
∑3

j=1 αj.
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Because we compute the OES for each coarse time step separately, we will assume

that the weight functions are space dependent only. For convenience, we will apply

the same approximation in space as with the steady case.

Let us restrict ourselves to the case where the αj are constant. The goal now is to

show that OES is a general method that applied to different types of discretization.

One can show

Theorem 3: If the following two assumptions are true,

• the asymptotic expansion of Equation 3.2 is valid in the discrete L2 norm for

the coarse grid solution used in OES;

• the consistency error for the one-step scheme (Equation 3.34) is asymptotically

equivalent to the error on the solution;

then the OES solution for the αj coefficients is asymptotically equivalent to the RE

solution within order 2.

Proof. For the simplicity of the demonstration, we will assume that the interpolation

in space is performed using piecewise linear interpolation, and the interpolation in

time is done using either Lagrange interpolation or Hermite interpolation.

First, considering Lagrange polynomial interpolation in time between coarse grid

and fine grids (Idtτ forM1 and Idtτ/2 forM2) between time tn and tn + 4dt and space

xi and xi + 4dx:
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Idtτ (t) =
U1
n − U1

n+1

2dt
(tn − t)− U1

n and (3.50)

Idtτ/2(t) = U2
n +

3U2
n − 4U2

n+1/2 + U2
n+1

2dt
(tn − t)

+
U2
n − 2U2

n+1/2 + U2
n+1

2dt2
(tn − t)2 (3.51)

These two polynomials are used to compute the values on the fine grid in time at

time (tn, tn+dt, tn+2dt, tn+3dt, tn+dt). The values obtained are then interpolated

on the fine grid in space using piecewise linear interpolation.

The next step is to construct the solution on the fine grid in space using this

interpolated solution:

Idxχ (x) =
Ũ1
i − Ũ1

i+1

2dx
(xi − x)− Ũ1

i and (3.52)

Idxχ/2(x) =


Ũ2

i −Ũ2
i+1/2

2dx
(xi − x)− Ũ2

i if xi ≤ x ≤ xi+1/2

Ũ2
i+1/2

−Ũ2
i+1

2dx
(xi+1/2 − x)− Ũ2

i+1/2 if xi+1/2 ≤ x ≤ xi

, (3.53)

where Ũ is the interpolated solution on the fine time grid.

Replacing the value of τ , τ/2,χ and χ/2 in Equation 3.13, and combining the

interpolated value obtained from Equation 3.52, one can evaluate the error on the

fine grid in space and time. Three cases have to be distinguished:

• Case 1 - Interpolation at nodes matching the coarse grid level: interpolations

via Equations 3.50 and 3.52 are exact at those nodes, and thus the error is

given by Equation 3.13. The error given by the interpolation of those nodes is
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therefore equal to zero:

ε1 = 0. (3.54)

• Case 2 - Interpolation at nodes matching the intermediate grid level: nodes of

intermediate grids are matching, but the coarse grid interpolation introduces

an error given by

ε2 = O(χ2) +O(τ 2), (3.55)

since the interpolation is piecewise linear. The final error is given by accumu-

lating this interpolation error and that given by Equation 3.13.

• Case 3: Interpolation at nodes present only at fine grid level: we introduce

another error in the result that is the accumulation of the errors from interpo-

lation from the coarse grids and the intermediate grids to the fine grid. Each

coarse grid introduces an error of the order that is

ε3 = O(χ2) +O(τ 2). (3.56)

In all three cases, the error is given by ε = ε1 + ε2 + ε3 = O(χ2) + O(τ 2). Since

χ = 4dx and τ = 4dt, the asymptotic error for the OES solution given by the

coefficients αj is of the same order as the Richardson Extrapolation.

Remark 5: For second order elliptic operator N , access to second order derivatives

allows us to use spline interpolation for Idxχ , and produced fewer perturbations on the

interpolated solution than in polynomial interpolation.
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Remark 6: In the two-dimensional case, the result can be easily generalized if the

PDE is separable in space. Let N be an operator separable in space for which the two

components are N1 and N2. The solution u of Equation 3.1 is u = u(1)(x, t)u(2)(y, t).

The two equations to solve are:

∂u(1)

∂x
= N1(u(1)) and (3.57)

∂u(2)

∂y
= N2(u(2)), (3.58)

with the corresponding boundary conditions.

Applying the optimized extrapolation method described previously to each equation

leads to the following:

u(1) − u(1)
χ = O(χ2) +O(τ 2) and (3.59)

u(2) − u(2)
χ = O(χ2) +O(τ 2). (3.60)

Hence,

u(1)
χ u(2)

χ = u(1)u(2) − u(1)(O(χ2) +O(τ 2))

− u(2)(O(χ2) +O(τ 2)) + (O(χ2) +O(τ 2))2 (3.61)

uχ = u−O(χ2) +O(τ 2). (3.62)

We are now going to present our numerical experiments with the OES method.

3.2 Algorithm for least square extrapolation method

In this section, we present the algorithm used to perform the computation of the

optimized extrapolated solution.
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3.2.1 Algorithm

Inspired from the algorithm of LSE for the steady problem, the procedure for parabolic

OES is as follows.

We define a meta-time step dT = 2τ . It will be used as a synchronization point for

coarse grid computations. For each meta-time step, we use the following algorithm.

1. Call Solver: solve the problem on M1, M2, M3 and M4, possibly in parallel.

2. Call fine mesh: generate a fine mesh M(dx∞, dt∞) that is supposed to solve all

scales of the problem. M(dx, dt) is preferably a structured grid in space and

time. We must have dx� χ and dt∞τ .

3. Call Projection: project the coarse solutions U1,1, U1,2, U2,1 and U2,2 onto

M(dx∞, dt∞) and postprocess them to avoid spurious oscillations due to the

interpolating function. There are several ways of performing this postprocess-

ing of the interpolated solutions. First, one could filter the solution using a

low-pass frequency filter that will cut off all the frequencies greater than some

pre-defined values. A second method could be to use a relaxation technique

as done in the Least-Square Extrapolation method [60, 47, 46]. Since we have

a time-dependent problem, a better strategy could be to use the Symmetric

Successive Over-Relaxation (SSOR).

4. solve minimization problem defined by Equation 3.1.3 using an off-the-shelf

optimization package. The starting point of the optimization procedure can be

set to be RE, but it is not a necessity.
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After the completion of a meta-time step, the optimized extrapolated solution is

found. It can be reused in a subsequent meta-time step as an initial condition, since

its accuracy is better than that of the coarse grid solution.

This procedure applies to meta-time step, i.e., a sequence of small time steps for

which an a posteriori estimate is expected. Hence, the role of time and space are not

completely symmetric. Performing step 3 is expensive, but the operations involved,

interpolation and smoothing, are mainstream, and yield possible parallelism.

The optimization involved in step 4 is critical and cumbersome, but offers good

parallelism since only weak synchronization is required. The optimization procedure

requires relaxing intermediate solutions multiple times. The results obtained for

each computation are independent and are not required for subsequent relaxation

steps. Therefore, in order to improve the efficiency of the process, one can imagine

performing several relaxations in parallel.

In the next sections, we will examine different test cases taken from applications

in biology and heat transfer.

3.2.2 1D Simulation

In this section, we focus on two distinct 1D problems. The first one is a heat transfer

problem for which an analytical solution is known. The second one is the problem

of reactive shock layer for reactive flows.
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3.2.2.1 Thermal wave

In order to validate the methodology, a test problem should have an analytical solu-

tion and should have real variation in time. An exact solution allows the computation

of exact errors, while time dependency supplies a way to try different features of the

method. It is also good practice to choose a problem for which the literature provides

enough data to compare the results. The first problem in the validation process of

the optimized extrapolation method is the thermal wave problem,

∂T

∂t
=
∂2T

∂x2
+ 8T 2(1− T ). (3.63)

We refer to [61] for the notation and values of the parameters.

We studied the performance of OES for an individual time step. We also ex-

perimented numerically the stability of the time integration scheme using RE or

OES to predict an improved numerical solution at the end of each time step. For

time stepping, we used the implicit schemes, first order backward Euler method and

Crank-Nicholson method.

We use the unconstrained minimization subroutine of Matlab to compare results

with different choices of the norm, i.e., either the discrete L2 norm or the maximum

norm. There are three unknown coefficients, the consistency formula giving the

fourth one. The starting points for the search are the set of Richardson Extrapolation

coefficients. This differs from the Least Square Extrapolation method since the

method does not rely on the minimization of a response surface, but on a direct

optimization procedure.

We reached the following conclusions:
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• RE does not work on the fine grid M∗, but may work well on the coarse grid

M1 at time steps kτ , where τ is the coarse time step. The main reason is that

RE is too sensitive to perturbations introduced by linear interpolation in time,

and therefore becomes unstable.

• One requires few SSOR smoothing iterations of Ũ (i,n) onM∗ solutions to have

OES performing better than on the fine grid solution Ũ (2,2). SSOR does not

solve the fine grid problem. Instead, SSOR nicely removes the high frequency

components of the projected coarse grid solutions.

The algorithm works as follows:

f o r k=1, max ksor

f o r kt = 1 , $N t$

I n i t i a l i z e $u 0 = uˆ{( k t −1)}$

Compute RHS

Perform one SSOR i t e r a t e

end

end

In this algorithm, max ksor is the number of space-time SSOR iterations and

Nt is the number of fine grid time steps. Each time step solution undergoes a

solution procedure loop, which is the inner loop, and a SSOR relaxation loop,

which is the outer loop. This “inversion” is responsible for the smoothing in

space and time.

• Let us use for the RE formula the expression in Theorem 1 that approximates
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the exact solution. OES is designed to approximate the fine grid solution on

M∗. One can have OES better than RE for M∗ and at the same time OES

worse than RE as an approximation of the exact solution. We will investigate

the use of a fine grid solution with smaller time steps and space steps.

• The higher the order of the scheme, and/or the finer the discretization, the

more iterations of SSOR we need. The number of SSOR iterations is an open

problem.

• OES gives best results for under-resolved solutions with a low order scheme.

Indeed, under-resolved solutions have large time steps and space steps, as well

as Newton iterations that cannot reach complete convergence.

• Smaller residual onM∗ does not lead to smaller errors. The lack of monotonic-

ity in the stability estimate results in poor performance of OES. This problem

is as in the steady case, the result of the spurious high frequency components

of the projected fine grid solutions. The postprocessing step with SSOR is then

essential to recover this monotonicity between residual and errors.

• Filtering the residual and/or the solution in space, as we did in the steady case,

might be beneficial for large time step.

Let us illustrate these preliminary conclusions with a few numerical results. First,

we address the performance of the method with the result for the first time step.

Figure 3.1 shows the residual at a given intermediate time step for the projected

solution.
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Figure 3.1 shows results when using Lagrange interpolation between different

time solutions and a Crank-Nicholson time stepping scheme. It demonstrates the

need to filtrate the residual.

Figure 3.1: Non-filtered residual at a given time step.

Figure 3.2 reveals that with plain OES, minimization of the residual does not

necessarily result in minimizing the error. The blue diamond is for the result with

OES, and the red cross is for RE. Each of the points of the cloud is for a different

combination of weight function. We have plotted roughly several hundred of them.

We see a large discrepancy between the L2 and the L∞ results.
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Figure 3.2: Error versus residual in a given norm: in red is the path followed by the
optimization procedure, starting at RE (red cross) to convergence (blue dot).

In this optimization process, the goal of the time-space SSOR iterations is to re-

move high frequencies coming from the interpolation. Typically, the number of SSOR

iterations is between 5 and 10; thus there are not enough to solve the PDE. Figure 3.3

displays the minimization path when applying SSOR relaxation. The minimization

procedure produces better residual and error over the non-relaxed procedure.

Figure 3.4 displays results for Backward Euler. The vertical axis shows the L2

error versus the exact analytical solution of Equation 3.63. The horizontal axis is for
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Figure 3.3: Error versus residual in a given norm: in red is the path followed by the
optimization procedure, starting at RE (red cross) to convergence (blue dot) with
SSOR relaxation.

time. The grid is very coarse in space, and RE is not accurate. OES predicts the

fine grid solution fairly well .

Figure 3.5 shows a similar result for Crank-Nicholson method. In the last two

figures, we have used few SSOR on the fine grid on each time interval (tn, tn + dT ).
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Figure 3.4: Backward Euler with coarse grids.

3.2.2.2 Reactive Shock Layer equations

In order to extend the optimized extrapolation to immersed boundary method in the

future, we need to investigate its behavior for problems with stiff variations in space

and time. The next models we are interested in describe the behavior of a reactive

shock layer. The interest in these equations is the high non-linear behavior close to

the shock position. In [62, 63, 64], one can see that the behavior of the numerical

solution is link to different parameters. The model we are using is the one proposed
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Figure 3.5: Crank-Nicholson with coarse grid as well.

by Majda [65]:

∂u

∂t
+

∂

∂x
[F (u)− q0Z] = ε

∂2u

∂x2
(3.64)

Zx = ε−1φ(u)Z, (3.65)

where φ(u) = 1 if u > 0 and 0 elsewhere.

In all the following experiments, we chose ul = 1.0, ur = −1.5, x0 = 0 (position

of the jump), ε = 0.005, q0 = 2.375, T = 0.5 (simulation time). The coarse grids in

space are, respectively, Nx = 100 and Nx = 200, and the fine grid in space is Nx =
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400. The finest grid in space should satisfy the CFL condition, thus constraining the

choice of the coarse grid in space.

A first numerical approach uses the traditional finite differences:

Un+1
i − Un

i

∆t
= ε

Un
i+1 − 2Un

i − Un
i−1

∆x2
−
F (Un

i+1)− F (Un
i−1)

2∆x
+ q0

Zn
i+1 − Zn

i−1

2∆x
,

(3.66)

Zn+1
i − Zn+1

i−1

∆x
= Kφ(Un+1

i+1 )Zn+1
i+1 . (3.67)

This discretization is far from being the optimal one, but our only interest is to

test the behavior of our a posteriori error estimate. The solution is shown in Figure

3.6. The solution next to the jump in x = 0 shows one of the problems with the

model.

Figure 3.6: Solution for Reactive Shock Layer equation using finite differences.

84



Using the same methodology as for the 1D heat equation, we apply our a poste-

riori error estimate. The results are shown in Figure 3.7. This figure puts into light

different aspects of the methodology. First, the browsing of the parameter space

using the L2 norm shows that simple linear combinations of computed solutions do

not yield to improved solutions with respect to Richardson Extrapolation (red dot).

Second, the method does not detect that the numerical model is not adapted to the

problem and yields to inaccurate solution.

Figure 3.7: Optimization path for Reactive Shock Layer equation using finite differ-
ences.
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The Piecewise Parabolic Method (PPM) described in [66], is an improved numer-

ical method to perform the simulation of this equation. The solution for this model

is shown in Figure 3.8. In this case, the solution next to the jump does not exhibit

the same artifacts as those of Figure 3.7. The coefficients used in the model are those

specified in [65].

Figure 3.8: Solution for Reactive Shock Layer equation using PPM.

Once again, we use our a posteriori error estimate on this equation. Figure 3.9

shows the results for the L2 norm and the L∞ norm. For the L2 norm, the procedure

provides next to no improvement with respect to the Richardson Extrapolation, and

the browsing of the parameter space indicates that the minimum of the residual does

not necessarily map to the minimum of the error.

For the L∞ norm, the behavior of the procedure is completely different. Our a
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Figure 3.9: Optimization path for Reactive Shock Layer equation using PPM.

posteriori estimate provides a better evaluation than the Richardson Extrapolation,

and we have a better mapping between the minimum of the residual and the minimum

of the error, in spite of the fact that they do not match exactly. This difference of

behavior between the L2 norm method and the L∞ norm method reflects the fact

that the error in the discontinuous solution is better evaluated when the L∞ norm

is used.

The experiments on these two different numerical models show that while our a
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posteriori method is sensitive to the quality of the model used for the stiff problem,

the evaluation of the error in the case of an inaccurate model is not guaranteed.

Moreover, different simulation parameters, initial conditions, or coefficients will lead

to different interpretations of the results. A complete investigation of the range

for which the a posteriori error estimate is functional for the Reactive Shock Wave

equation is feasible, but such exhaustive analysis is of limited interest and is beyond

the scope of this section.

3.2.3 2D Simulation

In this section, we extend the approach describe for one-dimensional problems to

two-dimensional problems.

3.2.3.1 Fisher equation

For the 2D problem, we consider the Fisher equation for which some exact solutions

can be computed, as was shown in [67]:

∂T

∂t
=
∂2T

∂x2
+
∂2T

∂y2
+ T (1− T ), (3.68)
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with the boundary conditions given by

T (x0, y, t) =
3

2

1

|cos(y
2
)|+ exp(γ

2
(x0 − Vpt))

,

T (x1, y, t) =
3

2

1

|cos(y
2
)|+ exp(γ

2
(x1 − Vpt))

,

T (x, y0, t) =
3

2

1

|cos(y0
2

)|+ exp(γ
2
(x− Vpt))

, and

T (x, y1, t) =
3

2

1

|cos(y1
2

)|+ exp(γ
2
(x− Vpt))

. (3.69)

and the exact solution is given by

T (x, y, t) =
3

2

1

|cos(y
2
)|+ exp(γ

2
(x− Vpt))

. (3.70)

Using the same notations as in the 1D case, the coarse grids used to build the

numerical solutions were discretized according to (χ, χ, τ), (χ/2, χ/2, τ), (χ, χ, τ/2),

(χ/2, χ/2, τ/2). The fine grid G∗ used in the optimized extrapolated solution proce-

dure corresponds to (χ/4, χ/4, τ/4). The projected coarse grid solutions are denoted

now as Ũi,j, i, j ∈ {1, 2}.

The solution on the fine grid is shown in Figure 3.10.

We are interested again in the behavior of the optimization procedure when the

initial set of coefficients are the RE coefficients. First, Figure 3.11 shows the mini-

mization path for OES in space and time without SSOR relaxation. It appears that

the OES procedure again allows obtaining an error that is inferior to the one pro-

duced by RE. It also appears that minimizing the residual does not mean that the

error is minimized. The background points in this figure correspond to the compu-

tation effected with regular meshing of the parameter space. While this systematic
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Figure 3.10: Solution of Fisher equation in 2D on the fine grid.

computation is expensive and incomplete, it shows that a minimum for the error

exists outside the minimization path. One of the possible reasons is the gradient-

based approach used in the minimization procedure. There is no guarantee that the

minimum obtained for the residual is a global minimum of the functional.

In Figure 3.12, the computation uses SSOR smoothing. The first effect of this

relaxation is a smaller number of minimization iterations. However, this modification

of the algorithm does not necessarily provide the best minimized error.
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Figure 3.11: Error versus residual in a given norm for 2D Fisher equation without
SSOR relaxation.

One of the drawbacks of the OES method in space and time that the higher

dimension problem reveals is the computational cost. The next few points summarize

these drawbacks and provide some indication for solutions:

1. Interpolation: each coarse grid solution interpolates to the fine grid in space and

time. Mesh partitioning and look-up-table enable efficient space interpolation,

and since time interpolation involves only a few points, it does not need a

specific optimization.
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Figure 3.12: Error versus residual in a given norm for 2D Fisher equation with
SSOR relaxation in L2 norm.

2. SSOR: each computed solution requires smoothness on the fine grid. Parallel

implementation could optimize the procedure.

3. Minimization: each step in the minimization procedure involved several space-

time SSOR; therefore, the cumulative cost of all steps in the minimization can

be prohibitive. As mentioned in the previous section, a potential approach is

to perform minimization steps in parallel.
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3.2.3.2 Cahn-Hilliard equation

The second equation we examined is the Cahn-Hilliard equation that describes phase

separation, by which a binary fluid separates into different zones, each domain con-

taining one specimen only. Given c the concentration of the fluid, with the extreme

values c = −1 and c = 1 indicating the domain, the equation writes:

∂c

∂t
= D∇2(c3 − c− γc∇2c), (3.71)

where D is the diffusion coefficient and
√

(γ) is the length of the transition layer. In

the simulation, homogeneous Neumann boundary conditions are used:

∂c

∂n
= 0. (3.72)

The initial condition is random, averaging to 0, on the coarsest OES grid (Equa-

tion 3.73), and interpolated on finer grids.

U = (rand− 0.5) ∗ 0.01 (3.73)

The interest in this equation rests in the higher order of the spatial derivatives

as well as in the Neumann boundary conditions.

The solution of the equation converges toward a steady state in which the fluids

are segregated.

Figure 3.13 shows the results of the simulation after convergence to the steady

state. The simulation was done with 240 time steps with a time step size of 1.e− 05

for the fine grid, which is the referenced solution. The time step for the coarse grids,

are respectively, dT1 = 4e− 05 and dT2 = 2e− 05.
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Figure 3.14 represents one of the paths during the optimization process. Few

smoothing steps of SSOR in space and time follow each interpolation. Without the

few smoothing steps after the interpolation procedure, the method failed to converge

to an optimum solution. This instability is due to the random initial condition.

We see again that the optimization procedure allows us to obtain a better error

than RE in a long running simulation. The convergence toward a steady state of the

PDE allows verifying the stability of OES for parabolic problem.

These results complement each other by giving consistent conclusions for the

stability of the error estimation method for time-dependent problems.

3.3 Conclusion

In this chapter, we described a solution verification method for time-dependent prob-

lems that is more accurate than Richardson Extrapolation in the studied cases. More-

over, this method is stable for simulation, even when the solution has a sharp front.

In order to improve the stability and convergence of the procedure, we added some

smoothing such as the cost of computation time. While this is a drawback in terms

of performance, it also offers an a posteriori estimation procedure for a wider set of

time-dependent problems.

One of the strengths of this method is its simplicity. The procedure is built on

a few existing solutions on different coarse grids in order to derive an a posteriori

estimate. This part of the problem does not require having access to the internal
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implementation of the solution procedure. The only possible limitation is the space-

time SSOR smoothing that requires the operator of the PDE to be known in order

to be implied.

As in the steady case, the minimum number of smoothing iterations is an open

question. Further investigations should also be done for problems where the operator

needed for the smoothing is not available. To make the procedure more computa-

tionally effective, optimization methods with embarrassing parallelism should also be

investigated. Genetic algorithms seem to offer a good potential for later expansions

of the method since the optimization is already fairly expensive.
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Figure 3.13: Solution of the Cahn-Hilliard equation.
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Figure 3.14: Optimization path for the Cahn-Hilliard equation with SSOR relaxation.
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Chapter 4

Optimized extrapolation method

for closed source applications

The goal of this chapter is to present a postprocessing software infrastructure that

connects to any existing numerical simulation software, for example, to widely used

commercial applications such as ADINA, Ansys, Fluent, Numeca, Star-CD, etc; in

addition, we provide an a posteriori error estimate to their simulation.

The standard approach in applied mathematics to handle the problem of solution

verification is to work on the approximation theory of the PDE. For each specific

PDE problem, the right finite element (FE) approximation may provide the correct

a posteriori error estimate [68]. Unfortunately, this approach may require a complete

rewriting of an existing Computational Fluid Dynamic (CFD) application based on

finite volume (FV), for example, and lack generality. Usually a posteriori estimates

fail if the (non-linear) PDE solution is stiff or if the grid resolution is not adequate.
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Since grid refinement itself requires an a posteriori estimate, this leads to an obvious

problem. Large Reynolds number flows are common in many applications, including

turbulence problems. For these applications, rigorous solution verification may not

be achievable, given state-of-the-art numerical analysis. The difficulty of solution

verification is even greater for complex multi-physic coupling. The general practice

in scientific computing is to simulate PDEs, for which neither applied mathematics

nor numerical analysis guarantee the result.

One of the difficulties in applied mathematics is the time lag between the develop-

ment of rigorous mathematical tools and the common scientific computing practice.

Therefore, our goal should be to improve existing solution verification tools such as

the convergence index of Roache et al. [5, 69] , and the Richardson Extrapolation

(RE) technique presented in Chapter 1, with something potentially more elaborate

and reliable that can take advantage of existing a posteriori estimates when they

are available. It could positively affect the daily use of the verification tools by

practitioners.

Our method for a posteriori error estimate relies on four main ideas:

• Reformulation of the problem : a traditional approach for solving error esti-

mation problems is to use a built-in procedure that utilizes information on

the PDEs. The output of the a posteriori error estimate serves as a feedback

parameter to improve the solution procedure, by using mesh refinement, for

example. The method suggested in this chapter solves the error estimation

problem by integrating the family of solutions generated by the code into an
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optimum design framework completely independent of the code itself. Our a

posteriori procedure constructs a new “optimal” solution from a set of two to

three numerical solutions computed by the existing code.

• Independence from the approximation theory framework of the PDE: in most

of the cases with commercial codes, detailed knowledge of the approximation

theory framework used to represent the PDE’s and compute the numerical so-

lutions is at best limited and in the worst case completely inaccessible. Our

new technique allows the processing of the underlying set of discrete (non)-

linear equations without using a priori information on the approximation the-

ory framework that is applied to solve the PDE.

• Integration of existing a posteriori error estimates : industrial and research

laboratories’ simulation tools might already make use of some form of error

estimates. If the practice proves that they are efficient on a given class of PDE

problems, our optimization framework should enable the use of these estimates.

The following two sections first describe the general method and then give some

examples with two benchmark problems.

4.1 Optimized Extrapolation Method

We describe in the following the main ideas without seeking an exact formal math-

ematical description of a given specific PDE problem.

Let us consider a boundary value problem (Ω is a polygonal domain and n =
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2 or 3) :

N [U(x)] = S(x), x ∈ Ω ⊂ IRn. (4.1)

We assume that this Equation 4.1 defines a well-posed problem and has a unique

smooth solution. We have restricted ourselves in this section to a steady problem,

i.e., there is no time dependency. Let (E, ||.||E) and (F, ||.||F ) be two normed linear

spaces, and Nh : E → F be the operator corresponding to the problem solved by

the code. It can be a finite volume approximation of Equation 4.1 on a family of

meshes M(h) parametrized by h > 0 a small parameter. In practice we look for an

approximation of the accuracy of the solution Uh on the mesh M(h) produced by

the code C that operates on the data Sh:

C : Sh → Uh. (4.2)

The smaller h, the finer should be the discretization.

Let ph denote the projection of the continuous solution U onto the mesh M(h).

We assume a priori:

||Uh − ph(U)||E → 0, as h→ 0. (4.3)

We assume, therefore, that the code satisfies the criteria of software verification,

and that the convergence to the exact continuous solution is satisfied.

The objective is to verify the solution produced by the code, not the code itself.

We will get an error estimate versus a very fine grid solution U∞ that is never

computed, because the cost is prohibitive. We will skip the index h when it is not
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essential. The spaces E, F have in practice (very large) finite dimensions when they

are for the discrete solutions on M(h∞), and discrete data Sh∞ .

We assume that the code C has a procedure that provides the residual, i.e.,

V → ρ = N(Uh)−N(V ), where V ∈ E, ρ ∈ F . We note that most commercial code

offers this feature or provides a (first order explicit) time stepping procedure:

Un+1
h − Un

h

dt
= N(Un

h )− S. (4.4)

The residual is then ρ =
U1

h−Uh

dt
. We assume that the following problem

N(u) = s, ∀s ∈ B(S, d) (4.5)

is well-posed for s ∈ B(S, r), where B is a ball of center S and radius r in (F, ||.||F ).

There should exist a unique solution for all data in B(S, r) and the dependency of

the solution on these data is supposed to be smooth enough to use a second order

Taylor expansion.

Let us suppose that N(Uh) ∈ B(S, r), that is

||ρ||F = ||N(Uh)− S||F < d. (4.6)

We would like to get an error estimate on e = Uh − U∞ = C(S + ρ) − C(S). A

Taylor expansion writes

C(S) = C(S + ρ)− (ρ · ∇s)C(S + ρ)

+
1

2
ρ · [ρ ·R(S)], (4.7)

where ||R(S)||E ≤ K = sup
s∈B(S,d)

||∇2
sC(s)||E.

102



Therefore,

||e||E ≤ ||ρ||F (||∇sC(S + ρ)||E +
K

2
||ρ||F ). (4.8)

This completely general error estimate points out two different tasks:

• Task 1: compute an accurate upper bound on ||∇sC(S + ρ)||; and

• Task 2: obtain a solution U∞ + e that gives a residual ||ρ|| small enough to

make the estimate useful, i.e., compatible with Equation 4.6.

Task 2 is the purpose of the Optimized Extrapolation Solution (OES) method,

while Task 1 can be achieved by a sensitivity analysis of C.

4.1.1 Task 1: Stability Estimate

Let {bEi , i = 1..N} be a basis of Eh, {bFi , i = 1..N} be a basis of Fh and ε ∈ IR such

that ε = o(1). Let (V ∓i )i=1..N , be the family of solutions of the following problems:

N(Uh ∓ εVi) = S + ρ∓ εbi. (4.9)

We get from finite differences the approximation

Ch∞ = ||∇sC(S + ρ)||

≈ ||(1

2
(V +

j − V −j ))j=1..N ||+O(ε2). (4.10)

We can get in a similar manner an approximation of the norm of the Hessian

∇2
sC(S+ ρ). For ρ small enough, we can verify that the upper bound is given at first

approximation by:

||e||E ≤ Ch∞||ρ||F . (4.11)
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The column vectors V ∓j can be computed with embarrassing parallelism. It is,

however, unrealistic to compute these solutions that lie on the fine grid M(h∞).

To make this task manageable, we have to reduce the dimension of the problem.

We use the following two observations: while the solution of a CFD problem can

be very much grid-dependent, the conditioning number of the problem is in general

much less sensitive to the grid. The idea is then to compute an approximation of

Ch∞ by extrapolation from an estimate of two or three coarse grid computations of

Chj
. Further, let us assume that the fine grid M(h∞) is a regular Cartesian grid.

The number of terms to accurately represent the projected solution Ũj, j = 1..3

with a spectral expansion or a wavelet approximation at a given accuracy is much

smaller than the dimension of the coarse grid used in a finite element/finite volume

computation. We propose to use preferably a grid Mh∞ that has enough regularity to

allow a representation of the solution U∞ with some form of reduced representation,

using either trigonometric expansion or wavelets.

The grid Mh∞ may have many more grid points than necessary. Therefore, it

might not be computationally efficient to perform a true fine grid computation, but

we do not have to do this computation anyway.

Further, regular grids are far more easy to construct. If for some reasons Mh∞

has to be unstructured, we can also use spectral elements. An ideal method might

be to use a proper orthogonal decomposition that captures the main feature of the

solution [70].

Let us denote Ê and F̂ to be the spaces corresponding to one of these compact
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representations of the solution and residual. Let (b̂
E/F
j , j = 1 . . . N̂) be the corre-

sponding base with N̂ � N . Let q̂E/F be a mapping E/F → Ê/F̂ , and qÊ/F̂ be a

mapping Ê/F̂ → E/F , and let Ĉ : Ŝh → Ûh be the code that uses this postprocess-

ing of the residual and solution.

Figure 4.1 illustrates the relation between the different discrete spaces, along with

the corresponding mappings. The mapping q̂E can be a least square approximation

of the solution u into Ê, acting as a filter on the solution, while qÊ is a projection

onto E.

Figure 4.1: Mappings and vector spaces.

The construction of qE and q̂E on one side, and the construction of qF and q̂F

on the other side do not consider the nature of the true approximation space used

in the code C since the implementation details are most of the time unavailable: the
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mappings involve only the discrete representations of the functions.

To summarize the procedure for Task 1, the estimate on Ch∞ will be applied to

verify the code Ĉ based on the computation of (V̂ ∓j , j = 1..N̂) vectors on the coarse

grids M(hj), j = 1..3 done by the code Ĉ. We notice that the computation of the

vector V̂ ∓j can be done with embarrassing parallelism. Further, because ε is small,

the code Ĉ can use, as an initial guess in its iterative process, the solution Uh, which

is hopefully very close to the unknown Ûh ± εV̂ ∓j .

Several issues need to be carefully investigated when applying this procedure. We

will mention two of them. First, our method assumes that the spectral properties of

the operator follow some fairly regular asymptotic properties for the coarse meshes

under consideration, as h → 0. This hypothesis should be verified and/or may not

be true. Second, ε must be chosen carefully as a function of the mesh size, in order

to avoid a dramatic inaccuracy on the stability estimate of Ch∞ . We recall, however,

that we are only looking for an order of magnitude of Ch∞ and not its true value.

Let us discuss our second task, which is to compute a solution on the fine grid

that is good enough to recover an error estimate.

4.1.2 Task 2: Optimized Extrapolation

Let M(h1) and M(h2) be two different meshes used to build two approximations U1

and U2 of the PDE problem expressed in Equation 4.1.
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A linear extrapolation formula that combines these two solutions has the form

αU1 + βU2; (4.12)

since limh1→0 U1 = U∞ and limh2→0 U2 = U∞, a consistent linear extrapolation

requires to have limh→0 αU1 + βU2 = U∞. This adds a constraint on α and β which

is: α + β = 1.

Therefore, a consistent linear extrapolation formula should have the form

αU1 + (1− α)U2, (4.13)

where α is a weight function. We define our optimized extrapolation problem as

follows:

(Pα): Find α ∈ Λ(Ω) ⊂ L∞ such that G(αU1 + (1− α)U2) is minimum.

The OES, if it exists, is denoted as Ve = αU1 + (1− α)U2.

For computational efficiency, Λ(Ω) should be a finite vector space of very small

dimension. The objective function G might be derived from any existing a poste-

riori error estimates, depending on their availability. Our ambition is to provide a

numerical estimate on ||Uj − U∞||, j = 1, 2, without computing U∞ explicitly. The

solution Uj can then be verified, assuming Equation 4.3.

The fine mesh M(h∞) should be set such that it captures all the scales of the

continuous solution with the level of accuracy required by the application. We have

a priori h∞ << h1, h2. Both coarse grid solutions U1 and U2 must be projected onto

M(h∞). We will denote Ũ1 and Ũ2 as the corresponding functions. In this section,
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we choose to minimize the consistency error for the numerical approximation of

Equation 4.1 on a fine mesh M(h∞) . According to the stability estimate Equation

4.11 established in the previous section, this is a rational choice for the general case,

where no mathematically rigorous a posteriori estimate is known. The objective

function is then

G(Uα) = ||Nh∞ Uα − Fh∞||, (4.14)

where Uα = α Ũ1 + (1− α) Ũ2.

Whenever U1−U2 << U−U2 in some set of non-zero measure, the weight function

in the extrapolation formula should be ill-defined. For example, if at some spatial

point, U1 = U2, then it is not possible to evaluate α locally from the extrapolation

formula. We consider these local values to be outliers of the optimization problem. A

potentially more robust approximation procedure makes use of a third approximation

U3. We formulate the problem with three grids as follows:

(Pα,β): Find α, β ∈ Λ(Ω) ⊂ L∞ such that G(αU1 + βU2 + (1 − α − β)U3) is

minimum.

If the three approximations Uj, j = 1 . . . 3 coincide at the same spatial point, the

local accuracy cannot be improved using an extrapolation method only. It might be

that all three solutions have fully converged or are all erroneous. We will still get

a global upper bound on the error with our method, providing that the residual is

small enough for Equation 4.6 to hold true.
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To reduce the dimension of this problem we search for the unknown weight func-

tions in a small space for which basis functions are trigonometric expansion, wavelet

expansion, or possibly spectral elements. If Ω is the physical domain for the CFD

solution, the unknown weight function can be extended to a square domain (a, b)n,

such that Ω ⊂ (a, b)n. As a matter of fact, no boundary conditions are required for

the unknown weight functions. Let {θj, j = 1 . . .m} be the set of basis functions of

Λ(Ω). We look for the solution of the optimization problem as follows

(Πm
α ): Find (αj)j ∈ IRm, such that

||G([
∑
j=1..m

αjΘj]Ũ1 + [1−
∑
j=1..m

αjΘj]Ũ2)||F (4.15)

is minimum.

We have a similar formulation for the three-level OES described in [46, 47], which

is:

(Πm
α,β): Find (αj)j(βj)j ∈ IRm, such that

||G([
∑
j=1..m

αjΘj]Ũ1 +
∑
j=1..m

βjΘjŨ2 +
∑
j=1..m

[1− αj − βj]ΘjŨ3)||F (4.16)

is minimum .

Further, we need a filtering process of the solution to have this minimization

procedure be numerically efficient. In practice the interpolation of the coarse grid

solution to the fine grid Mh∞ introduces spurious high order oscillations that may

make the optimization process given by Equation 4.15 unreliable. The postprocessing

q̂F regularized the problem. We can easily obtain the result when the weight function
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is a scalar function. To make this computation robust we use a surface response

methodology [71] that is rather trivial in the scalar case. This procedure consists of

computing a lower order polynomial, best fit of the functional ||G(αŨ1 +(1−α)Ũ2)||,

by sampling α according to the expected convergence order range of the code. The

minimization of α is then done on this polynomial approximation by a standard

method. The sampling process is a cumbersome embarrassing parallel process that

can take advantage of a computational grid [72].

It is, however, impractical when the dimension of the problem for the α search is

more than a few units. One may use a combination of a genetic algorithm and a local

optimization search to solve the non-linear optimization problem (Equation 4.15).

There is extensive knowledge and a set of optimization software [73] available that we

can indeed reuse. We have observed in our experiments that if the solution provided

by the CFD code is very coarse, the use of space-dependent weight functions might

not be required. Similarly, if the solution is very accurate and the code has uniform

convergence, we do not need space-dependent weight function. However, in the case

of stiff problems we would like to get some adaptivity into the construction of the

weight function. This is an open problem that we are currently working on [39].

4.2 Algorithm for optimized extrapolation method

4.2.1 Algorithm

The algorithm of our method written in its simplest version is as follows:
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1. Call coarse Mesh: generate the (coarse) meshes M(h1) and M(h2). If hi is the

average space step for the grid M(hi) we should have h2 < h1 but this is not

necessary.

2. Call fine Mesh: generate a fine mesh M(h∞) that is supposed to solve all the

scales of the problem. M(h∞) is preferably a structured mesh. We must have

h∞ << h1, h2.

3. Call Solver: solve the problem on M(h1) and M(h2), possibly in parallel.

4. Call Projection: project the coarse solutions U1 and U2 onto M(h∞) and post-

process them to avoid spurious oscillations due to the interpolating function.

5. Solve minimization problem: we can create, for example, sample solutions Uα =

[αŨ1 + (1− α)Ũ2] and/or use an off-the-shelf optimization package.

6. Get Stability Constant: compute in parallel an increasing set of perturbed

solutions Uh ± εV ±i until eventual convergence of the stability estimate.

4.2.2 Applications

We have selected two test cases, one in fluid dynamics, and the other in heat transfer.

Further details on these numerical simulations can be found in [74].

We will carry through our method starting from two coarse grid calculations only.

The minimization problem is the following:

(Pα): Find α ∈ IR such that G(αU1 + (1− α)U2) is minimum.
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For the sake of simplicity, we restrict ourselves to α being a constant function

on the domain (α ∈ IR). While there is no technical difficulty in considering α =∑M
i=1 α1hi, M being small with respect to the number of points on the fine grid, it

did not appear necessary to have α space-dependent to obtain satisfactory results in

this experimental study.

The finite element commercial package used to solve both test cases is ADINA.

We could have used another commercial package for this demonstration. ADINA is a

comprehensive finite element software that enables analysis of structures, fluid simu-

lations, and fluid flow simulations with structural interactions. http://www.adina.com/

provides more information on this software.

4.2.2.1 Backward facing step flow

We are going to consider first a steady incompressible viscous flow in the backward

facing step configuration.

Equation 4.17 models the incompressible flow:
∂u
∂t

+ u.∇u +∇p = ν∆u

∇u = 0
(4.17)

where ν is the viscosity of the fluid.

Figures 4.2 and 4.3 show an example of an unstructured coarse mesh used for

the calculation of the backward-facing step flow at Reynolds number 500 and the

contour of the solution field.

The length of the cavity is Lx = 10, the width is Ly = 2, and the size of the step
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Figure 4.2: Coarse unstructured mesh for the backward-facing step test case gener-
ated by Adina.

Figure 4.3: Contour of the velocity field for the backward facing step produced by
Adina.

is 1. The inflow is set to be a Poiseuille flow with maximum velocity 1 U.I.. The

outflow boundary condition is free. We assume no slip boundary conditions on the

walls. In this simulation, the number of quad elements are, respectively, 10347 on

the fine grid G∞, 1260 on the coarse grid G1, and 2630 on the coarse grid G2.

To provide a rigorous measurement of the error we construct a nearby manufac-

tured solution [75] that is within 1/1000 of a very fine grid solution. This procedure

forces the right-hand side and boundary conditions of the backstep problem in such

a way that we get an exact solution to Navier-Stokes that is very close to the solution

of the backstep problem. We obtain then an exact measurement of the numerical
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error for this manufactured solution that is Fs. Let (ums, pms) be the exact analytical

solution of the following problem:
∂u
∂t

+ u.∇u +∇p = ν∆u + Fs

∇u = 0

u = Φ on ∂Ω.

(4.18)

Assume that the approximation of the numerical solution has the following form:
ums =

∑N1

i=0 αiui

pms =
∑N2

i=0 βipi

∇ui = 0

, (4.19)

where αi, βi ∈ IR.

Then the set of basis functions

uk1 =

 cos(k1π
x
Lx

)sin(k1π
y
Ly

)

−sin(k1π
x
Lx

)cos(k1π
y
Ly

)
(4.20)

allows the construction of a manufactured solution that satisfies the divergence free

condition and

pk2 = cos(k2π
x

Lx
)cos(k2π

y

Ly
). (4.21)

Ê is spanned by the basis functions Equation 4.20 while we use standard trigono-

metric expansions for F̂ . The pressure is a Lagrange multiplier in the finite element

formulation of ADINA. The different figures and results show an error estimate for

the velocity field only. The error is computed as the maximum of the L2 norm for

each component.

114



First, the flow field variables are interpolated from the fine mesh finite elements

solution onto a regular grid of Ω that is globally about the same mesh size to ease

the fitting with the trigonometric functions of Equation 4.20. The discrete functions

obtained on this grid are noted (ŨFE, p̃FE). Then, the weight coefficients αi and βi are

computed using least square interpolation on the regular grid functions (ŨFE, p̃FE).

Ω is a subset of the rectangle (0, Lx)× (0, Ly) and the numerical convergence is not

granted: we need to verify a priori if this interpolated solution is giving an accurate

approximation of the numerical solution.

The discrete error for the backward-facing step flow between the numerical so-

lution and its trigonometric approximation is shown in Figure 4.4. Let M(hj), j =

1 . . . N be the nodes of the mesh. We use the standard discrete vector norm ||.||1,

||.||2,||.||∞ to measure the numerical error on the trace of the numerical solution at

these points. To be more specific

||(fj)j=1..M ||1 =
1

M

∑
j

|fj|, (4.22)

||(fj)j=1..M ||2 =

√
1

M

∑
j

(fj)2, and (4.23)

||(fj)j=1..M ||∞ = max
j
|fj|. (4.24)

These norms are unrelated to the finite element space used in the ADINA calcu-

lation. Our verification procedure follows the spirit of an experimental measurement

where one may get information at specific locations.

Figure 4.5 shows the evolution of the error in L2 norm as a function of the number

N1 and N2 of basis functions. We choose N1 = 38 for the velocity and N2 = 33 for
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Figure 4.4: Difference between the NS FE solution and the nearby manufactured
solution.

the pressure, giving some small differences with (ŨFE, p̃FE). Specifically we have

||ŨFE − ums||2 = 1.76e−04, ||ŨFE − Ums||∞ = 2.12e−03 and (4.25)

||p̃FE − pms||2
||p̃FE||2

= 2.25e−03. (4.26)

The expression of Fs is computed symbolically using Maple for each element of the

basis and its expression is injected into ADINA as a forcing term in the momentum

equation. We have now a manufactured solution for the backstep that is near by the

numerical solution obtained with the finite elements code on a very fine mesh. Let

us compute the coarse grid solution of the corresponding new Navier-Stokes problem

with the right-hand side Fs, and construct the a posteriori error estimate. The only

motivation to work with this new NS problem is to provide exact numerical accuracy.

The next step is to proceed with the a posteriori estimate calculation using the

algorithm from Section 4.2.1. Two coarse mesh solutions of problem given by the

Equation 4.18 are computed with, respectively, 1506 and 2630 elements. ADINA

generates both meshes automatically and they are not coincident. Both solutions
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Figure 4.5: Numerical error in L2 norm as a function of the number of trigonometric
basis functions of the nearby manufactured solution.

are interpolated to the fine mesh M(h∞) with a P1 method. Each solution is post-

processed on the fine grid with few explicit time steps reusing ADINA on the fine

grid. The implementation converts this explicit time stepping into a relaxation pro-

cedure to damp all the spurious high frequencies of the solution introduced by the P1

interpolation. Its efficiency decreases as the Reynolds number increases. Practically,

the residual decreases extremely fast during the first relaxations, which get rid of the

perturbation introduced by the P1 interpolation. After this initial stage, the rate of

convergence slows down significantly. The turning point in the convergence behavior

setup our stop criterion. A small number of explicit time steps by no means provide
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a convergence to the fine mesh solution. In our test case we have 10 to 30 time steps.

To avoid this time stepping, one might use a high order interpolation procedure on

the coarse meshes solutions, such as BSpline, to impose the smoothness of the so-

lution on the fine mesh. This is in practice far more expensive than the relaxation

steps and increases the complexity of the code.

Based on these two coarse grid solutions postprocessed on M(h∞), the optimized

extrapolated solution αŨ1+(1−α)Ũ2 is built. The weight α are scalar functions. The

expected order of convergence is between 0 and 3, hence the search of α is limited

to Λ = (−0.2 , 2.2).

Figure 4.6 shows the evolution of the true error as a function of the residual in

the L2 norm for α varying in Λ. One can observe that there is no need to postprocess

every linear combination αŨ1 +(1−α)Ũ2 with further explicit time stepping. Figure

4.7 shows that minimizing the error is reasonably achieved by minimizing the residual

for both the L1 and L2 norms. This correspondence is less well satisfied in the L∞

norm, as shown by Figure 4.8. We speculate that this discrepancy comes from the

fact that the NS solution is not smooth along the backstep wall at the corners.

It also appears that the optimal combination α is weakly dependent on the choice

of the discrete norm used.

The computation of the stability estimate described in Section 4.1.1 uses the
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Figure 4.6: Dependence of the Error and Residual in L2 norm on the number of
relaxations used in postprocessing αŨ1 + (1− α)Ũ2.

following set of basis functions bi(x/Lx)bj(y/Ly), where

b0(z) = 1, (4.27)

b1(z) = cos(πz),

b2(z) = sin(πz),

b3(z) = sin(2πz), . . .

bj(z) = sin((j − 1)πz), . . .

The computation of the stability estimates and condition numbers employs both

coarse grids. The amplitude of the perturbation ε is set to 0.01. We observe that
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Figure 4.7: Comparison of OES solutions for different discrete norms.

larger values such as ε = 0.1 lead to oscillation in the computation of the stability

constant. Smaller values of ε than 0.01 do not provide a sufficient amplitude for the

perturbation to have a significant impact on the computed solution.

Because the initial two coarse grid calculations are the only component of the

sensitivity analysis, starting from the unperturbed coarse grid calculation requires

very few time steps. From the two condition numbers corresponding to each coarse

grid solution it is possible to extrapolate the stability constant for the Navier-Stokes

calculations on the fine grid mesh M∞.

Figure 4.9 shows the evolution of the stability constant as the number of basis
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Figure 4.8: OES solution with the L∞ norm.

functions used increases. These results seem to show that only a limited number of

basis functions are needed to represent the numerical solution via the transformation

q̂F defined in Figure 4.1.

Figure 4.10 gives the error for the OES versus the fine grid solution in the L2

norm computed in a reduced space generated by trigonometric functions specified

by Equation 4.20. The low horizontal line is the true error in the L2 norm for the

OES obtained previously. One can observe that the extrapolation of the stability

constant, which combines the calculation of the estimate on both coarse grids with

the best α obtained in the OES, process does improve the accuracy of the error

estimate.
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Figure 4.9: Evaluation of the stability constant for the modified NS problem in the
L2 norm.

Similar results are obtained for other norms, as shown in Figures 4.11 and 4.12.

As observed previously, the quality of the estimate is less satisfying for the L∞ norm,

but it still provides an error estimate for the coarse grid calculation within 10% of

the ‘true’ error. These results show that our procedure is independent of the norm

used to do the calculations, and more specifically, that it is not required to know the

norm of the finite element used by ADINA in that case.

We observe also that the error estimate in any of these discrete norms requires

the same calculation. Once we have generated the surface response for α and the sen-

sitivity calculation for Navier-Stokes, one can provide the a posteriori error estimate

for all three discrete norms, L1, L2, L∞, at once.

Based on the OES we can proceed by giving error estimates on each coarse grid
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Figure 4.10: Evolution of the error versus the manufactured solution with the L2

norm for the modified NS problem.

solution. This would not have been possible with the Richardson Extrapolation,

which has inaccuracies. We observe also that the OES can serve as an initial guess

for a new Navier-Stokes calculation on a refined grid if the a posteriori error estimate

does not fit the goal of the simulation.

The fundamental result of Figure 4.10 is that we can provide an upper bound on

the numerical error of the simulation for each coarse grid calculation within 10% of

the ‘true’ error. The prediction of the error for the extrapolated solution is, however,

within 50% of the ‘true’ error.

4.2.2.2 Battery

The energy equation 4.28 that governs the model of the second example is:
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Figure 4.11: Evolution of the error versus the manufactured solution for the L1

norm.

∂

∂xi

(
kij(T )

∂T

∂xj

)
+Q(T ) = ρcp(T )

∂T

∂t
, (4.28)

on Ω× (0, t)

with i, j running from 1 to 2 for this model. This two-dimensional problem is solved

in a square domain Ω = (0, Lx) × (0, Ly). T is the temperature, t is time, ρ is the

material density, cp is the specific heat as a function of T , Q is the volumetric heat

source as a function of t, and kij is the thermal conductivity tensor as a function of

T .

The boundary conditions are:
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Figure 4.12: Evolution of the error versus the manufactured solution for the L∞
norm.

• −
(
kij

∂T

∂xj

)
· n = h1(T )(T − T∞) (4.29)

+ σε1

(
T 4 − T 4

∞
)

on ΓN1 (4.30)

(radiation, convection); (4.31)

• −
(
kij

∂T

∂xj

)
· n = h2(T )(T − T∞) (4.32)

+ σε2

(
T 4 − T 4

∞
)

on ΓN2 (4.33)

(radiation, convection); (4.34)

• −
(
kij

∂T

∂xj

)
· n = h3(T )(T − T∞)on ΓN3 (4.35)

(convection); and (4.36)

•Symmetric boundary condition on ΓN4 , (4.37)
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where T∞ = 313.0K , ε1 = ε2 = 0.25, σ = 5.670 × 10−8 is the Stefan-Boltzmann

constant (W ·m−2 ·K−1), and h3 = 1.0 (W ·m−2 ·K−1). The functions h1(T ), h2(T ),

and cp are given by tables.

Temperature is initialized to T0 = 313.0K in the structure. The difficulty of

this study is due to the composition of the structure and the possibility of phase

change in two regions. The material composing the structure might have coefficients

depending on space and temperature. The problem is therefore very stiff and the

solution is almost discontinuous near the wall, as shown in Figure 4.13. We are only

interested in the final solution in time that should reach equilibrium. The problem

becomes then unsteady. To simulate the heat transfer in this structure, we have

used quad elements in each physical subdomain. The total numbers of elements the

coarse grids G1 and G2 have are 8767 and 21’072 respectively . As opposed to the

numerical experiment done before, we will assume that the fine grid solution obtained

with 57’258 elements is the true solution.

The basis b̂E/F used to perform the a posteriori error estimation for the battery

problem are the sine and cosine trigonometric functions.

Figure 4.14 gives the numerical error in the L2 norm as the function of the number

of basis functions b
Ê/F
i used. We need on the order of 400 basis functions to reach a

plateau in the error estimate. Once again we obtain an a posteriori error estimate on

the coarse grid solution within 10% of the ‘true’ error versus the reference solution

on M(h∞). To be more specific, we are able to estimate a solution with an absolute

error of 0.2 Kelvin, using coarse grid solutions with absolute errors of 10 Kelvin.
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Figure 4.13: Steady state solution of the heat transfer problem.
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Figure 4.14: Evolution of the error versus the fine grid solution with the L2 norm
for the heat transfer problem.

4.3 Conclusion

In this chapter, we have explored a new framework to provide a posteriori estima-

tion for CFD simulations produced with a commercial package. The challenge comes

from the fact we do not have access to the source code, and we may not know pre-

cisely what finite element approximation has been used. In such a context, the only

methods that practitioners use using are mesh refinement and eventually a Richard-

son Extrapolation procedure. This process is time-consuming and may not even be

possible for complex PDE problems. We have proposed an alternative solution that

still uses a fine mesh as a reference, but does not require the calculation of the CFD

solution on this fine mesh.

Our method starts from the calculation of two or three solutions and searches

for an optimized extrapolation on a fine mesh. This fine mesh supposedly resolves
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all scales of interest. With this process, we can retrieve the best information from

coarse grid solutions. Because we solve the problem as a (non)linear set of discrete

equations and ignore the finite element framework, which may not be at our disposal

for our specific application, our method is extremely general and can use all kinds of

discrete norms to measure error. A sensitivity analysis is necessary to complete the

work by providing the error estimate for the best consistent extrapolation solution

we found.

The drawback of our method is that it is computationally intensive and requires

hundreds of evaluation of the residual. On the other hand, this process has embar-

rassing parallelism and constitutes an effective way of using a grid of computers.

In the next section, we are going to describe our software implementation in more

details .
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Chapter 5

Distributed computation of

optimized extrapolation method

5.1 Performance issues

Step 5 and Step 6 of our algorithm presented in Chapter 4 are sources of a large set of

cumbersome computations for the backstep facing step flow test case. In Figures 4.9

and 4.10, one could observe that about 103 computations are required for a proper

evaluation. Each of these computations can take several minutes depending on the

size of the problem. This computation time takes into account the few explicit time

steps needed to smooth the high frequency components of the projected approx-

imation on the fine grid. Thus, a simple sequential implementation might require

several days. The key feature that makes our solution verification procedure effective

is its natural parallelism. Indeed, since the nodes are not sharing any information,
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the local executions are all independent. In a modified implementation, threads

are scheduling computational tasks for parallel execution. In order to perform this

scheduling efficiently, part of the system should keep track of the completion of each

task, and distribute the remaining tasks. A master node can centralize this informa-

tion and thus ensure a natural load balancing of the tasks among the computational

nodes. This is an important element for distributed computation, because it dynam-

ically adjusts the workload of the computers depending on their availability and the

calculations to be performed. Moreover, the master attributes a task to a slave node

only if the current task is finished without an error message.

The last level to take into consideration is the user control interface. Even though

the procedure might be parallel, the execution time might not always be negligible.

Therefore, the user should be able to check and remotely control the execution of

the verification procedure. For this reason, we developed a software interface that

does not need to run on the master node or the computational node.

Figure 5.1 reflects the interaction between the components of our system. The

idea is to take advantage of a network of computers by limiting the communications

to a few megabytes of data only, and only when the computation on each node is

finished. The slave nodes perform these computations because they only have the

knowledge of the existence of the master node. A computational nexus distributes the

task dynamically, self-adjusting to the deficiencies of the network or the availability

of the computational nodes. The limiting factor of the process is the number of

slave nodes we can access simultaneously since the computation is virtually scalable.

Moreover, each task in Figure 5.1 makes use of a different programming language,
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as follows:

• C# is used for the user interface because the goal was to have a good integration

of the user interface with its environment;

• Java is used for the communications protocol on the master and computational

nodes for portability reasons;

• C++ is employed for the preprocessing interfaces that are the core of our

method; and

• the computational code, which is the target of our verification procedure, can

be in any language.

Figure 5.1: Task distribution for effective distributed computation in OES context.

We use a standard three-tier client/server/slave architecture. The a posteriori

estimate takes a very small fraction of the time that it would take to compute the
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fine grid solution. More details on this parallel implementation can be found in [72].

Figure 5.2 shows the performance improvement for three setups using a three-tier

architecture when running the optimization procedure for the backward-facing step

flow problem. The first column is for a sequential execution, the second column

is for a heterogeneous network of computers, and the third column is the expected

execution time with a parallelized interpolation. The computational grid used to

perform the simulation contains Windows XP and Linux systems. Parts of the

system run over a gigabit network, but a simple fast Ethernet network is connecting

most of the systems.

Figure 5.2: Overview of performance for a simple parallel implementation.

The hardware is also diversified: 3 Intel Core Duos E6300, 5 AMD Athlon 2800+,

1 Apple G5, 1 8-Way AMD Opteron 846. The speedup factor obtained for this

simulation is approximately 9.5 times faster than on one of the AMD dual core PCs.
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The computational grid cannot achieve a perfect speedup for several reasons:

• communication issues between computers located on different networks;

• differences in computing power between the different slave nodes; and

• the interpolation procedure was not parallelized, and was fairly expensive for

this experiment with 6 104 mesh points.

This implementation of the solution verification procedure is independent of the

operating system or architecture use. The Java communication interfaces only re-

quire the Java Runtime Environment to be present on the target machine.

While the architecture of the system is straightforward, other aspects should raise

concerns, such as security and error checking. The data to be exchanged between

the control interface, the master node, and the computational nodes can have a

sensitive purpose. The spectrum of application ranges from medical data relative to

a patient’s condition, to physical data for a DOD project. It is, therefore, necessary

to pay special attention to how transfer the data.

5.2 Error control

We have designed our system to be cost-effective by reusing any standard computer

equipment that can support the Java technology. The three-tier architecture relies

on computers and network elements that can be completely different by nature. Also,

because of the mix of computational and communication processes, it is important
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to access what the problems are and which components are involved in each entity.

A naive implementation of the system is shown in Figure 5.3. The main defect

of this implementation is the lack of feedback in case of an error. There is no way to

verify if a computation is finished, if the network is down, or if the master still has

some tasks to process.

Figure 5.3: Naive implementation of the distributed computation.

The failure of this type of implementation leads us to include a checkpoint at each

step of the process. This might appear to be a costly solution, but it is a necessity to

ensure the robustness of the verification procedure. Figure 5.4 outlines the control

points of our software. Figure 5.5 gives a short description of each element.
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Figure 5.4: Overview of error control and secure data transfer.

5.3 Security

The last aspect of this implementation is the security. Again, if one follows the easy

approach, as shown on Figure 5.6, some security problems might occur. Because the

different entities can communicate over the Internet, communication must be secure

between the entities. Authentication is important because the slaves of the grid can

belong to research centers all over the world that have some kind of partnerships. If

a partnership ends, the master of a grid should be able to forbid communication to

the slave(s) of that specific research center.

Instead, one should use the procedure illustrated in Figure 5.7, which shows the

authentication procedure between the master and a slave.

The implementation uses SSL Sockets instead of simple sockets. The commu-

nications between the different components need encryption. It is the function of
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Figure 5.5: Description of controls elements for error control and secure data transfer.

SSL public/private keys to generate the ‘session key’. The control interface owns

the public key, the master node owns both the private and the public key and the

computational nodes own the public key. Security issues dictate this distribution of

the keys. The question remains of where the keys should be stored.

In the SSL scheme, the communication is secure but any computational node can

obtain the public key to exchange information with the master. It is the confiden-

tiality, integrity, and authentication concept for data security. SSL sockets realize

both confidentiality and integrity, but there is no control on the authentication. This

justifies the implementation of an authentication method between the master node

and the slave nodes to ensure that only ‘allowed slaves’ can communicate with the
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Figure 5.6: Naive communication between nodes

master node.

In our architecture, a file stores an encrypted login and password, thus providing

the authentication source for the master. When a computational node wants to

communicate with the master, it initiates the SSL, and then the master asks the

computational node for a login and a password. The computational nodes find their

authentication data in some other encrypted file. This file is created either the first

time the computational node socket initiates, or when the socket loads and does not

find the file in its root directory. The interface will prompt the administrator that

launches the socket for the login and the password. In the authentication process,

if a computational node has a wrong login or a wrong password, some data sent on

the SSL socket will notify the control interface. The SSL tunnel is closed, and a

pop-up notifies the user of the console that one or more slaves did not authenticate

properly. Figure 5.8 shows the communication process between the master and the
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slaves regarding the establishment of the SSL tunnel and the authentication process.

The overhead generated by this control statement and by the SSL sockets encryp-

tion is negligible with respect to the time needed to execute a task on the computa-

tional node. When computational nodes are in a cluster with private IP addresses,

the mechanisms required are more specific. One can, for example, create a new level

in the hierarchy by giving some scheduling control to the node of the cluster that

owns a public IP address.

5.4 Conclusion

This section has focused on the software side of the implementation and the different

constraints we faced when developing the software. The most interesting seems to

be that we managed to obtain good performance without neglecting security and

error checking. The results show that if we had a homogeneous grid of computers,

i.e., only identical nodes in our network, the scalability would be quasi-perfect. The

efficiency is a direct consequence of the structure of the algorithm. Indeed, each node

needs to compute only its solution without knowing anything about the other client

nodes, and by only exchanging a really small amount of data with the master node.

The next section presents our conclusion on the optimized extrapolation method

and its implementation using distributed computing.
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Figure 5.7: Handshake process.
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Figure 5.8: SSL communication scheme.
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Chapter 6

Conclusion

6.1 Summary

In this dissertation, we have presented three original results. First, we extended the

least square extrapolation method to parabolic equations. The optimized extrapo-

lated solutions computed are more accurate than those of the Richardson Extrapo-

lation method. Moreover, our method has proved to be effective on various equation

sets, ranging from phase separation equations to shock layer models.

The second innovative contribution was the a posteriori error estimate frame-

work. This framework provides a better tool for solution verification than Richard-

son Extrapolation when the convergence order is space-dependent or far from the

asymptotic rate of convergence. It also provides an easy way to evaluate numerically

the stability condition for complex and different PDEs. The strength of the method

142



is that no specific implementation knowledge or discretization details are necessary

to be able to obtain an a posteriori error estimate. However, this a posteriori error

estimate refers to a very fine grid solution (never computed) that the same approx-

imation framework is able to provide. We do have to assume then that the code

does converge, and that the code is correct in the sense of software verification, for

example, manufactured solutions. The combination of these two aspects leads to a

postprocessing method that is fairly versatile, general, and friendly to the user.

Finally, we produced a software that can perform the optimized extrapolation

and the error estimation on a grid of computers. Despite its computational cost, we

show that, because of its intrinsic parallel nature, the computation benefits from an

efficient parallel implementation. This implementation is also neutral with respect to

the operating system, architecture, or network. We successfully managed to achieve

that goal for a simple application. Moreover, the solution we developed is secure and

by nature fault-tolerant on the client side.

6.2 Future Work

First, more applications could benefit from the framework presented in this disserta-

tion. For instance, we have presented results essentially for fluid flow computations

and heat equations. An extension to structure equations, with the goal of verify-

ing fluid-structure applications, should be one of the main pivots of such additional

research.

Second, there is no a posteriori error estimate for parabolic equations in this

143



dissertation. By extending the work done in Chapter 3, one could develop an a

posteriori error estimate for time dependent equations.

Further, the software library could benefit from some abstraction. It may trigger

interest from software developers for inclusion and testing with more simulation

applications. The simplicity of the framework makes it an attractive solution for

software engineers who do not want to modify their code to include error estimation

tools.
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Glossary

Code validation

It is the process of determining the degree to which a model is an accurate

representation of the real world from the perspective of the intended uses of

the model.

Code verification

It aims at finding and removing mistakes in the source code and in the nu-

merical algorithms, and improving software using software quality assurance

practices.

A posteriori error estimates

Technique for estimating the error in a numerical solution to a PDE that make

use of the numerical algorithm that approximates the partial differential oper-

ators, the initial and boundary conditions and previous numerical solutions.

A priori error estimates

Technique for estimating the error in a numerical solution to a PDE that make
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use of the numerical algorithm that approximates the partial differential oper-

ators, and the initial and boundary conditions.

Solution verification

It aims at assuring the accuracy of input data for the problem of interest,

estimating the numerical solution error and assuring the accuracy of output

data for the problem of interest.
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