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Problem

Boundary value problem (€2) is a polygonal domain and
n=2o0r3J:

Lu(z)] = f(x), z € Q C IR", u = g on 0.

Assume that the PDE problem is well posed and has a unique
solution. We consider an approximation on a family of meshes
M (h) parameterized by h > 0 a small parameter.
We denote symbolically the corresponding family of linear
systems

ApUp = Fy,.

Let p;, denotes the projection of the continuous solution « onto
the mesh M (h). We assume a priori that (||.|| is a given
discrete norm):

|Un —pn(u)|| — 0, ash — 0,
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Comment

|Un = pn(u)|| — 0, ash — 0,

Solution Verification

Manufactured solution
e Optimized Extrapolation

Techni _
° Ge;n(:rlglu;ea f (:E) T L [u (ZE)]

e Practical Consequences
e Three level methods (1)
e Three level methods (2)

Polynomial solution to verify the code.

A Posterori Eror [1 Test each term of the equation.
Algorithm/Result with detail
code knowledge [1 Useful for parallel codes

Algorithm/Result with No detail
code knowledge

Use of symbolic manipulation languages

Conclusion

Constraint by conservation of physical quantities

Principle of nearby exact solution (C.J.Roy and
M.M.Hopkins).

Possible use of image analysis on experimental data.
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Optimized Extrapolation Technique

e Let M(hy) and M (hs) be two # meshes used to build two
approximations U; and U, of the PDE problem.
e A consistent linear extrapolation writes

al; + (1 — a)Us,

where « Is a weight function.

e In classical Richardson Extrapolation (RE) « is a constant.

e In our optimized extrapolation method « is a function solution
of the following optimization problem:

P, Finda € A()) C Ly suchthatG(aU; + (1 —a) Us)is

minimum.

e For computational efficiency, A(€2) should be a finite vector
space of very small dimension compared to the dimension of
Ayp,.
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General Idea

= One can choose to work with a posteriori FE error estimates:

[1 Equilibrated residual method for FE .- see Ainsworth
& Oden and ref.

[1 A posteriori Finite-Element free constant output
bounds - see Patera and ref.

From now on, and to make our technique general, we will work wi th
discrete value functions and discrete norms: Why is it possi ble?

Our ambition: a numerical estimate on ||U; — U ||, j =1, 2,
without computing U

M (ho) should capture a priori all the scales needed.
In practice ho, << hq, hs.

The solution U; can be verified, assuming convergence of
the approximation method, i.e U, — u, as h,, — 0.

Reuse extensive knowledge of Physicist and Asymptotic
Analysis.

Reuse Stability Theory from Linear Algebra.
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Practical Consequences

e Both coarse grid solutions U; and U, must be projected onto
M (h~ ). Notation: U; and Us.

Solution Verification

" Froblem. e The objective function is a discrete norm of the residual:
e Optimized Extrapolation
b GU) =||An. U® — F_||, where U* =a U; + (1 —«) Us.

e Practical Consequences

e Three level methods (1)
e Three level methods (2)

A Posterion Error The Optimized Extrapolated Solution (OES) if it exists, Is
Algorithm/Result with detail denOted Ve — O(e U]_ —|_ (1 - Oée>U2

code knowledge

oo e The choice of the discrete norm depends on the property of
Conclusion the SOlUthn.

e One can choose to work in a subspace:
[1 Estimate on a functional of the solution.

[ 1 Estimate in subdomain.
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contour plot of estimated convergence order for vorticity
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e Three level methods (1)

e Three level methods (2)

A Posteriori Error

Algorithm/Result with detail

code knowledge

Cancelation phenomenon

Algorithm/Result with No detail

code knowledge

Conclusion

=100.

convergence order approximation for w — ¢ code with Re
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Three level methods (2)

e There are subset of Q where U; — U, << h*, with k expected
order of convergence.

Solution Verification

e Problem

« Comment e Optimized two-level extrapolation problem is ill posed.

e Optimized Extrapolation
Technique
e General Idea

e Practical Consequences Three IeVeIS OES F|nd a’ /8 6 A(Q) C LOO SUCh that

e Three level methods (1)
GlaU; + Uy + (1 —a— () Us) is minimum.

A Posteriori Error

Algorithm/Result with detail
code knowledge

R olf all U;, j = 1..3, coincide at the same space location there Is
gorithm/Resuit wi 0 detal . .
code knowledge either no local convergence or all solutions U; are exact.

Conclusion

e Robustness of the method should come from the fact that we
do not suppose a priori any asymptotic formula on the
convergence rate of the numerical method as opposed to RE.
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Solution Verification

A Posteriori Error

e General Principle (1)
e General Principle (2)
e Stability estimate (1)
e Stability estimate (2)

Algorithm/Result with detail
code knowledge

Algorithm/Result with No detail
code knowledge

Conclusion
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A Posteriori Error
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General Principle (1)

e Let us assume that V, exists and has been computed.

e Let U, be one of the coarse grid approximations; We look for
a global a posteriori estimate of the error

Solution Verification

A Posteriori Error

- Genea Pncile () -
e General Principle (2) | | U] - ph (U) ‘ ‘ .

e Stability estimate (1)
e Stability estimate (2)

e Recovery method:

Algorithm/Result with detail
code knowledge

Algorithm/Result with No detail IF | |Ve _ ph (u) ‘ ‘2 < < ‘ ‘l?j - ph (u) | |27

code knowledge

Conclusion THEN ||(7] — VGHZ ~ Hﬁ] _ph(u)||2

e Heuristic: provides a good lower bound on the error in our
numerical experiments with steady incompressible Navier
Stokes (NS).

e But there is no guarantee that a smaller residual for V, than
for Us on the fine grid M (h.,) leads to a smaller error.

C. Picard, M. Garbey, July 20th 2006 Extrapolation method and optimum design of solutions - p. 11
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General Principle (2)

e From a stability estimate with the discrete operator:
Ve = Usol| < pos G(Ve), where pu > [[(An ) ]-
we conclude
Uz = Uscllz < 1 G(Ve) + |[Ve — Usl2.
e Uses extrapolation on w1, po, p3 to get =~ fio.

e [, norm: the estimate on u uses a standard eigenvalue
iterative procedure to get the smallest eigenvalue.

e I.; norm: see N J.Higham papers.

e Additional Test: Verify that the upper bound on ||U, — Us||
Increases toward an asymptotic limit as M (h.,) gets finer.
Feasible test because the fine grid solution is never computed
iIn OES.

Extrapolation method and optimum design of solutions - p. 12
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Stability estimate (1)

e Let (E,||.||g) and (F,||.||r) be two normed linear space,
N € L(FE, F) be the operator corresponding to the CFD
problem.

e Assuming the problem N(u) = s is well posed for s € B(S, d),
and N (Up) € B(S, d), for some discrete solution Uj,.

e Defining p the residual and e the error, an upper bound of the
error is given by

N K
lellz < [lplle (VNS +p)lle + Zllellr).

e Let {b7, i = 1..N}, be a basis of E, and ¢ € such that

7 )

e =o(1).

e Let (V.7),—1. n, be the family of solutions of the following
problems N(Uy, FeV;) =S+ p Feb; .

Extrapolation method and optimum design of solutions - p. 13
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Stability estimate (2)

e \We get from finite differences the approximation

_ 1 _
Ch.. = [I[VsNT' (S +p)|| = ||(§(Vj+ — V7 ))j=1.81 + O(e?).
e Fundamental tool: compact representation of the solution via
a projection: trigonometric polynomial or wavelet or spectral

elements for example.
e One get the error estimate in this smaller space only.

e The size of the space is fixed adaptively according to the
guality of the approximation of trigonometric
polynomial/wavelets of the FE solution!.

e Both stability estimate and OES construction relies on
several hundred of residual/smoothing computation that are
extremely fast and have embarassing parallelism — distributed
computing !!!

Extrapolation method and optimum design of solutions - p. 14
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A Posteriori Error

Algorithm/Result with detail

e General Principle(1)

e General Principle(2)
ediv(pVu) = f

e Error Estimate in L2 norm

Algorithm/Result with No detail
code knowledge

Conclusion
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Algorithm/Result with detall code
knowledge
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General Principle(1)

e Assume that the operator is linear and the objective function
IS the discrete L, norm of the residual.

e Lete;, i« = 1..m be a set of basis function of A(€2).
The solution process can be decomposed into three steps.

e Step 1: interpolation of the coarse grid solution from
M(h;), 3 =1..p,to M (hs) and postprocessing to smooth out
the "spurious modes".

e Step 2: evaluate the residual

R[@i (Uj — Uj_|_1)], 1= 1..m, ] = 1..p — 1,

~

and R[U,| on the fine grid M (h).

e Step 3: solution of the least square linear algebra problem
that has m unknowns for each weight coefficient o and 3.

Extrapolation method and optimum design of solutions - p. 16
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General Principle(2)

Solution Verification e Compact representation of unknown weight functions: m Is

A Posteriori Error much lower than the number of grid points on any coarse grid
e used.

e General Principle(1)

~

ndio(pvu) = ] e Estimate on the number of iterates to regularized U;, 7 = 1..p
® Iror estimate In 2 norm

Algorithm/Result with No detail
code knowledge

e Generalization to non-linear elliptic problems via a Newton
like loop.

Conclusion

e Difficulties: A posteriori Error estimate depends then on the
function used to linearized the operator.

e Generalization to L; and L., with appropriate minimization
procedure.

C. Picard, M. Garbey, July 20th 2006 Extrapolation method and optimum design of solutions - p. 17
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Solution Verification
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= p =~ 100 in the disc, one elsewhere.

= Domain has a L-shape.

= coarse grid solutions: h; = 1/14, hy = 1/20, hy = 1/26.
= fine grid: A" = 1/128.
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Hé%‘é‘i?}/m‘g’ri‘f Error Estimate in L, norm

Solution Verification

A Posteriori Error 5.5 T T 0.14 T -1lr— T

\ 8- L2 two levels —-©— for three levels
—©— L2 three levels — — for Aitken acc.
—k— for true error

- fine grid accuracy

Algorithm/Result with detail
code knowledge

e General Principle(1) 5t 0.12

e General Principle(2)

ediv(pVu) = f

e Error Estimate in L2 norm

45 0.1F
Algorithm/Result with No detail
code knowledge
Conclusion 4 0.08F
35F 0.06
3F 1 0.04F

—&- for two levels
2.51| —o- for three levels 1 002
— — for Aitken acc.
—*— for true error

—7— fine grid accuracy
2 1 0 1 % -4 1
0 0.005 0.01 0 0.01 0.02 0 0.01 0.02
Recovery method L2 residual for LSE Upper bound on the error
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knowledge

Algorithm/Result with No detail code
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General Principle(1)

Let us denote N|u| = 0 the supposedly well posed PDE
problem to be solved, and its unsteady companion problem,
The algorithm is as follow:

e Step 1 Call coarse Mesh : We generate the (coarse) meshes GG
and Gs. If h; Is the average space step for the grid G; we
should have hy < hy but this is not necessary.

e Step 2 call fine Mesh : We generate a fine mesh G, that is
supposed to solve all the scales of the problem. GG, might be a
structured mesh or not. We must have ho, << hq, hs.

e Step 3 Call Solver : We solve the problem on G; and G,
possibly in parallel. The solutions are denoted respectively u;
and us on GG1 and Gbs.

Extrapolation method and optimum design of solutions - p. 21
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Solution Verification

A Posteriori Error

Algorithm/Result with detail
code knowledge

Algorithm/Result with No detail
code knowledge
e General Principle(1)

e General Principle(2)

e Benchmark Problems

e Adina Software

e Results(1)

e Results(2)

e Results : stability and error for
backstep flow

e Results : stability and error for
the battery

e Software Architecture

Conclusion
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General Principle(2)

e Step 4 call Projection : We project these coarse solutions uq
and us onto G,. We denote these projections u{° and us°.

e Step 5 Create sample : We create sample solutions

u® = [au?® + (1 — a)us®]. We smooth out the spurious high
frequency components of the build solution with few explicit
time steps of 0;u = N(u) starting from the initial condition: «2°.
The choice of the Optimum Design Space in which « is taken

IS one the main item of our research.

e Step 6 We compute the best o that minimizes the L, norm of
the residual. We may use a surface response technique.

Extrapolation method and optimum design of solutions - p. 22
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w Jindows Benchmark Problems

Soluton Verifcation e Laminar flow over a backward facing step

A Posterior Ertor The flow problem has the following characteristics:
e Density 1 || Length of the pipe | 10
e i o et Viscosity 0.01 Inflow diameter 1
- Maximum Inflow Velocity | U=1 || Outflow diameter | 2
Reynold Number 500

e Results(1)
e Results(2)

Chswron 0 e Heat Transfer in a composite material (Sandia Nat. Lab.)
e Results : stability and error for
the battery
e Software Architecture a a T .
— (ki (T)— 4+ Q(T)=0InQ x (0,T
Conclusion aa,/.z ( ’I,j( )) axz Q( ) ( Y )

The boundary conditions are of robin type to describe
radiations effects. Remark : The problem is very stiff and the
solution is near discontinuous between material.

C. Picard, M. Garbey, July 20th 2006 Extrapolation method and optimum design of solutions - p. 23
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Solution Verification

A Posteriori Error

Algorithm/Result with detail
code knowledge

Algorithm/Result with No detail
code knowledge
e General Principle(1)

e General Principle(2)

e Benchmark Problems

e Results(1)

e Results(2)

e Results : stability and error for
backstep flow

e Results : stability and error for
the battery

e Software Architecture

Conclusion

C. Picard, M. Garbey, July 20th 2006

ndows

Adina Software

A
D
I

N
A

T

In this simulation, the number of elements are respectively
10347 on the fine grid G°°, 1260 on the coarse grid G;, and
2630 on the coarse grid Gs.

Contour of velocity magnitude on fine grid: Adina R&D
The steady solutions are obtained using a transient scheme for
the incompressible Navier-Stokes equation.
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Results(1)

Solution Verification

0.00016 T T T T T
A Posteriori Error
Algorithm/Result with detail 0.00014 e -
code knowledge ®
o
Algorithm/Result with No detail 0.00012 (] ]
code knowledge o
e General Principle(1) 00001 | o i
e General Principle(2) g o
e Benchmark Problems o) o
. o p— 8e-05 I ) 4

e Adina Software 75 °
e Results(1) Qdé °®
e Results(2) 6e-05 - PY -
e Results : stability and error for ([ ]

backstep flow 46.05 - [ |
e Results : stability and error for P ®

the battery o )
e Software Architecture 2e-05 L ‘.. L i
Conclusion

0 1 1 1 1 1
0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004
Error

LSE: error and residual for Adina R&D in L, norm
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ok Wm‘é"ﬁ Results(2)

Solution Verification

B.0e818 ' ' ' ' ' " LSE method  +
. . me [u]
A Posteriori Error RE =
Algorithm/Result with detail B.@8a1e - # T
code knowledge
) ) ) B.88@14 .
Algorithm/Result with No detail
code knowledge .
e General Principle(1) B.@Ba1z - RlChardS(.)l‘l 7
e General Principle(2) EXUHPUIHUUH
e Benchmark Problems ~  @.8881 4
e Adina Software E
e Results(1) [
i Se-HA5 -
e Results(2)
e Results : stability and error for
backstep flow Ge-@5 | 4
e Results : stability and error for LSE
the battery
) 42-85 | e
e Software Architecture
Conclusion 2e-@5 | .
Ie] 1 1 1 1 1 1 1
@ @. 882 8,084 8. 086 8. 88 @.81 @.a12 @.814 @.816

errar

Performance of LSE and Richardson Extrapolation

C. Picard, M. Garbey, July 20th 2006 Extrapolation method and optimum design of solutions - p. 26



http://cs.uh.edu

e (\,?\Vm‘gﬁ‘f Results : stability and error for backstep flow

Solution Verification

Evaluation of the stability constant Evolution of error to fine grid solution
. 120000 ‘ — — ‘ ; 1 ‘ ‘ — —
A Posteriori Error (] ° ® o o
110000 |- o0 ®e °
Algorithm/Result with detail 100000 |- °. ] wl oo
’ [ ]

code knowledge 90000 - i

) ) ) 80000 |- o ® R
Algorithm/Result with No detail °® 0.01
code knowledge g T ) g

a &
e General Principle(1) 60000 1 oot |
e General Principle(2) 50000 1 o © ]
40000 |- |
e Benchmark Problems " 0ge0 ..Qq
e Adina Software 30000 1 e'
e Results(1) 20000 L 1
e Results(2) 10000 \ \ L L \ \ 1605 \ \ L L \ \
1 4 9 16 25 36 64 100 225 400 1 4 9 16 25 36 64 100 225 400

e Results : stability and error for Size of the compact representation space Size of the compact representation space

backstep flow
e Results : stability and error for
the battery

N —— Figure 1: Evaluation of the sta- Figure 2: Evaluation of the er-
Conclusion bility constant ror upper bound
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H@S‘z?Vl”‘é"ri‘f Results : stability and error for the battery

Solution Verification

Evaluation of the stability constant 1000 T T T T T T T Computed Error on fine grid
iori 40000 ‘ — — ® ° P g
A Posteriori Error ® PY ® o oo
38000 B oo
Algorithm/Result with detail o °
36000 |- o) E 100 L
°
code knowledge ° °
34000
N ®ee °
Algorithm/Result with No detail 32000 - g [
code knowledge € a0 | ®eo | g oo °
— o
e General Principle(1) °
28000 i
e General Principle(2) ° L4
26000 - ° ° i
e Benchmark Problems ° 1 ° ,
. 24000 B
e Adina Software ° ._
e Results(1) 22000‘; 1
e Results(2) 20000 ‘ L PR PR— ‘ ! o1 . . Ly L .
1 4 9 16 25 36 64 100 225 400 1 4 9 16 25 36 49 64 100 169225 400
e Results : stability and error for Size of the compact representation space Size of the compact representation space
y pact rep p:

backstep flow
e Results : stability and error for
the battery

e Figure 3: Evaluation of the sta- Figure 4: Evaluation of the er-
Conclusion bility constant ror upper bound
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@‘%“’gg,ﬁ?\yln‘g)rj‘f Software Architecture

Solution Verification

A Posteriori Error

Algorithm/Result with detail
code knowledge

Algorithm/Result with No detail
Gudeliiuiledds Master Node Tasks

e General Principle(1)

e General Principle(2)
e Benchmark Problems
e Adina Software

e Results(1)

e Results(2)

e Results : stability and error for
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e Conclusions

C. Picard, M. Garbey, July 20th 2006

Conclusions

= A new extrapolation methods for PDEs.

= A better tool for solution verification than RE when the
convergence order is space dependent or far from the
asymptotic rate of convergence.

s Toward a Solution Verification Method with Hands off
Coding.

= Toward a system that is user friendly and scalable.

= Time dependent problem currently under investigation.
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