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Problem

Boundary value problem (Ω) is a polygonal domain and
n = 2 or 3 :

L[u(x)] = f(x), x ∈ Ω ⊂ IRn, u = g on ∂Ω.

Assume that the PDE problem is well posed and has a unique
solution. We consider an approximation on a family of meshes
M(h) parameterized by h > 0 a small parameter.
We denote symbolically the corresponding family of linear
systems

AhUh = Fh.

Let ph denotes the projection of the continuous solution u onto
the mesh M(h). We assume a priori that (||.|| is a given
discrete norm):

||Uh − ph(u)|| → 0, as h → 0,
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Comment

||Uh − ph(u)|| → 0, as h → 0,

Manufactured solution

f(x) = L[u(x)]

■ Polynomial solution to verify the code.

� Test each term of the equation.

� Useful for parallel codes

■ Use of symbolic manipulation languages

■ Constraint by conservation of physical quantities

■ Principle of nearby exact solution (C.J.Roy and
M.M.Hopkins).

■ Possible use of image analysis on experimental data.
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Optimized Extrapolation Technique

• Let M(h1) and M(h2) be two 6= meshes used to build two
approximations U1 and U2 of the PDE problem.
• A consistent linear extrapolation writes

αU1 + (1 − α)U2,

where α is a weight function.
• In classical Richardson Extrapolation (RE) α is a constant.
• In our optimized extrapolation method α is a function solution
of the following optimization problem:

Pα: Find α ∈ Λ(Ω) ⊂ L∞ such thatG(α U1 + (1 − α) U2) is
minimum.

• For computational efficiency, Λ(Ω) should be a finite vector
space of very small dimension compared to the dimension of
Ah.
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General Idea
■ One can choose to work with a posteriori FE error estimates:

� Equilibrated residual method for FE .- see Ainsworth
& Oden and ref.

� A posteriori Finite-Element free constant output
bounds - see Patera and ref.

From now on, and to make our technique general, we will work wi th
discrete value functions and discrete norms: Why is it possi ble?

■ Our ambition: a numerical estimate on ||Uj − U∞||, j = 1, 2,
without computing U∞.

■ M(h∞) should capture a priori all the scales needed.
■ In practice h∞ << h1, h2.

■ The solution Uj can be verified, assuming convergence of
the approximation method, i.e U∞ → u, as h∞ → 0.

■ Reuse extensive knowledge of Physicist and Asymptotic
Analysis.

■ Reuse Stability Theory from Linear Algebra.
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Practical Consequences
• Both coarse grid solutions U1 and U2 must be projected onto
M(h∞). Notation: Ũ1 and Ũ2.

• The objective function is a discrete norm of the residual:

G(Uα) = ||Ah∞
Uα − Fh∞

||, where Uα = α Ũ1 + (1 − α) Ũ2.

The Optimized Extrapolated Solution (OES) if it exists, is
denoted Ve = αeU1 + (1 − αe)U2.

• The choice of the discrete norm depends on the property of
the solution.

• One can choose to work in a subspace:

� Estimate on a functional of the solution.

� Estimate in subdomain.
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Three level methods (1)
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Cancelation phenomenon: surface plot of space dependent
convergence order approximation for ω − ψ code with Re=100.
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Three level methods (2)
• There are subset of Ω where Ũ1 − Ũ2 << hk, with k expected
order of convergence.

• Optimized two-level extrapolation problem is ill posed.

Three levels OES Find α, β ∈ Λ(Ω) ⊂ L∞ such that

G(α U1 + β U2 + (1 − α− β) U3) is minimum.

•If all Uj , j = 1..3, coincide at the same space location there is
either no local convergence or all solutions Uj are exact.

• Robustness of the method should come from the fact that we
do not suppose a priori any asymptotic formula on the
convergence rate of the numerical method as opposed to RE.
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A Posteriori Error
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General Principle (1)
• Let us assume that Ve exists and has been computed.

• Let Uj be one of the coarse grid approximations; We look for
a global a posteriori estimate of the error

||Ũj − ph(u)||.

• Recovery method:

IF ||Ve − ph(u)||2 << ||Ũj − ph(u)||2,

THEN ||Ũj − Ve||2 ∼ ||Ũj − ph(u)||2

• Heuristic: provides a good lower bound on the error in our
numerical experiments with steady incompressible Navier
Stokes (NS).

• But there is no guarantee that a smaller residual for Ve than
for U2 on the fine grid M(h∞) leads to a smaller error.
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General Principle (2)

• From a stability estimate with the discrete operator:

||Ve − U∞|| < µ∞ G(Ve), where µ ≥ ||(Ah∞
)−1||.

we conclude

||Ũ2 − U∞||2 < µ G(Ve) + ||Ve − Ũ2||2.

• Uses extrapolation on µ1, µ2, µ3 to get ≈ µ∞.

• L2 norm: the estimate on µ uses a standard eigenvalue
iterative procedure to get the smallest eigenvalue.

• L1 norm: see N J.Higham papers.

• Additional Test: Verify that the upper bound on ||U∞ − U2||
increases toward an asymptotic limit as M(h∞) gets finer.
Feasible test because the fine grid solution is never computed
in OES.
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Stability estimate (1)

• Let (E, ||.||E) and (F, ||.||F ) be two normed linear space,
N ∈ L(E,F ) be the operator corresponding to the CFD
problem.

• Assuming the problem N(u) = s is well posed for s ∈ B(S, d),
and N(Uh) ∈ B(S, d), for some discrete solution Uh.

• Defining ρ the residual and e the error, an upper bound of the
error is given by

||e||E ≤ ||ρ||F (||∇sN
−1(S + ρ)||E +

K

2
||ρ||F ).

• Let {bEi , i = 1..N}, be a basis of E, and ε ∈ such that
ε = o(1).

• Let (V ∓

i )i=1..N , be the family of solutions of the following
problems N(Uh ∓ εVi) = S + ρ∓ εbi .
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Stability estimate (2)

• We get from finite differences the approximation

Ch∞
= ||∇SN

−1(S + ρ)|| ≈ ||(
1

2
(V +

j − V −

j ))j=1..N || +O(ε2).

• Fundamental tool: compact representation of the solution via
a projection: trigonometric polynomial or wavelet or spectral
elements for example.

• One get the error estimate in this smaller space only.

• The size of the space is fixed adaptively according to the
quality of the approximation of trigonometric
polynomial/wavelets of the FE solution!.

• Both stability estimate and OES construction relies on
several hundred of residual/smoothing computation that are
extremely fast and have embarassing parallelism → distributed
computing !!!
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Algorithm/Result with detail code
knowledge
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General Principle(1)
• Assume that the operator is linear and the objective function
is the discrete L2 norm of the residual.

• Let ei, i = 1..m be a set of basis function of Λ(Ω).

The solution process can be decomposed into three steps.

• Step 1: interpolation of the coarse grid solution from
M(hj), j = 1..p, to M(h∞) and postprocessing to smooth out
the "spurious modes".

• Step 2: evaluate the residual

R[ei (Ũj − Ũj+1)], i = 1..m, j = 1..p− 1,

and R[Ũp] on the fine grid M(h∞).

• Step 3: solution of the least square linear algebra problem
that has m unknowns for each weight coefficient α and β.
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General Principle(2)

• Compact representation of unknown weight functions: m is
much lower than the number of grid points on any coarse grid
used.

• Estimate on the number of iterates to regularized Ũj , j = 1..p

• Generalization to non-linear elliptic problems via a Newton
like loop.

• Difficulties: A posteriori Error estimate depends then on the
function used to linearized the operator.

• Generalization to L1 and L∞ with appropriate minimization
procedure.
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div(ρ∇u) = f
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Error Estimate in L2 norm
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Algorithm/Result with No detail code
knowledge
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General Principle(1)

Let us denote N [u] = 0 the supposedly well posed PDE
problem to be solved, and its unsteady companion problem,
∂tu = N [u].
The algorithm is as follow:

• Step 1 Call coarse Mesh : We generate the (coarse) meshes G1

and G2. If hi is the average space step for the grid Gi we
should have h2 < h1 but this is not necessary.

• Step 2 Call fine Mesh : We generate a fine mesh G∞ that is
supposed to solve all the scales of the problem. G∞ might be a
structured mesh or not. We must have h∞ << h1, h2.

• Step 3 Call Solver : We solve the problem on G1 and G2,
possibly in parallel. The solutions are denoted respectively u1

and u2 on G1 and G2.
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General Principle(2)

• Step 4 Call Projection : We project these coarse solutions u1

and u2 onto G∞. We denote these projections ũ∞1 and ũ∞2 .

• Step 5 Create sample : We create sample solutions
u∞α = [αũ∞1 + (1 − α)ũ∞2 ]. We smooth out the spurious high
frequency components of the build solution with few explicit
time steps of ∂tu = N(u) starting from the initial condition: u∞α .
The choice of the Optimum Design Space in which α is taken
is one the main item of our research.

• Step 6 We compute the best α that minimizes the L2 norm of
the residual. We may use a surface response technique.
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Benchmark Problems

• Laminar flow over a backward facing step
The flow problem has the following characteristics:

Density 1 Length of the pipe 10

Viscosity 0.01 Inflow diameter 1

Maximum Inflow Velocity U=1 Outflow diameter 2

Reynold Number 500

• Heat Transfer in a composite material (Sandia Nat. Lab.)

∂

∂xi

(kij(T ))
∂T

∂xi

+Q(T ) = 0 in Ω × (0, T )

The boundary conditions are of robin type to describe
radiations effects. Remark : The problem is very stiff and the
solution is near discontinuous between material.
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Adina Software

In this simulation, the number of elements are respectively
10347 on the fine grid G∞, 1260 on the coarse grid G1, and

2630 on the coarse grid G2.

Contour of velocity magnitude on fine grid: Adina R&D
The steady solutions are obtained using a transient scheme for

the incompressible Navier-Stokes equation.
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Results(1)
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Results(2)

Performance of LSE and Richardson Extrapolation
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Results : stability and error for backstep flow
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Results : stability and error for the battery
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Software Architecture

Postprocessing Code Code Preparation

Computational Code Computational Nexus User Interface

Master Node Tasks

Slave Node Tasks

Master Node Tasks
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Conclusion
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Conclusions

■ A new extrapolation methods for PDEs.

■ A better tool for solution verification than RE when the
convergence order is space dependent or far from the
asymptotic rate of convergence.

■ Toward a Solution Verification Method with Hands off
Coding.

■ Toward a system that is user friendly and scalable.

■ Time dependent problem currently under investigation.
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