HEAT KERNEL ESTIMATES, RIESZ TRANSFORM AND SOBOLEV ALGEBRA PROPERTY

Frédéric BERNICOT

CNRS - Université de Nantes

June 2014, 10-13

Analyse Harmonique, Probabilités et Applications Conférence en l'honneur d'Aline Bonami

joint with Thierry Coulhon and Dorothee Frey.

Aim : Let (M, d, μ) be a space of homogeneous type and L a "second order" operator, nonnegative, self-adjoint and generating a heat semigroup $(e^{-tL})_{t>0}$. We may consider the Sobolev spaces

$$L^p_{\alpha} := \overline{\left\{f \in \mathcal{D}(L), L^{\alpha/2}(f) \in L^p
ight\}}.$$

Understand which assumptions on the semigroup, would imply the Algebra property of $L^\infty \cap L^p_\alpha$? With the inequality

$$\|fg\|_{L^p_{\alpha}} \lesssim \|f\|_{L^p_{\alpha}} \|g\|_{\infty} + \|f\|_{\infty} \|g\|_{L^p_{\alpha}}.$$

In the Euclidean situations: Strichartz [1967] (with quadratic functionals), Bony-Coifman-Meyer [1980] (via paraproducts), ...

Later, Coulhon-Russ-Tardivel [2001] (via quadratic functionals on Riemannian manifolds with bounded geometry)

Badr-Bernicot-Russ [2012] (via quadratic functionals and paraproducts (Frey,Sire, ...) on Riemannian manifolds)

Objective:

- Understand some regularity properties on such heat semigroup; It appears that regularity are closely related to Poincaré inequalities, lower Gaussian estimates, Riesz transform ...
- Apply them to prove Sobolev Algebra through two approaches (paraproducts and quadratic functionals).

- REGULARITY ESTIMATES ON THE HEAT SEMIGROUP
 - Gradient and Hölder estimates
 - L^p De Giorgi property
 - Connection with Poincaré inequalities and lower Gaussian estimates
- 2 RIESZ TRANSFORM WITHOUT (P_2)
- SOBOLEV ALGEBRA PROPERTY
 - The Algebra property via Paraproducts and quadratic functionals
 - Chain rule and Paralinearization

- REGULARITY ESTIMATES ON THE HEAT SEMIGROUP
 - Gradient and Hölder estimates
 - L^p De Giorgi property
 - Connection with Poincaré inequalities and lower Gaussian estimates
- 2 RIESZ TRANSFORM WITHOUT (P_2)
- SOBOLEV ALGEBRA PROPERTY

Context: (M,d,μ) a unbounded doubling space (of homogeneous dimension ν) and L a "second order" operator, nonnegative, self-adjoint and generating a heat semigroup $(e^{-tL})_{t>0}$. We assume that the associated quadratic form $((f,g) \to \int fL(g)d\mu)$ defines and is a strongly local and regular Dirichlet form with a "carré du champ" ∇ .

Examples:

- Doubling Riemannian manifold with L its nonnegative Beltrami Laplacian and then ∇ is the Riemannian gradient;
- Discrete situation (Graphs, Trees, ...).

Typical upper estimates of the heat kernel:

$$p_t(x,y) \lesssim \frac{1}{\sqrt{V(x,\sqrt{t})V(y,\sqrt{t})}}, \quad \forall \ t>0, \text{ a.e. } x,y \in M.$$
 (DUE)

which self-improves into a Gaussian upper estimate

$$p_t(x,y)\lesssim rac{1}{V(x,\sqrt{t})}\exp\left(-rac{d(x,y)^2}{Ct}
ight), \quad orall\ t>0,\ ext{a.e.}\ x,y\in M.$$

- REGULARITY ESTIMATES ON THE HEAT SEMIGROUP
 - Gradient and Hölder estimates
 - L^p De Giorgi property
 - Connection with Poincaré inequalities and lower Gaussian estimates
- 2 RIESZ TRANSFORM WITHOUT (P_2)
- SOBOLEV ALGEBRA PROPERTY
 - The Algebra property via Paraproducts and quadratic functionals
 - Chain rule and Paralinearization

Gradient estimates (Auscher-Coulhon-Duong-Hofmann [2004]) : for $p \in (1, \infty]$

$$\sup_{t>0} \|\sqrt{t}|\nabla e^{-tL}|\|_{p\to p} < +\infty, \tag{G_p}$$

Under (*DUE*), for $2 , (<math>G_p$) is almost equivalent to

$$\|\nabla_{x} p_{t}(.,y)\|_{p} \leq \frac{C_{p}}{\sqrt{t} \left[V(y,\sqrt{t})\right]^{1-\frac{1}{p}}}, \quad \forall y, \ t>0,$$

$$\tag{1}$$

Under (DUE):

- (G_p) can be seen as a L^p -norm of the gradient of the heat kernel;
- (G_p) holds for every $p \in (1,2]$ (Coulhon-Duong [1999]);
- for p > 2, (G_p) is closely related to (R_p) , the boundedness of the Riesz transform in L^p ([ACDH]);

We aim now to define similar quantities, replacing a gradient (regularity of order 1) by a Hölder quantity (regularity of order $\eta \in (0, 1)$).

For $p \in [1, \infty]$ and $\eta \in (0, 1]$, we shall say that property $(H_{p,p}^{\eta})$ holds if for every $0 < r \le \sqrt{t}$, every pair of concentric balls B_r , $B_{\sqrt{t}}$ with respective radii r and \sqrt{t} , and every function $f \in L^p(M, \mu)$,

$$\left(\int_{B_r} \left| e^{-tL} f - \int_{B_r} e^{-tL} f d\mu \right|^{p} d\mu \right)^{1/p} \lesssim \left(\frac{r}{\sqrt{t}} \right)^{\eta} \left| B_{\sqrt{t}} \right|^{-1/p} \|f\|_{p}, \qquad (H_{p,p}^{\eta})$$

• $(H_{p,p}^{\eta})$ may be thought as a $L^p \to L^{\infty}$ version of a η -Hölder regularity (related to $\|\sqrt{t}\nabla e^{-tL}\|_{p\to\infty}$).

We say that $(HH^{\eta}_{p,p})$ holds if the following is satisfied : for every $0 < r \le \sqrt{t}$, every ball $B_{\sqrt{t}}$ with radius \sqrt{t} and every function $f \in L^p(M,\mu)$,

$$\left(\int_{B_{\sqrt{t}}} \int_{B(x,2r)} \left| e^{-tL} f(y) - \int_{B(x,2r)} e^{-tL} f d\mu \right|^{p} d\mu(y) d\mu(x) \right)^{1/p} \\
\lesssim \left(\frac{r}{\sqrt{t}} \right)^{\eta} \left| B_{\sqrt{t}} \right|^{-1/p} \|f\|_{p}, \tag{HH}_{p,p}^{\eta})$$

• $(HH_{p,p}^{\eta})$ may be thought as a $L^p \to L^p$ version of a η -Hölder regularity related to $\|\sqrt{t}\nabla e^{-tL}\|_{p\to p}$.

PROPOSITION

Under (DUE),

- The lower Gaussian estimates for the heat kernel (LE) (which are equivalent to (P_2)) are equivalent to the existence of some $p \in (1, \infty)$ and some $\eta > 0$ such that $(H_{p,p}^{\eta})$ holds;
- Moreover, for every $\lambda \in (0,1]$ the property $\bigcap_{\eta < \lambda} (H_{p,p}^{\eta})$ is independent on $p \in [1,\infty]$ and will be called

$$(H^{\lambda}) = \bigcup_{p \in [1,\infty]} \bigcap_{\eta < \lambda} (H^{\eta}_{p,p}) = \bigcap_{\eta < \lambda} \bigcup_{p \in [1,\infty]} (H^{\eta}_{p,p}).$$

Proof : Using (DUE), $(H^{\eta}_{\rho,\rho})$ self-improves into $(H^{\eta}_{\rho,\infty})$ (using the $L^{p}-L^{\infty}$ off-diagonal estimates of the semigroup); Up to a small loss on η , $(H^{\eta}_{\rho,\infty})$ implies $(H^{\eta}_{1,\infty})$ and so every $(H^{\eta}_{q,q})$. Moreover, $(H^{\eta}_{1,\infty})$ yields a Hölder regularity of the heat kernel which implies (LE). Reciprocally, under (LE) (or equivalently (P_{2})) we know that the heat kernel satisfies a Hölder regularity.

To obtain (H^{λ}) for some λ , we have to control oscillations, which is easy under some Poincaré inequality.

We reobtain the following result (Coulhon [2003] and Boutayeb [2009]):

PROPOSITION

For $p \in (\nu, \infty)$,

$$(G_p) + (P_p) \Longrightarrow (DUE) + (H^{1-\frac{\nu}{p}}) \Longrightarrow (DUE) + (LE).$$

Proof: $(G_p) + (P_p) \Longrightarrow (DUE)$, indeed using a self-improvement of Poincaré inequality we then obtain $L^{p-\epsilon} - L^p$ boundedness of the semigroup. By iteration/extrapolation, we obtain $L^1 - L^\infty$ estimates. Difficulties for the non-polynomial situations (weighted estimates ... Boutayeb-Coulhon-Sikora [2014]).

Question : for $p \in (2, \nu)$?

- REGULARITY ESTIMATES ON THE HEAT SEMIGROUP
 - Gradient and Hölder estimates
 - L^p De Giorgi property
 - Connection with Poincaré inequalities and lower Gaussian estimates
- 2 RIESZ TRANSFORM WITHOUT (P_2)
- SOBOLEV ALGEBRA PROPERTY
 - The Algebra property via Paraproducts and quadratic functionals
 - Chain rule and Paralinearization

THE L^2 -SITUATION

Introduced by De Giorgi [1957] (then Moser, Giaquinta, Auscher, Hofmann, Kim ...), the L^2 De Giorgi property : there exists $\epsilon \in (0,1)$ such that for every pair of balls B_r , B_R with radii r, R with $B_r \subset B_R$, and all functions $u \in W^{1,2}$ harmonic in B_R , i.e. Lu = 0 in B_R , one has

$$\left(\int_{B_r} |\nabla u|^2 d\mu\right)^{\frac{1}{2}} \lesssim \left(\frac{R}{r}\right)^{\epsilon} \left(\int_{2B_R} |\nabla u|^2 d\mu\right)^{\frac{1}{2}}.$$
 (DG₂)

The Dirichlet energy integral of harmonic functions (solutions of the elliptic problem) have a growth at most linear on the radius.

A non-homogeneous equivalent (under some Poincaré inequality) version (that is, not restricted to harmonic functions) :

$$\left(\int_{B_r} |\nabla f|^2 d\mu \right)^{1/2} \lesssim \left(\frac{R}{r} \right)^{\epsilon} \left[\left(\int_{2B_R} |\nabla f|^2 d\mu \right)^{1/2} + R \|Lf\|_{L^{\infty}(2B_R)} \right].$$

THEOREM

Under Poincaré (P_2) then (DG_2) holds. Indeed, a Faber-Krahn inequality and elliptic regularity property implies (DG_2) .

The proof relies on a suitable iteration argument with Caccioppoli inequality (for harmonic and subharmonic functions) to compare oscillations and the gradient. To get the elliptic regularity property: elliptic Moser iteration argument (Moser [1961]).

THEOREM

Under Poincaré (P_2) then $(H_{2,2}^{1-\epsilon})$ holds (with $\epsilon > 0$ given by (DG_2)) and so (LE), and a parabolic Harnack inequality.

This allows us to get around a parabolic iteration argument: we get the parabolic property directly from a elliptic regularity property (Hebisch Saloff-Coste [2001]).

Extension to L^p for p > 2

DEFINITION (L^p DE GIORGI PROPERTY)

For $p \in [1, \infty)$ and $\epsilon \in (0, 1)$, we say that $(DG_{p,\epsilon})$ holds if : for every pair of balls B_r , B_R with $B_r \subset B_R$ and respective radii r and R, and for every function $f \in \mathcal{D}$, one has

$$\left(\oint_{B_r} |\nabla f|^p d\mu \right)^{1/p} \lesssim \left(\frac{R}{r} \right)^{\epsilon} \left[\left(\oint_{2B_R} |\nabla f|^p d\mu \right)^{1/p} + R \|Lf\|_{L^{\infty}(2B_R)} \right]. \quad (DG_{p,\epsilon})$$

We write (DG_p) if $(DG_{p,\epsilon})$ is satisfied for some $\epsilon \in (0,1)$.

A non-local (and weaker) version will be sufficient:

$$\left(\int_{B_r} |\nabla f|^p d\mu\right)^{1/p} \lesssim \left(\frac{R}{r}\right)^{\epsilon} \left[|B_R|^{-1/p} \left(\||\nabla f|\|_p + R\|Lf\|_p \right) + R\|Lf\|_{L^{\infty}(B_R)} \right].$$

$$(\overline{DG}_{p,\epsilon})$$

Important : $(DG_{p,\epsilon})$ and $(\overline{DG}_{p,\epsilon})$ are always satisfied for $p > \nu$ with $\overline{\epsilon} = \nu/p \in (0,1)$!

- REGULARITY ESTIMATES ON THE HEAT SEMIGROUP
 - Gradient and Hölder estimates
 - L^p De Giorgi property
 - Connection with Poincaré inequalities and lower Gaussian estimates
- 2 RIESZ TRANSFORM WITHOUT (P_2)
- SOBOLEV ALGEBRA PROPERTY
 - The Algebra property via Paraproducts and quadratic functionals
 - Chain rule and Paralinearization

THEOREM

For any $p \ge 2$, (G_p) , (P_p) and (\overline{DG}_p) imply (LE) (which is equivalent to (P_2)). It's almost optimal since if (G_p) holds for some $p \in (2, \infty)$, then for every $q \in [2, p]$

$$(P_q) + (\overline{DG}_q) \Longleftrightarrow (P_2).$$

Proof : From (G_p) , (P_p) and (\overline{DG}_p) , we get some oscillation estimate (H^{λ}) and so (P_2) . Starting from (P_2) , we know that we have (DG_2) . Try to interpolate between (DG_2) and (DG_{ν^+}) to get (DG_p) for $p \in (2, \nu]$, not directly but going through oscillation estimates, characterizing De Giorgi inequalities.

Condition (G_p) is stronger and stronger for $p \ge 2$ increasing Condition (P_p) is weaker and weaker for $p \ge 2$ increasing.

COROLLARY

For $2 \le q , we have$

$$(G_p)+(P_p)+(\overline{DG}_p)\Longrightarrow (G_q)+(P_q)+(\overline{DG}_q).$$

The proof relies on a non-local L^p Cacciopoli inequality:

PROPOSITION (*L^p* CACCIOPPOLI INEQUALITY)

Assume (G_p) and (DUE) for some $p \in [2, \infty]$. Then for every $q \in (1, p]$

$$\left(\oint_{\mathcal{B}} |r \nabla f|^q d\mu \right)^{1/q} \lesssim \left[\left(\oint_{2\mathcal{B}} |f|^q d\mu \right)^{1/q} + \left(\oint_{2\mathcal{B}} |r^2 L f|^q d\mu \right)^{1/q} \right]$$

for all $f \in \mathcal{D}$ and all balls B of radius r.

Proof: Only using (G_p) , we get a non-local inequality with fast decaying off-diagonal quantities. Improvment using simultaneously the finite speed propagation property to keep the information of supports.

PROPOSITION

Under (P_2) , there exists some $\kappa > 0$ such that (G_p) and (R_p) hold for $p \in (2, 2 + \kappa)$.

[Auscher-Coulhon, 2005] (using Riemannian structure and differential forms) Extension to this more general setting (relying on a Gehring's argument on reverse Hölder inequalities).

PROPOSITION

Under (P_2) , there exists some $\kappa > 0$ such that (\overline{DG}_p) holds for $p \in (2, 2 + \kappa)$.

Open question : Can we directly get (\overline{DG}_p) for some p > 2 through (G_p) and (P_p) ?

- REGULARITY ESTIMATES ON THE HEAT SEMIGROUP
- 2 Riesz transform without (P_2)
- 3 SOBOLEV ALGEBRA PROPERTY

PROPOSITION

For some $p_0 \in (2, \infty)$, under (P_{p_0}) and (G_{p_0}) , there exists some $\kappa > 0$ such that (G_p) holds for $p \in (p_0, p_0 + \kappa)$.

Proof : we already know that we have (DUE) then we adapt to a L^{p_0} -version of the previous proposition.

Riesz transform : $|\nabla L^{-1/2}|$

PROPOSITION

For some $p_0 \in (2, \infty)$, under (P_{p_0}) and (G_{p_0}) , then (R_p) holds for $p \in (1, p_0)$.

Proof: Improvment of [ACDH] where (P_2) was required. It relies on the fact that (P_{p_0}) and (G_{p_0}) implies a L^2 -Poincaré inequality for harmonic functions and with an extra term (involving the laplacian) for non harmonic functions. Application of a self-improving property of reverse Hölder inequalities.

PROPOSITION

Let $\omega \in L^1_{loc}$ be a non-negative function such that for some $1 and every ball <math>B \subset M$,

$$\left(\oint_{\mathcal{B}} \omega^q \, d\mu \right)^{1/q} \lesssim \left(\oint_{2\mathcal{B}} \omega^p \, d\mu \right)^{1/p}.$$

Then for every $\eta \in (0,1)$ there is an implicit constant such that for every ball B

$$\left(\int_{\mathcal{B}} \omega^q \, \mathrm{d} \mu \right)^{1/q} \lesssim \left(\int_{2\mathcal{B}} \omega^{\eta p} \, \mathrm{d} \mu \right)^{1/(\eta p)}.$$

So the RHS exponent of a reverse Hölder inequality always self-improves.

Combining all these results:

THEOREM

If for some $p_0 \in [2,\infty]$, the combination (P_{p_0}) with (G_{p_0}) holds then there exists $p(L) \in (p_0,\infty]$ such that

$$(1, p(L)) = \{ p \in (1, \infty), (G_p) \text{ holds} \} = \{ p \in (1, \infty), (R_p) \text{ holds} \}.$$

- REGULARITY ESTIMATES ON THE HEAT SEMIGROUP
- ② RIESZ TRANSFORM WITHOUT (P_2)
- 3 SOBOLEV ALGEBRA PROPERTY
 - The Algebra property via Paraproducts and quadratic functionals
 - Chain rule and Paralinearization

- REGULARITY ESTIMATES ON THE HEAT SEMIGROUP
 - Gradient and Hölder estimates
 - L^p De Giorgi property
 - Connection with Poincaré inequalities and lower Gaussian estimates
- 2 RIESZ TRANSFORM WITHOUT (P_2)
- SOBOLEV ALGEBRA PROPERTY
 - The Algebra property via Paraproducts and quadratic functionals
 - Chain rule and Paralinearization

DEFINITION

For $\alpha \in (0,1]$ and $p \in (1,\infty)$ we say that Property $A(\alpha,p)$ holds if :

- the space $\dot{L}^p_{\alpha}(M) \cap L^{\infty}(M)$ is an algebra for the pointwise product;
- and the Leibniz rule inequality is valid :

$$\|fg\|_{\dot{L}^p_\alpha(M)}\lesssim \|f\|_{\dot{L}^p_\alpha(M)}\|g\|_\infty+\|f\|_\infty\|g\|_{\dot{L}^p_\alpha(M)},\quad\forall\,f,g\in\dot{L}^p_\alpha(M)\cap L^\infty(M).$$

Two methods: paraproducts or characterization of Sobolev spaces via quadratic functionals.

THE PARAPRODUCTS

Idea: Use the spectral decomposition

$$f = c \int_0^\infty \psi(tL) f \frac{dt}{t}$$

where $\psi(tL)=(tL)^Ne^{-tL}$. Let ϕ such that $\phi(0)=1$ and $\phi'(x)=\psi(x)/x$. Then $\psi(tL)$ can be thought as a regular version of $\mathbf{1}_{[t^{-1},2t^{-1}]}(L)$ and is a smooth restriction operator to "frequencies at the scale $t^{-1/2}$ ". By analogy with the Euclidean paraproducts,

$$\Pi_g(f) = \int_0^\infty \psi(tL) f \cdot \phi(tL) g \, \frac{dt}{t}.$$

Product decomposition : $fg = \Pi_g(f) + \Pi_f(g)$.

In [B.-Sire] and [Badr-B.-Russ], other paraproducts are defined :

$$\tilde{\Pi}_g(f) = \int_0^\infty \phi(tL) \left[\psi(tL) f \cdot \phi(tL) g \right] \frac{dt}{t}.$$

Boundedness in Lebesgue spaces [B., Frey], using Poincaré inequality (P_2) and a T(1)-theorem adapted to semigroup.

Question: When for $g \in L^{\infty}$, is Π_g bounded on \dot{L}_{α}^p ? In this case, we have $A(\alpha, p)$! Is such a boundedness equivalent to $A(\alpha, p)$?

THE QUADRATIC FUNCTIONALS

<u>Idea</u>: Use a semigroup version of Strichartz functional. Let $\rho > 0$ be an exponent. For $\alpha > 0$ and $x \in M$, we define

$$S_{\alpha}^{\rho}f(x) = \left(\int_{0}^{\infty} \left[\frac{1}{r^{\alpha}} \operatorname{Osc}_{\rho,B(x,r)}(f)\right]^{2} \frac{dr}{r}\right)^{1/2}$$

where for *B* a ball $Osc_{\rho,B}$ denotes the L^{ρ} -oscillation :

$$\operatorname{Osc}_{\rho,B}(f) = \left(\oint_{B} \left| f - \oint_{B} f d\mu \right|^{\rho} d\mu \right)^{\frac{1}{\rho}}.$$

Question : When do we have $\|\cdot\|_{\dot{L}^p_\alpha}\simeq \|\mathcal{S}^p_\alpha(\cdot)\|_p$? In this case, we have $A(\alpha,p)$ since

$$\operatorname{Osc}_{\rho,B}(fg) \leq \|g\|_{\infty} \operatorname{Osc}_{\rho,B}(f) + \|f\|_{\infty} \operatorname{Osc}_{\rho,B}(g).$$

Is such a property equivalent to $A(\alpha, p)$?

The case for $p \in (1, 2]$

THEOREM

Under (DUE) then for every $\alpha \in (0,1)$ and $p \in (1,2]$ the paraproduct is bounded on \dot{L}^p_α . Consequently, $A(\alpha,p)$ holds.

Proof : First obtain the p=2 case, using orthogonality and duality in tent spaces (or Carleson measure). Then use an extrapolation argument to get the other boundedness for $p \in (1,2)$. It suffices to get $L^2 - L^2$ off-diagonal estimates.

The case for p > 2

THEOREM

Then

- (A) Under (DUE), (G_{q_0}) with $(\overline{DG}_{q_1,\kappa})$ for some $2 \le q_1 < q_0 \le \infty$ and $\kappa \in (0,1)$, $A(\alpha,p)$ holds for every $p \le [2,\infty)$ and $\alpha < 1 \kappa \left(1 \frac{2}{p}\right)$;
- (B) Under (DUE) and (H^{η}) for some $\eta \in (0,1]$, $A(\alpha,p)$ holds for every $\alpha \in (0,\eta)$ and $p \in (1,\infty)$;
- (c) under the combination (G_{q_0}) , (P_{q_0}) with $(DG_{q_0,\kappa})$ for some $\kappa \in (0,1)$ and $q_0 > 2$, $A(\alpha,p)$ holds for every $p \leq [2,q_0]$ and $\alpha < 1$;
- (D) under the combination (G_{q_0}) , (P_{q_0}) with $(\overline{DG}_{q_0,\kappa})$ for some $\kappa \in (0,1)$ and $q_0 > 2$, $A(\alpha,p)$ holds for every $p > q_0$ with $\alpha < 1 \kappa(1 \frac{q_0}{p})$.
- (E) under (R_{q_0}) for some $q_0 > 2$, $A(\alpha, p)$ holds for every $p \in [2, q_0)$ with $\alpha < 1$.

Moreover, in the four first situations the paraproduct is bounded in the corresponding Sobolev spaces. And we have a characterization by quadratic functional of the Sobolev norm in cases (B) and (C).

4 D > 4 B > 4 B > 4 B >

- REGULARITY ESTIMATES ON THE HEAT SEMIGROUP
 - Gradient and Hölder estimates
 - L^p De Giorgi property
 - Connection with Poincaré inequalities and lower Gaussian estimates
- 2 RIESZ TRANSFORM WITHOUT (P_2)
- SOBOLEV ALGEBRA PROPERTY
 - The Algebra property via Paraproducts and quadratic functionals
 - Chain rule and Paralinearization

PARALINEARIZATION

If we have a characterization via quadratic functionals, then optimal chain rule: the composition through a Lipschitz function preserves the Sobolev space.

For a Ahlfors regular space (i.e. $\mu(B(x,r)) \simeq r^{\nu}$) we can describe a Paralinearization result (which requires more regularity) :

THEOREM (CHAIN RULE)

Let $F \in C^3(\mathbb{R})$ a nonlinearity with F(0) = 0. For $\alpha \in (0,1)$, $p \in (1,\infty]$ with $\frac{\nu}{p} < \alpha < 1$, consider a fixed function $f \in L^{\infty} \cap \dot{L}^p_{\alpha}$. Then

$$F(f) \in L^{\infty} \cap \dot{L}^{p}_{\alpha}$$
.

If $F \in C^2(\mathbb{R})$, then we have the paralinearization :

$$F(f) - \Pi_{F'(f)}(f) \in L^{\infty} \cap \dot{L}^{p}_{\alpha} \cap \dot{L}^{p}_{\alpha+\rho}$$

for some $0 < \rho \simeq \alpha - \frac{\nu}{\rho}$.