Comparison of neural network architectures for guitar amplifier emulation

Architecture RTF MSE ESR MAE STFT Target Target + Cabinet Simulation Prediction Prediction + Cabinet Simulation Reference
RNN
(LSTM-32)
0.51 0.0040 0.0244 0.0378 0.5952 Wright, A.; Damskagg, E.P.; Valimaki, V.
Real-Time Black-Box Modelling With Recurrent Neural Networks.
Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19) 2019, pp. 1-8.
http://dafx.de/paper-archive/2019/DAFx2019_paper_43.pdf.
CNN
(WaveNet)
0.35 0.0703 0.4337 0.1359 0.6542 Damskagg, E.p.; Juvela, L.; Thuillier, E.; Valimaki, V.
Deep Learning for Tube Amplifier Emulation 2019. pp. 471-475.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8682805.
Hybrid
(conv-LSTM)
3.25 0.0069 0.0423 0.0530 0.6937 Schmitz, T.
Nonlinear Modeling of the Guitar Signal Chain Enabling its Real-time Emulation
2019. p. 258.
https://pdfs.semanticscholar.org/18e8/0acdd9d704a61a1f174a2a4a1a9411801785.pdf, doi:10.3115/v1/w14-4012.
CNN
(Shallow TCN)
0.14 0.3190 2.1371 0.4510 1.2348 Steinmetz, C.J.; Reiss, J.D.
Efficient Neural Networks for Real-time Analog Audio Effect Modeling
2021. [2102.06200].
http://arxiv.org/abs/2102.06200.