Architecture | RTF | MSE | ESR | MAE | STFT | Target | Target + Cabinet Simulation | Prediction | Prediction + Cabinet Simulation | Reference |
---|---|---|---|---|---|---|---|---|---|---|
RNN (LSTM-32) |
0.51 | 0.0040 | 0.0244 | 0.0378 | 0.5952 |
Wright, A.; Damskagg, E.P.; Valimaki, V. Real-Time Black-Box Modelling With Recurrent Neural Networks. Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19) 2019, pp. 1-8. http://dafx.de/paper-archive/2019/DAFx2019_paper_43.pdf. |
||||
CNN (WaveNet) |
0.35 | 0.0703 | 0.4337 | 0.1359 | 0.6542 |
Damskagg, E.p.; Juvela, L.; Thuillier, E.; Valimaki, V. Deep Learning for Tube Amplifier Emulation 2019. pp. 471-475. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8682805. |
||||
Hybrid (conv-LSTM) |
3.25 | 0.0069 | 0.0423 | 0.0530 | 0.6937 |
Schmitz, T. Nonlinear Modeling of the Guitar Signal Chain Enabling its Real-time Emulation 2019. p. 258. https://pdfs.semanticscholar.org/18e8/0acdd9d704a61a1f174a2a4a1a9411801785.pdf, doi:10.3115/v1/w14-4012. |
||||
CNN (Shallow TCN) |
0.14 | 0.3190 | 2.1371 | 0.4510 | 1.2348 |
Steinmetz, C.J.; Reiss, J.D. Efficient Neural Networks for Real-time Analog Audio Effect Modeling 2021. [2102.06200]. http://arxiv.org/abs/2102.06200. |