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Abstract. The basic reproduction number R0 serves as a threshold parameter of many epidemic4
models for disease extinction or spread. The purpose of this paper is to investigate R0 for spatial5
reaction-diffusion partial differential equations epidemic models. We define R0 as the spectral radius6
of a product of a local basic reproduction number R, and strongly positive compact linear operators7
with spectral radii one. This definition of R, viewed as a multiplication operator, is motivated by8
the definition of basic reproduction numbers for ordinary differential equations epidemic models. We9
investigate the relation of R0 and R.10
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1. Introduction. For epidemic differential equation models, the basic reproduc-13

tion number R0 is a threshold value such that below this value the disease vanishes,14

while above this value the disease spreads. The calculation of R0 for ordinary dif-15

ferential equations epidemic models has been developed extensively based on [9, 10].16

Many authors have used reaction-diffusion partial differential equations models to17

study the transmission of diseases in geographical regions (see [1, 5, 6, 7, 8, 11, 12,18

16, 19, 20, 22, 23, 27, 29, 30, 32, 33, 35]). The purpose of this paper is to connect19

basic reproduction numbers for partial differential equations epidemic models to basic20

reproduction numbers for ordinary differential equations models.21

In a recent study, Thieme [28] provided a general theoretical approach to define
R0 as the spectral radius of a resolvent-positive operator for a wide range of epidemic
models, which is a generalization of the finite dimensional version in [9, 10]. Another
approach to characterize R0 for reaction-diffusion epidemic models relied on a varia-
tional characterization of R0, which works when the model is relatively simple (the
stability of the disease free equilibrium is determined by the sign of an eigenvalue
problem consisting of only one equation). For example, Allen et al. [1] characterize
R0 for a simple diffusive SIS model by the formula

R0 = sup

{ ∫
Ω
βϕ2dx∫

Ω
(dI |Oϕ|2 + γϕ2)dx

: ϕ ∈ H1(Ω), ϕ 6= 0

}
,

where β = β(x) is the transmission rate, γ = γ(x) is the removal rate, and dI is the22

diffusion coefficient. This allows the authors to show that R0 is strictly decreasing in23

dI , R0 → ∫Ω β/γdx as dI → 0, and R0 → ∫Ω β/ ∫Ω γ as dI → ∞. Here β(x)/γ(x) is24

the basic reproduction number for the corresponding model without diffusion (which25

we will call the local basic reproduction number).26

For some reaction-diffusion epidemic models, R0 is related to the principal eigen-27

value of an elliptic system, which makes the analysis more difficult. Peng and Zhao28

[27] write R0 as the principal eigenvalue of an eigenvalue problem consisting of a sin-29
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gle equation. Cui and Lou [6] study the impact of the advection rate on R0 for a30

reaction-diffusion-advection SIS model, where they take advantage of the variational31

characterization of R0. We note that calculations of R0 for reaction-diffusion epidemic32

models have been discussed by Wang and Zhao [31]. We also note the papers [14, 25]33

for R0 analysis of stream population models, and [36] for R0 analysis of time-delayed34

compartmental population models in periodic environments. Other investigations of35

R0 for partial differential equations epidemic models are found in [19, 26, 29, 30, 32],36

where the computation of R0 is mostly for constant coefficients in space. Here we37

explore this question with non-constant coefficients, which will allow us to explore38

the impact of the (small and large) diffusion coefficients and spatial heterogeneity.39

Although our approach is applicable to a wide range of reaction-diffusion epidemic40

models, we will focus on the vector-host model in [12] (see also [24]). Suppose that41

individuals are living in a bounded domain Ω ⊂ Rn with smooth boundary ∂Ω. Let42

Hu(x), Hi(x, t), Vu(x, t) and Vi(x, t) be the density of uninfected hosts, infected hosts,43

uninfected vectors, and infected vectors at position x and time t, respectively. Then44

the model in [12] to study the outbreak of Zika in Rio De Janerio is the following45

reaction-diffusion system:46

(1.1)


∂Hi/∂t− O · δ1OHi = −λHi + σ1Hu(x)Vi,
∂Vu/∂t− O · δ2OVu = −σ2VuHi + β(Vu + Vi)− µ(Vu + Vi)Vu,
∂Vi/∂t− O · δ2OVi = σ2VuHi − µ(Vu + Vi)Vi,
∂Hi/∂n = ∂Vu/∂n = ∂Vi/∂n = 0,
(Hi(., 0), Vu(., 0), Vi(x, 0)) = (Hi0, Vu0, Vi0) ∈ C(Ω̄;R3

+),

47

where δ1, δ2 ∈ C1+α(Ω̄) are strictly positive, and the functions Hu, λ, β, σ1, σ2 and µ48

are strictly positive and belong to Cα(Ω̄). It is assumed that uninfected hosts are49

stationary in space, and the diffusion of infected hosts corresponds indirectly to the50

movement of the Zika virus in the spatial environment. Both uninfected and infected51

vectors are assumed to diffuse in the spatial environment.52

Following [28, 31], the basic reproduction number R0 for (1.1) is defined as the53

spectral radius r(−CB−1) of −CB−1, where B : D(B) ⊂ C(Ω̄;R2) → C(Ω̄;R2) and54

C : C(Ω̄;R2)→ C(Ω̄;R2) are the linear operators55

(1.2) B =

(
O · δ1O
O · δ2O

)
+

(
−λ σ1Hu

0 −µV̂

)
, C =

(
0 0

σ2V̂ 0

)
,56

D(B) =

(ϕ,ψ) ∈
⋂
p≥1

W 2,p(Ω;R2) :
∂ϕ

∂n
=
∂ψ

∂n
= 0 on ∂Ω and B(ϕ,ψ) ∈ C(Ω̄;R2)


and V̂ is the unique positive solution of the elliptic problem57

(1.3)

{
−O · δ2(x)OV = β(x)V − µ(x)V 2, x ∈ Ω,
∂
∂nV = 0, x ∈ ∂Ω.

58

The system (1.1) in the case without diffusion, and viewed as an ordinary differ-59

ential equations system at a specific location x, is60

(1.4) dHi/dt = −λ(x)Hi(t) + σ1(x)Hu(x)Vi(t),
dVu/dt = −σ2(x)Vu(t)Hi(t) + β(x)(Vu(t) + Vi(t))− µ(x)(Vu(t) + Vi(t))Vu(t),
dVi/dt = σ2(x)Vu(t)Hi(t)− µ(x)(Vu(t) + Vi(t))Vi(t).

61
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The basic reproduction number of (1.4) at a specific location x, obtained by the next62

generation method, is63

(1.5) R(x) = R1(x)R2(x), where R1(x) =
σ1(x)Hu(x)

λ(x)
, and R2(x) =

σ2(x)

µ(x)
.64

R1(x) and R2(x) have their own biological meanings: at a specific location x, R1(x)65

measures the impact of one infected vector on susceptible hosts while R2(x) measures66

the impact of one infected host on the susceptible vectors. Since R0 is difficult to67

visualize, our main purpose of this research is to study the relation between R0 and68

R(x), the latter being a function of x ∈ Ω̄.69

In sections 3 and 4, we study the relation of R0 and R(x), where our approach is70

based on the formula71

(1.6) R0 = r(L1R1L2R2), L1 := (λ−O · δ1O)−1λ, and L2 := (µV̂ −O · δ2O)−1µV̂ ,72

where R1 and R2 are viewed as multiplication operators on C(Ω̄), and L1 and L273

are strongly positive compact linear operators on C(Ω̄). This formula establishes74

an interesting connection between R0 and R as r(L1L2) = r(L1) = r(L2) = 1 (see75

Lemma 3.4). Consequences of this formula are76

• If R1 and R2 are constant, then R0 = R (see Corollary 3.5);77

• R0 ≥ 1 if Ri(x) ≥ 1, i = 1, 2, for all x ∈ Ω̄ and R0 ≤ 1 if Ri(x) ≤ 1, i = 1, 2,78

for all x ∈ Ω̄ (see Theorem 3.6).79

When the diffusion coefficients δ1 and δ2 are constant, we establish a quantitative80

connection of R0 and R. To this end, we prove a result (Theorem 4.1) about the con-81

vergence of spectral radii for a sequence of strongly positive compact linear operators82

in an ordered Banach space. Based on Theorem 4.1, we show83

• limδ1→∞R0 =
∫
Ω
λR1(L2R2)dx∫

Ω
λdx

for δ2 > 0 and limδ2→∞R0 =
∫
Ω
µR2(L1R1)dx∫

Ω
µdx

84

for δ1 > 0 (see Theorem 4.5);85

• lim(δ1,δ2)→(∞,∞)R0 =
∫
Ω
λR1dx∫
Ω
λdx

∫
Ω
µR2dx∫
Ω
µdx

(see Remark 4.4).86

• limδ1→0 limδ2→0R0 = limδ2→0 limδ1→0R0 = lim(δ1,δ2)→(0,0)R0 = max{R(x) :87

x ∈ Ω̄} (see Theorem 4.9-4.11).88

In section 5, we conduct numerical simulations to illustrate our results. In section 6,89

we give concluding remarks and provide two examples about adopting our approach90

to analyze R0 for reaction-diffusion epidemic models.91

2. Preliminaries. The global dynamics of (1.1) have been analyzed in [24], and92

we first summarize the results that will be used here. Let V = Vu + Vi. Then V (x, t)93

satisfies94

(2.1)

 Vt − O · δ2(x)OV = β(x)V − µ(x)V 2, x ∈ Ω, t > 0,
∂V/∂n = 0, x ∈ ∂Ω, t > 0,
V (., 0) = V0 ∈ C+(Ω̄).

95

The following result about (2.1) is well-known (see [4, Proposition 3.17] [15, Lemma96

A.1], and [18, Proposition 2.5]):97

Lemma 2.1. For any nonnegative nontrivial initial data V0 ∈ C(Ω̄), (2.1) has a98

unique global classic solution V (x, t). Moreover, V (x, t) > 0 for all (x, t) ∈ Ω̄× (0,∞)99

and100

(2.2) lim
t→+∞

‖V (·, t)− V̂ ‖∞ = 0,101
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where V̂ is the unique positive solution of the elliptic problem (1.3). Moreover, if δ2
is a constant parameter, then

lim
δ2→0

V̂ → β

µ
and lim

δ2→∞
V̂ →

∫
Ω
βdx∫

Ω
µdx

in C(Ω̄).

The definition of R0 for (1.1) is closely related to the stability of the semi-trivial102

equilibrium E1 = (0, V̂ , 0) of (1.1). Linearizing the model at E1, one can see that the103

stability of E1 is determined by the sign of the principal eigenvalue of the problem:104

(2.3)


κϕ = O · δ1Oϕ− λϕ+ σ1Huψ, x ∈ Ω,

κψ = O · δ2Oψ + σ2V̂ ϕ− µV̂ ψ, x ∈ Ω,
∂ϕ/∂n = ∂ψ/∂n = 0, x ∈ ∂Ω.

105

Problem (2.3) is cooperative, so it has a principal eigenvalue κ0 associated with a106

positive eigenvector (ϕ0, ψ0) ([17]).107

Let A = B + C, where B and C are defined in section 1. Then A and B are108

resolvent positive ([28]), and A is a positive perturbation of B. By [28, Theorem 3.5],109

κ0 = s(A) and r(−CB−1) − 1 have the same sign, where s(A) is the spectral bound110

of A. We then have the following result:111

Theorem 2.2. R0−1 and κ0 have the same sign. Moreover, E1 is locally asymp-112

totically stable if R0 < 1 and unstable if R0 > 1.113

The main results proved in [24] about the global dynamics of the model (1.1) are114

as follows:115

Theorem 2.3. The following hold:116

• If R0 ≤ 1, then for any nonnegative initial data (Hi0, Vu0, Vi0) ∈ C(Ω̄;R3
+)117

with Vu0 + Vi0 6≡ 0, the solution (Hi, Vu, Vi) of (1.1) satisfies118

(2.4) lim
t→∞

‖(Hi(·, t), Vu(·, t), Vi(·, t))− E1‖∞ = 0,119

where E1 = (0, V̂ , 0).120

• If R0 > 1, then for any initial data (Hi0, Vu0, Vi0) with Vu0 + Vi0 6≡ 0 and121

Hi0 + Vi0 6≡ 0, the solution (Hi, Vu, Vi) of (1.1) satisfies122

lim
t→∞

‖Hi(·, t), Vu(·, t), Vi(·, t))− (Ĥi, V̂u, V̂i)‖∞ = 0,123

where E2 = (Ĥi, V̂u, V̂i) is the unique EE of (1.1).124

Let X be an ordered Banach space with positive cone X+, and let L1, L2 : X → X125

be two bounded linear operators. Then it is well-known that126

(2.5) r(L1L2) = r(L2L1) ≤ ‖L1‖‖L2‖,127

where r(Li) denotes the spectral radius of Li, i = 1, 2. Indeed, this can be derived128

easily from the Gelfand’s formula129

(2.6) r(L1) = lim
n→∞

‖Ln1‖1/n.130

131

Remark 2.4. It is very important to note that (2.6) does not imply r(L1L2L3) =132

r(L3L2L1).133
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Suppose that X+ has non-empty interior int(X+). Then L1 is strongly positive134

if L1(X+ \ 0) ⊆ int(X+). The operator L1 is compact if the image of the unit ball is135

relatively compact in X. We will need the following generalization of Krein-Rutman136

theorem ([2]).137

Theorem 2.5. Let X be an ordered Banach space with positive cone X+ such that138

X+ has non-empty interior. Suppose that T : X → X is a strongly positive compact139

linear operator. Then the spectral radius r(T ) is positive and a simple eigenvalue140

of T associated with a positive eigenvector, and there is no other eigenvalue with a141

positive eigenvector. Moreover if S : X → X is a linear operator such that S ≥ T ,142

i.e. S(v) ≥ T (v) for all v ∈ X+, then r(S) ≥ r(T ). If, in addition, S − T is strongly143

positive, then r(S) > r(T ).144

3. General diffusion rates. Our basic result about the basic reproduction145

number R0 of (1.1) is146

Theorem 3.1. Let R0 = r(−CB−1), where B and C are defined in (1.2). Then,147

(3.1) R0 = r(L1R1L2R2),148

where R1 and R2 defined in (1.5) are multiplication operators on C(Ω̄), and L1 and149

L2 defined in (1.6) are strongly positive compact linear operators on C(Ω̄).150

Proof. It is not hard to compute151

B−1 =

(
(O · δ1O− λ)−1 −(O · δ1O− λ)−1σ1Hu(O · δ2O− µV̂ )−1

0 (O · δ2O− µV̂ )−1

)
.152

Therefore,153

−CB−1 =

(
0 0

σ2V̂ (λ− O · δ1O)−1 σ2V̂ (λ− O · δ1O)−1σ1Hu(µV̂ − O · δ2O)−1

)
.154

It then follows that155

R0 = r(−CB−1) = r
(
σ2V̂ (λ− O · δ1O)−1σ1Hu(µV̂ − O · δ2O)−1

)
156

= r

(
σ2V̂ L1R1L2

1

µV̂

)
.157

From (2.5), we have

R0 = r

(
L1R1L2

1

µV̂
σ2V̂

)
= r(L1R1L2R2).

It is well-known that the elliptic estimates and maximum principles imply that L1158

and L2 are strongly positive compact linear operators on C(Ω̄).159

Lemma 3.2. ‖L1‖ = 1 and ‖L2‖ = 1.160

Proof. Notice that Li(±1) = ±1 for i = 1, 2. For any u ∈ C(Ω̄) with ‖u‖∞ ≤ 1,
we have −1 ≤ u ≤ 1. By the comparison principle, we have

−1 = Li(−1) ≤ Liu ≤ Li1 = 1, for i = 1, 2.

Therefore, ‖Liu‖∞ ≤ 1 = ‖u‖∞, which implies ‖Li‖ ≤ 1 for i = 1, 2. Moreover, since161

L11 = 1 and L21 = 1, we must have ‖L1‖ = ‖L2‖ = 1.162
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We immediately have the following result from (2.5):163

Theorem 3.3. If Ri(x) < 1, i = 1, 2, for all x ∈ Ω̄, then R0 < 1.164

Proof. R0 = r(L1R1L2R2) ≤ ‖L1‖‖R1‖‖L2‖‖R2‖ = ‖R1‖‖R2‖ < 1.165

We apply the Krein-Rutman theorem to study the spectral radius of L1, L2 and166

L1L2.167

Lemma 3.4. The spectral radius of L1, L2 and L1L2 is 1,i.e. r(L1) = r(L2) =168

r(L1L2) = 1.169

Proof. Since L1 and L2 are strongly positive compact operators on C(Ω̄), so is170

L1L2. By Theorem 2.5, r(L1), r(L2), and r(L1L2) are simple positive eigenvalues of171

L1, L2, and L1L2, associated with positive eigenvectors, respectively. Moreover, there172

is no other eigenvalue of L1, L2, or L1L2 associated with a positive eigenvector. Since173

L11 = L21 = L1L21 = 1, we must have r(L1) = r(L2) = r(L1L2) = 1.174

Noticing that R0 = r(L1R1L2R2), Lemma 3.4 implies that there is a significant175

connection between the basic reproduction number R0 and the local basic reproduc-176

tion number R(x). A consequence of Lemma 3.4 is the following result:177

Corollary 3.5. If R1 and R2 are constant, then R0 = R.178

Our next result, based on the Krein-Rutman theorem, is stronger than Theorem179

3.3.180

Theorem 3.6. The following hold:181

1. If Ri(x) ≥ 1, i = 1, 2, for all x ∈ Ω̄, then R0 ≥ 1. If, in addition, R1(x) 6≡ 1182

or R2(x) 6≡ 1, then R0 > 1.183

2. If Ri(x) ≤ 1, i = 1, 2, for all x ∈ Ω̄, then R0 ≤ 1. If, in addition, R1(x) 6≡ 1184

or R2(x) 6≡ 1, then R0 < 1.185

3. R1mR2m ≤ R0 ≤ R1MR2M , where Rim = min{Ri(x) : x ∈ Ω̄} and RiM =186

max{Ri(x) : x ∈ Ω̄}, i = 1, 2.187

Proof. We only prove part 1 as the proof of the rest is similar. If Ri(x) ≥ 1188

for all x ∈ Ω̄, then L1R1L2R2 ≥ L1L2. By Theorem 2.5 and Lemma 3.4, we have189

R0 = r(L1R1L2R2) ≥ r(L1L2) = 1.190

Let φ be a positive eigenfunction corresponding to principal eigenvalue R0 of
L1R1L2R2. If, in addition, R1(x) 6≡ 1 or R2(x) 6≡ 1, by the strong positivity of L1

and L2, we have
R0φ = L1R1L2R2φ >> L1L2φ.

Therefore, there exists ε > 0 such that R0φ ≥ (1+ε)L1L2φ. Let φm = minx∈Ω̄ φ(x) >
0. Then, by the positivity of L1L2 and L1L21 = 1, we have

R0φ ≥ (1 + ε)L1L2φ ≥ (1 + ε)L1L2φm = (1 + ε)φm.

Therefore, R0φ ≥ (1 + ε)φm, which implies R0 ≥ 1 + ε > 1.191

We next study the monotonicity of R0. Here, we need the assumption:192

(H1) σ1Hu = σ2V̂ , or both σ1Hu and σ2V̂ are constants.193

Theorem 3.7. Suppose that (H1) holds. If δ1 is constant, then R0 is decreasing194

in δ1.195

Proof. Let κ = 1/R0. By the Krein-Rutman theory, κ is an eigenvalue associated
with a positive eigenvector φ ( we normalize φ such that ‖φ‖2 = 1) of the following
problem:

κL1R1L2R2φ = φ.
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Therefore, we have196

(3.2) κλR1L2R2φ = (λ− δ1∆)φ.197

Differentiating both sides with respect to δ1, we have198

(3.3) κδ1λR1L2R2φ+ κλR1L2R2φδ1 = −∆φ+ (λ− δ1∆)φδ1 .199

Multiplying (3.3) by φ and (3.2) by φδ1 , and integrating their difference over Ω, we
obtain

κδ1

∫
Ω

φλR1L2R2φdx =

∫
Ω

|Oφ|2dx,

where we used the assumption (H1) to derive∫
Ω

φδ1λR1L2R2φdx =

∫
Ω

φλR1L2R2φδ1dx.

Since λR1L2R2 is strongly positive, λR1L2R2φ > 0. Therefore, κδ1 ≥ 0 and κ is200

increasing in δ1. Hence, R0 is decreasing in δ1.201

Remark 3.8. If β/µ is constant, V̂ is independent of δ2. Then, similar to Theorem202

3.7, R0 = r(L2R2L1R1) is decreasing in δ2 if (H1) holds. Moreover, from the proof of203

Theorem 3.7, R0 is strictly deceasing, if the eigenvector is non-constant.204

4. Small or large diffusion rates. We prove the following result on the con-205

vergence of spectral radii for strongly positive compact linear operators, which is206

essential for our investigation of the role of diffusion rates for the basic reproduction207

number R0.208

Theorem 4.1. Let X be an ordered Banach space with positive cone X+ such209

that X+ has nonempty interior. Let Tn, n ≥ 1, and T be strongly positive compact210

linear operators on X. Suppose Tn
SOT−−−→ T (Strong Operator Topology) which means211

Tn(u) → T (u) for any u ∈ X. If ∪n≥1Tn(B) is precompact, where B is the closed212

unit ball of X, and r(Tn) ≥ r0 for some r0 > 0, then r(Tn)→ r(T ).213

Proof. Since T and Tn are compact and strongly positive, by Theorem 2.5, r(T )214

and r(Tn) are positive simple eigenvalues of T and Tn, respectively. So there exists215

en ∈ int(X+) with ‖en‖ = 1 such that Tnen = r(Tn)en for all n ≥ 1. Since ∪n≥1Tn(B)216

is precompact and r(Tn) ≥ r0 > 0, {en} is precompact. So there exists a subsequence217

{enk
} of {en} such that enk

→ e for some e ∈ X.218

We claim Tnk
enk
→ Te. Note that supn≥1 ‖Tn(u)‖ < ∞ for any u ∈ X by the

convergence assumption Tn
SOT−−−→ T . Then by the uniform boundedness principle,

there exists M > 0 such that supn≥1 ‖Tn‖ < M . Let ε > 0 be arbitray. Since enk
→ e

and Tnk
e→ Te, there eixsts N > 0 such that ‖enk

− e‖ < ε and ‖Tnk
e− Te‖ < ε for

all k > N . Hence for all k > N , we have

‖Tnk
enk
− Te‖ ≤ ‖Tnk

(enk
− e)‖+ ‖Tnk

e− Te‖ ≤Mε+ ε.

Since ε > 0 was abitrary, Tnk
enk
→ Te.219

Since Tnk
enk

= r(Tnk
)enk

, Tnk
enk

→ Te and enk
→ e, we have r(Tnk

) =220

‖Tnk
enk
‖ → ‖Te‖ and Te = ‖Te‖e. Since en ∈ X+ and ‖en‖ = 1, e ∈ X+ and221

‖e‖ = 1. Thus e is a positive eigenvector of T corresponding to eigenvalue ‖Te‖.222

Again by Theorem 2.5, we have r(T ) = ‖Te‖. Hence r(Tnk
)→ r(T ) and r(Tn)→ r(T )223

(Here we use a well-known result: if every subsequence of the sequence {an} has a224

convergent subsequence with limit a, then an → a).225
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The convergence of a sequence of compact operators in the strong operator topol-226

ogy is not sufficient to guarantee the convergence of their spectral radii. We use the227

following simple example to illustrate this fact:228

Example 4.2. Let H be a Hilbert space with an orthonormal basis {ei}∞i=1. For
n ≥ 1, define Tn : H → H by

Tn(a) = anen for any a =

∞∑
i=1

aiei ∈ H.

Then {Tn} is a sequence of compact operators with r(Tn) = 1, and Tn
SOT−−−→ 0. Since229

r(Tn) = 1 and r(T ) = 0, r(Tn) 6→ r(T ).230

It is interesting to see whether some of the hypotheses in Theorem 4.1 can be dropped.231

We leave this as an open problem.232

4.1. Large diffusion rates. In the following two subsections, we investigate R0

quantitatively when the diffusion rates are large or small. To this end, we assume that
δ1 and δ2 are constants. Define two integral operators L1,∞, L2,∞ : C(Ω̄)→ C(Ω̄) by

L1,∞(φ) =

∫
Ω
λ(x)φ(x)dx∫
Ω
λ(x)dx

and L2,∞(φ) =

∫
Ω
µ(x)φ(x)dx∫
Ω
µ(x)dx

for any φ ∈ C(Ω̄).

233

Lemma 4.3. L1
SOT−−−→ L1,∞ in C(Ω̄) as δ1 →∞.234

Proof. Let u ∈ C(Ω̄) be given. We need to prove that L1(u)→ L1,∞(u) in C(Ω̄)235

as δ1 →∞. For any δ1 > 0, let vδ1 = L1(u). Then vδ1 is the solution of the problem236

(4.1)

{
λvδ1 − δ1∆vδ1 = λu, x ∈ Ω,
∂
∂nvδ1 = 0, x ∈ ∂Ω.

237

By the comparison principle, we have −‖u‖∞ ≤ vδ1 ≤ ‖u‖∞ for all δ1 > 1. Hence238

by the Lp estimate, {vδ1}δ1>1 is uniformly bounded in W 2,p(Ω) for any p > 1. Since239

the embedding W 2,p(Ω) ⊆ C(Ω̄) is compact for p > n, up to a subsequence, vδ1 → v240

weakly in W 2,p(Ω) and strongly in C(Ω̄) for some v ∈W 2,p(Ω) as δ1 →∞. Moreover,241

v satisfies242 {
−∆v = 0, x ∈ Ω,
∂
∂nv = 0, x ∈ ∂Ω.

243

By the maximum principle, v is a constant. Integrating both sides of the first equation244

of (4.1) and taking δ1 →∞, we find v =
∫
Ω
λudx∫

Ω
λdx

.245

Lemma 4.4. L2
SOT−−−→ L2,∞ in C(Ω̄) as δ2 →∞.246

Proof. Let u ∈ C(Ω̄) be given. We need to prove that L2(u)→ L2,∞(u) in C(Ω̄)247

as δ2 →∞. For any δ2 > 0, let vδ2 = L2(u). Then vδ2 is the solution of the problem248

(4.2)

{
µV̂ vδ2 − δ2∆vδ2 = µV̂ u, x ∈ Ω,
∂
∂nvδ2 = 0, x ∈ ∂Ω.

249

Noticing that V̂ is the positive solution of250 {
−δ2∆V = βV − µV 2, x ∈ Ω,
∂
∂nV = 0, x ∈ ∂Ω,

251
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it satisfies252

(4.3) V̂ →
∫

Ω
βdx∫

Ω
µdx

, as δ2 →∞.253

(see [4, Proposition 3.17] and [18, Proposition 2.5]). The rest of the proof is essentially254

the same as the proof of Lemma 4.3.255

We now investigate R0 for large diffusion rates by Theorem 4.1.256

Theorem 4.5. The following statements hold:257

1. For fixed δ2 > 0,

R0 → r(L1,∞R1L2R2) =

∫
Ω
λR1(L2R2)dx∫

Ω
λdx

as δ1 →∞;

2. For fixed δ1 > 0,

R0 → r(L2,∞R2L1R1) =

∫
Ω
µR2(L1R1)dx∫

Ω
µdx

as δ2 →∞.

Proof. For i = 1, 2, define two bounded linear operators Hi,∞ : C(Ω̄)→ C(Ω̄) by

H1,∞(φ) =

∫
Ω
λR1L2R2φdx∫

Ω
λdx

and H2,∞(φ) =

∫
Ω
µR2L1R1φdx∫

Ω
µdx

for any φ ∈ C(Ω̄).

Then H1,∞ = L1,∞R1L2R2 and H2,∞ = L2,∞R2L1R1 . By Lemmas 4.3-4.4, we have

L1R1L2R2
SOT−−−→ H1,∞ as δ1 →∞ and L2R2L1R1

SOT−−−→ H2,∞ as δ2 →∞.

Clearly, L1R1L2R2, L2R2L1R1, H1,∞ and H2,∞ are strongly positive compact opera-
tors on C(Ω̄). In the proof of Lemma 3.2, we have shown that Li(B) ⊂ B, i = 1, 2.
This implies that ∪δ1>1L1R1L2R2(B) ⊂ L1R1(R2MB) and ∪δ2>1L2R2L1R1(B) ⊂
L2R2(R1MB) are precompact in C(Ω̄), where R1M and R2M are defined in Theo-
rem 3.6. By Theorem 3.6, we have r(L1R1L2R2) = r(L2R2L1R1) ≥ R1mR2m > 0.
Then by Theorem 4.1, we have R0 = r(L1R1L2R2) → r(H1,∞) as δ1 → ∞ and
R0 = r(L2R2L1R1) → r(H2,∞) as δ2 → ∞. Finally, we observe that the eigenfunc-
tions of H1∞ and H2∞ must be constants, and

r(H1,∞) =

∫
Ω
λR1(L2R2)dx∫

Ω
λdx

and r(H2,∞) =

∫
Ω
µR2(L1R1)dx∫

Ω
µdx

.

Remark 4.6. If R2 is constant, then L2R2 = R2 and

R0 →
∫

Ω
λR1(L2R2)dx∫

Ω
λdx

=

∫
Ω
λRdx∫

Ω
λdx

as δ1 →∞,

which is independent of δ2. Similarly, if R1 is constant, then

R0 →
∫

Ω
µR2(L1R1)dx∫

Ω
λdx

=

∫
Ω
µRdx∫

Ω
µdx

as δ2 →∞,

which is independent of δ1.258
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Define

R̂1 :=

∫
Ω
λR1dx∫
Ω
λdx

=

∫
Ω
σ1Hudx∫
Ω
λdx

and R̂2 :=

∫
Ω
µR2dx∫
Ω
µdx

=

∫
Ω
σ2dx∫

Ω
µdx

.

Theorem 4.7. The following statements hold:259

1. r(L1,∞R1L2R2)→ R̂1R̂2. as δ2 →∞;260

2. r(L2,∞R2L1R1)→ R̂1R̂2 as δ1 →∞.261

Proof. By Lemmas 4.3-4.4, we have

L2R2 →
∫

Ω
µR2dx∫
Ω
µdx

and L1R1 →
∫

Ω
λR1dx∫
Ω
λdx

in C(Ω̄).

Our claim now just follows from Theorem 4.5.262

Remark 4.8. By Theorems 4.5-4.7, we have

lim
δ1→∞

lim
δ2→∞

R0 = lim
δ2→∞

lim
δ1→∞

R0 = R̂1R̂2.

We can actually prove263

(4.4) lim
(δ1,δ2)→(∞,∞)

R0 = R̂1R̂2,264

by making use of L1R1L2R2
SOT−−−→ L1,∞R1L2,∞R2 and Theorem 4.1.265

4.2. Small diffusion rates. We next study R0 when the diffusion rates are266

small.267

Theorem 4.9. The following statements hold:268

1. For fixed δ2 > 0, R0 → r(RL2) as δ1 → 0;269

2. For fixed δ1 > 0, R0 → r(RL1) as δ2 → 0.270

Proof. 1. It is well-known that, for each φ ∈ C(Ω̄), L1φ→ φ in C(Ω̄) as δ1 → 0.

So we have R1L2R2L1
SOT−−−→ R1L2R2 as δ1 → 0. Let B be the closed unit ball

in C(Ω̄). Since L1(B) ⊆ B, we have ∪δ1<1R1L2R2L1(B) ⊆ R1L2R2(B). By the
compactness of L2, ∪δ1<1R1L2R2L1(B) is precompact in C(Ω̄). By Theorem 3.6,
we have r(R1L2R2L1) ≥ R1mR2m > 0. Noticing that R1L2R2L1 and R1L2R2 are
strongly positive compactor operators on C(Ω̄), by Theorem 4.1, we have

R0 = r(R1L2R2L1)→ r(R1L2R2) = r(R2R1L2) = r(RL2), as δ1 → 0.

2. By [15, Lemma A.1], V̂ → β/µ in C(Ω̄) and L2φ → φ for any φ ∈ C(Ω̄) as271

δ2 → 0. Hence R2L1R1L2
SOT−−−→ R2L1R1 as δ2 → 0. The rest of the proof is similar272

to part 1.273

Let RM = max{R(x) : x ∈ Ω̄}. The proof of the following result is similar to274

[21, Lemma 3.1], and we attach it in the appendix for readers’s convenience. Unfor-275

tunately, we can not apply Theorem 4.1, since R is not compact. Can we generalize276

Theorem 4.1 so that it can be used to prove the following result? We leave this as an277

open question.278

Theorem 4.10. The following statements hold:279

1. r(RL2)→ RM as δ2 → 0;280

2. r(RL1)→ RM as δ1 → 0.281
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Combining Theorems 4.9-4.10, we actually have282

(4.5) lim
δ1→0

lim
δ2→0

R0 = lim
δ2→0

lim
δ1→0

R0 = max{R(x) : x ∈ Ω̄}.283

We can apply [17] to prove the following result.284

Theorem 4.11. The following statement holds:285

(4.6) lim
(δ1,δ2)→(0,0)

R0 = max{R(x) : x ∈ Ω̄}.286

Proof. Let RM = max{R(x) : x ∈ Ω̄}. Firstly, suppose RM = 1 and V̂ is287

independent of δ2. We need to show that R0 → 1 as (δ1, δ2) → (0, 0). Let κ = 1/R0288

and view it as a function of (δ1, δ2). Since R0 is the principal eigenvalue of L1R1L2R2,289

there exists a positive Φ0 = (ϕ0, ψ0)T (satisfying homogeneous Neumann boundary290

conditions) such that κ satisfies291

(4.7) AΦ0 + κBΦ0 = 0,292

where293

A =

(
δ1∆− λ 0

µV̂ R2 δ2∆− µV̂

)
and B =

(
0 λR1

0 0

)
.294

For any positive a, δ1, and δ2, let e = e(a, δ1, δ2) be the principal eigenvalue of the295

following eigenvalue problem (with homogeneous Neumann boundary conditions)296

(4.8) AΦ + aBΦ = eΦ.297

Then, we have e(κ, δ1, δ2) = 0.298

It has been shown in [17, Theorem 1.4] that

lim
(δ1,δ2)→(0,0)

e = max
x∈Ω̄

ê(Ca(x)),

where ê(Ca(x)) denotes the eigenvalue of the matrix Ca(x) with greater real part for
each x ∈ Ω̄ (By the Perron-Frobenius Theorem, the eigenvalues of Ca(x) are real),
and

Ca =

(
−λ aλR1

µV̂ R2 −µV̂

)
.

Therefore, for each a, e = e(a, δ1, δ2) can be extended to be a continuous function of299

(δ1, δ2) on (0,∞)× (0,∞) ∪ {(0, 0)} by e(a, 0, 0) := maxx∈Ω̄ ê(Ca(x)).300

We claim that e is increasing in a for each (δ1, δ2) ∈ (0,∞)× (0,∞). To see this,301

we can choose Φ = (ϕ,ψ) to be a positive eigenvector with ‖ϕ‖2 + ‖ψ‖2 = 1 of (4.8).302

Then differentiate both sides of (4.8) with respect to a, we obtain303

(4.9) AΦa + aBΦa +BΦ = eaΦ + eΦa.304

Multiplying (4.9) by ΦT to the left and (4.8) by ΦTa to the left, and integrating their305

difference over Ω, we obtain ΦTBΦ = eaΦTΦ. Therefore, ea =
∫

Ω
λR1ϕψdx > 0 and306

e is strictly increasing in a.307

Noticing max{R(x) : x ∈ Ω̄} = 1, it is not hard to check that e(a, 0, 0) =
maxx∈Ω̄ ê(Ca(x)) = 0 if and only if a = 1. Moreover, e(a, 0, 0) is strictly increas-
ing in a. Assume to the contrary that κ(δ1, δ2) 6→ 1 as (δ1, δ2) → (0, 0). Then there
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exists a sequence {(δ1n, δ2n)}∞n=1 and a0 6= 1 such that κn := κ(δ1n, δ2n) → a0 as
n→∞. Without loss of generality, we may assume a0 > 1. Choose ε0 > 0 such that
a0 − ε0 > 1, which implies κ(a0 − ε0, 0, 0) > κ(1, 0, 0) = 0. Then there exists N > 0
such that κn > a0 − ε0 for all n ≥ N . By the monotonicity of e, we have

0 = e(κn, δ1n, δ2n) > e(a0 − ε0, δ1n, δ2n) for all n ≥ N.

Taking n→∞ and by the continuity of e(a0 − ε0, ·, ·), we have

0 ≥ lim
n→∞

e(a0 − ε0, δ1n, δ2n) = e(a0 − ε0, 0, 0) > 0,

which is a contradiction. Therefore, κ(δ1, δ2) → 1 as (δ1, δ2) → (0, 0). This proves308

the case max{R(x) : x ∈ Ω̄} = 1.309

Then, we drop the assumption RM = 1 but still suppose that V̂ is independent
of δ2. We have

R0

RM
= r

(
L1R1L2

R2

RM

)
→ max

{
R1(x)

R2(x)

RM
: x ∈ Ω̄

}
= 1 as (δ1, δ2)→ (0, 0).

This means R0 → RM as (δ1, δ2)→ (0, 0).310

Finally, we drop the assumption that V̂ is independent of δ2. Let ε > 0 be given.
By Lemma 2.1, there exists δ > 0 such that ‖V̂ − β/µ‖∞ < ε for all δ2 < δ. By the
comparison principle, for δ2 < δ, we have

(µ(
β

µ
+ ε)− δ2∆)−1µ(

β

µ
− ε) ≤ L2 = (µV̂ − δ2∆)−1µV̂ ≤ (µ(

β

µ
− ε)− δ2∆)−1µ(

β

µ
+ ε).

Define311

(4.10) L̂2ε = (µ(
β

µ
− ε)− δ2∆)−1µ(

β

µ
− ε)312

and313

(4.11) R̂2ε =

β
µ + ε
β
µ − ε

R2.314

Similarly, we define Ľ2ε and Ř2ε only with ε replaced by −ε in (4.10)-(4.11). Then,
we have

L1R1Ľ2εŘ2ε ≤ L1R1L2R2 ≤ L1R1L̂2εR̂2ε, for δ2 < δ.

It follows from Theorem 2.5 that315

r(L1R1Ľ2εŘ2ε) ≤ R0 ≤ r(L1R1L̂2εR̂2ε), for δ2 < δ.(4.12)316

By the previous step,

lim
(δ1,δ2)→(0,0)

r(L1R1Ľ2εŘ2ε) = max{R1(x)Ř2ε(x) : x ∈ Ω̄} := ŘMε

and
lim

(δ1,δ2)→(0,0)
r(L1R1L̂2εR̂2ε) = max{R1(x)R̂2ε(x) : x ∈ Ω̄} := R̂Mε.
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Taking (δ1, δ2)→ (0, 0) in (4.12), we obtain

ŘMε ≤ lim inf
(δ1,δ2)→(0,0)

R0 ≤ lim sup
(δ1,δ2)→(0,0)

R0 ≤ R̂Mε.

Taking ε→ 0, we have

lim inf
(δ1,δ2)→(0,0)

R0 = lim sup
(δ1,δ2)→(0,0)

R0 = RM .

By Theorem 4.11, we have the following result.317

Proposition 4.12. The following statements hold:318

1. If R(x) < 1 for all x ∈ Ω̄, then there exists δ̂ > 0 such that R0 < 1 for all319

(δ1, δ2) with δ1, δ2 ≤ δ̂;320

2. If R(x) > 1 for some x ∈ Ω̄, then there exists δ̃ > 0 such that R0 > 1 for all321

(δ1, δ2) with δ1, δ2 ≤ δ̃.322

5. Simulations.323

5.1. Dependence on δ1. In this section, we investigate the dependence of R0324

on δ1. Let Ω = [0, 1] × [0, 1]. We fix all the coefficients except for δ1: δ2 = 4, σ1 =325

5 sin(x) + 3, σ2 = µ = β = (x + 1)2 + 0.1, Hu = cos(y) + 1.5, λ = 12. Since β/µ = 1,326

the unique positive solution of (1.3) is V̂ = 1. By Theorem 3.6, R0 ≤ max{R(x) :327

x ∈ Ω̄} = 1.5015. Noticing that R2 = σ2/µ = 1 and λ are constant, by Remark 4.6,328

(5.1) R0 →
∫

Ω
λRdx∫

Ω
λdx

=

∫
Ω
Rdx

|Ω|
= 0.5854 as δ1 →∞.329

We then find r(RL2). Using the fact that κ′ = 1/r(RL2) is the principal eigenvalue
of the following problem (with homogenous Neumann boundary conditions):

(µV̂ − δ2∆)φ = κµV̂ Rφ,

we can compute r(RL2) = 1.0075 numerically. By Theorem 4.9, we expect330

(5.2) R0 → r(RL2) = 1.0075 as δ1 → 0.331

We now compute R0. By the definition, κ = 1/R0 is the principal eigenvalue of332

the following problem (with homogeneous Neumann boundary conditions):333 (
−O · δ1Oϕ
−O · δ2Oψ

)
+

(
λ −σ1Hu

0 µV̂

)(
ϕ
ψ

)
= κ

(
0 0

σ2V̂ 0

)(
ϕ
ψ

)
.334

For different values of δ1 ∈ [0.001, 400], we solve the eigenvalue problem numerically335

and plot R0 in Figure 1. In particular, R0 = 1.0074 when δ1 = 0.001 and R0 = 0.5904336

when δ1 = 400, which agrees with (5.1)-(5.2). Moreover, we observe that R0 is337

decreasing in σ1. We conjecture that this is true in general.338

5.2. Simulations in a realistic situation. In this section, we will simulate339

the model using geometric and population data of Puerto Rico. The domain Ω is340

taken as the geometric boundary of Puerto Rico, which can be obtained from Math-341

ematica as a polygon. The population density data of the 76 districts of Puerto342

Rico can also be found in Mathematica, which can be used to construct the suscep-343

tible human distribution, i.e. Hu(x), by interpolation. Hi0 is assumed to be 100344
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Fig. 1. The basic reproduction number R0 for different values of δ1.

Fig. 2. Local basic reproduction number R(x).

people, distributed normally, centered at (0, -20). Set Vi0 = 10Hi0, Vu0 = 150,345

σ1 = 0.000001, σ2 = 0.7, λ = 1, β = 5, and µ = 0.0005. The local basic re-346

production number R(x) = σ1σ2Hu/λµ is shown in Figure 2. Then we compute347

max{R(x) : x ∈ Ω̄} = 4.3167 and
∫
Ω
λR1(L2R2)dx∫

Ω
λdx

=
∫
Ω
Rdx

|Ω| = 0.6513. By Theorems348

2.3, (4.5)-(4.7), and (4.9)-(4.10), we expect that the solution of (1.1) converges to a349

positive steady state when the diffusion rates are small and to the semitrivial equi-350

librium (0, V̂ , 0) when δ2 is large. For verification, we choose different diffusion rates351

and use finite element method in Matlab to solve (1.1).352

Case 1. Set δ1 = δ2 = 4. We plot the total infected host cases in Figure 3 and the353

density of infected hosts for t = 4, 8, 12, 16 in Figure 4. In this case, the354

solution converges to the positive steady state and the disease persists.355

Case 2. Set δ1 = 4 and δ2 = 4000. We plot the total infected host cases in Figure356

5 and the density of infected hosts in Figure 6. In this case, the density of357

infected hosts converges to zero and the disease dies out.358

6. Discussion. In this paper, we have shown that the basic reproduction number359

R0 of the reaction-diffusion model (1.1) can be written as R0 = r(L1R1L2R2), where360

the local basic reproduction number R(x) = R1(x)R2(x) is a multiplication operator361

on C(Ω̄), and L1 and L2 are strongly positive compact linear operators with spectral362

radii one. We are then able to study the relation of R0 and R(x). We prove that363
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Fig. 3. Total infected host cases, i.e. ∫ΩHi(x, t)dx, with δ1 = δ2 = 4.

Fig. 4. The density of infected hosts, i.e. Hi(x, t), at t = 4, 8, 12, 16 with δ1 = δ2 = 4.

R0 ≥ 1 if R1(x) ≥ 1 and R2(x) ≥ 1 for all x ∈ Ω̄, and R0 ≤ 1 if R1(x) ≤ 1 and364

R2(x) ≤ 1. Actually, R0 is bounded below and above by the products of the minimum365

and maximum of R1 and R2. When the diffusion rates are small, R0 > 1 provided that366

R(x) > 1 for some x ∈ Ω̄. When the diffusion rates are large, R0 approximates R̂1R̂2.367

Moreover, our numerical simulations suggest that R0 is decreasing in δ1, however we368

are only able to prove it under the assumption (H1). The dependence of R0 on δ2 is369

more difficult to study since V̂ is also dependent on δ2. We only know that if β/µ is370

constant, then V̂ is independent of δ2 and R0 is decreasing in δ2 under the assumption371

(H1).372

We remark that our approach can be applied to many other reaction-diffusion373

epidemic models. For example, if we adopt our approach to analyze R0 for the diffusive374

SIS model in Allen et al. [1], we will compute R0 = r(−CB−1) = r(β(γ − dI∆)−1).375

Then we can write R0 as R0 = r(RL), where R(x) = β(x)/γ(x) is the local basic376

reproduction number and L = (γ − dI∆)−1γ is a strongly positive compact linear377

operator in C(Ω̄) with spectral radius one. To further illustrate this, we briefly adopt378

this approach to study the basic reproduction number of some other models in the379

following two subsections.380
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Fig. 5. Total infected host cases, i.e. ∫ΩHi(x, t)dx, with δ1 = 4, δ2 = 4000.

Fig. 6. The density of infected hosts, i.e. Hi(x, t), at t = 4, 8, 12, 16 with δ1 = 4, δ2 = 4000.

6.1. A within-host model on viral dynamics. Suppose that T (x, t), I(x, t),381

and V (x, t) are the density of target cells, infected cells and free virus particles at382

position x and time t, respectively. The model proposed in [19] to study the repulsion383

effect of superinfecting virion by infected cells is the following:384

(6.1)


∂T
∂t = DT∆T + h(x)− dTT − β(x)TV,
∂I
∂t = DI∆I + β(x)TV − dII,
∂V
∂t = O · (DV (I)OV ) + γ(x)I − dV V,

385

subject to homogeneous Neumann boundary conditions and nonnegative initial con-386

ditions.387

Let T̂ (x) be the unique positive solution of

DT∆T + h(x)− dTT = 0.

Linearizing (6.1) at the equilibrium (T̂ , 0, 0), the stability of it is related to the fol-388

lowing eigenvalue problem389 {
κϕ = DI∆ϕ− dIϕ+ βT̂ψ,
κψ = D0∆ψ + γϕ− dV ψ,

390
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where D0 = DV (0). As before, we define391

B =

(
DI∆ 0

0 D0∆

)
+

(
−dI βT̂

0 −dV V

)
and C =

(
0 0
γ 0

)
,392

and the basic reproduction number

R0 = r(−CB−1).

Similar to Theorem 3.1, we write R0 as

R0 = r
(
γ(dI −DI∆)−1βT̂ (dV −D0)−1

)
.

We have393

(6.2) R0 = r(L1R1L2R2),394

with
L1 = (dI −DI∆)−1dI , L2 = (dV −D0∆)−1dV ,

and

R1 =
βT̂

dI
, R2 =

γ

dV
.

The local basic reproduction number is defined as

R = R1R2 =
γβT̂

dIdV
.

Here, L1 and L2 are strongly positive compact linear operators on C(Ω̄) with spectral
radius one, and T̂ = (dT −DT∆)−1h satisfies

lim
DT→0

T̂ = R3, lim
DT→∞

T̂ =

∫
Ω
dTR3dx∫
Ω
dT dx

,

and
min{R3(x) : x ∈ Ω̄} ≤ T̂ ≤ max{R3(x) : x ∈ Ω̄},

with

R3 =
h

dT
.

An immediate consequence of (6.2) is the following result.395

Theorem 6.1. The following statements hold:396

• If R1 and R2 are constant, then R0 = R;397

• Let Rim = min{Ri(x) : x ∈ Ω̄} and RiM = max{Ri(x) : x ∈ Ω̄} for i = 1, 2,
then

R1mR2m ≤ R0 ≤ R1MR2M .

•
lim

(DI ,DT ,DV )→(∞,∞,∞)
R0 =

β̄γ̄h̄

d̄I d̄V d̄T
,

where f̄ denotes the average of f , i.e. f̄ = ∫Ω fdx/|Ω| for f = β, γ, h, dI ,398

dV , dT .399
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•

lim
DI→0

lim
DV→0

R0 = lim
DV→0

lim
DI→0

R0 = lim
(DI ,DV )→(0,0)

R0 = max{R(x) : x ∈ Ω̄}.

We notice that R is consistent with the basic reproduction number defined using [13]400

(R can be viewed as the total number of newly infected cells produced by one infected401

cell) for the corresponding ordinary differential equation model. We will leave the402

interested readers to investigate the monotonicity of R0 with respect the diffusion403

rates.404

6.2. An HIV model with cell-to-cell transmission. Let T (x, t), T ∗(x, t),405

and V (x, t) be the density of healthy T cells, infected T cells and virions at position x406

and time t, respectively. The model proposed in [26] to describe the cell-to-cell HIV407

transmission is the following:408

(6.3)


∂T
∂t = d1∆T + λ(x)− d(x)T − β1(x)TV − β2(x)TT ∗,
∂T∗

∂t = d2∆T ∗ + β1(x)TV + β2(x)TT ∗ − γ(x)T ∗,
∂V
∂t = d3∆V +N(x)T ∗ − e(x)V,

409

subject to homogeneous Neumann boundary conditions and nonnegative initial con-410

ditions.411

Let T0(x) be the unique positive solution of

d1∆T + λ(x)− d(x)T = 0.

Linearizing (6.1) at the equilibrium (T0, 0, 0), we obtain the following eigenvalue prob-412

lem413

(6.4)

{
κϕ = d2∆ϕ+ (β2T0 − γ)ϕ+ β1T0ψ,
κψ = d3∆ψ +Nϕ− eψ,414

We define415

B =

(
d2∆ 0

0 d3∆

)
+

(
−γ 0
N −e

)
and C =

(
β2T0 β1T0

0 0

)
,416

and the basic reproduction number

R0 = r(−CB−1).

Similar to Theorem 3.1, we compute R0 as

R0 = r
(
β2T0(γ − d2∆)−1 + β1T0(e− d3∆)−1N(γ − d2∆)−1

)
.

So we have417

(6.5) R0 = r(L2(R2
2 +R1

2L3R3)),418

with
L2 = (γ − d2∆)−1γ, L3 = (e− d3∆)−1e,

and

R1
2 =

β1T0

γ
, R2

2 =
β2T0

γ
, R3 =

N

e
.
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Here L1 and L2 are strongly positive compact linear operator on C(Ω̄) with spectral
radius one, and Li1 = 1 for i = 1, 2. The local basic reproduction number R is defined
as

R = R2
2 +R1

2R3 =
(β1N + β2e)T0

er
,

where T0 = (d− d1∆)−1λ satisfies

lim
d1→0

T0 = R1, lim
d1→∞

T0 =

∫
Ω
dR1∫
Ω
d
,

and
min{R1(x) : x ∈ Ω̄} ≤ T0 ≤ max{R1(x) : x ∈ Ω̄},

with

R1 =
λ

d
.

We can also prove:419

Theorem 6.2. The following statements hold:420

• If R1
2, R

2
2 and R3 are constant, then R0 = R;421

• Let Sm = min{S(x) : x ∈ Ω̄} and SM = max{S(x) : x ∈ Ω̄} for S =
R1

2, R
2
2, R3, then

R1
2m +R2

2mR3m ≤ R0 ≤ R1
2M +R2

2MR3M .

•
lim

(d1,d2,d3)→(∞,∞,∞)
R0 =

(β̄1N̄ + β̄2ē)λ̄

ēr̄d̄
,

where f̄ denotes the average of f over Ω, i.e. f̄ = ∫Ω fdx/|Ω| for f =422

β1, β2, e, r, d, λ.423

• limd2→0 limd3→0R0 = max{R(x) : x ∈ Ω̄}.424

Proof. We will only sketch the proof of the last part. Noticing that L3φ → φ

in C(Ω̄), we have L2(R2
2 + R1

2L3R3)
SOT−−−→ L2(R2

2 + R1
2R3) = L2R as d3 → 0. Let

B ⊂ C(Ω̄) be the closed unit ball, then

∪δ3>0L2(R2
2 +R1

2L3R3)(B) ⊂ L2((R1
2M +R2

2MR3M )B),

which is compact. By Theorem 4.1, we have R0 = r(L2(R2
2 + R1

2L3R3)) → r(L2R)425

as d3 → 0. The proof of r(L2R) → max{R(x) : x ∈ Ω̄} as d2 → 0 is the same with426

Theorem 4.10.427
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discussions.432

Appendix A. Appendix - Proof of Theorem 4.10.433

Proof. We only prove part 1. Define rδ2 =: r(RL2) = r(L2R). Then κδ2 = 1/rδ2434

is the principal eigenvalue of the problem435

(A.1)

{
(µV − δ2∆)v = κµV̂ Rv, x ∈ Ω,
∂
∂nv = 0, x ∈ ∂Ω.

436
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By (A.1),437

κδ2 =
1

rδ2
= min

{
δ2
∫

Ω
|Ov|2dx+

∫
Ω
µV̂ v2dx∫

Ω
RµV̂ v2dx

: v ∈ H1(Ω) and v 6= 0

}
438

≥ 1

RM
min

{
δ2
∫

Ω
|Ov|2dx+

∫
Ω
µV̂ v2dx∫

Ω
µV̂ v2dx

: v ∈ H1(Ω) and v 6= 0

}
=

1

RM
.439

It then follows that lim infδ2→0 κδ2 ≥ 1/RM .440

We only need to show lim supδ2→0 κδ2 ≤ 1/RM . Assume to the contrary that the
statement does not hold, i.e. lim supδ2→0 κδ2 > 1/RM . Then there exists ε0 > 0 and
a sequence {δ2,n} with δ2,n → 0 such that κδ2,n > 1/(RM − ε0). Let x0 ∈ Ω and a > 0
such that R(x) > RM − ε0/2 in B(x0, a). Let vδ2,n be a positive eigenvector of (A.1)
associated with the principal eigenvalue κδ2,n . Then in B(x0, a), we have

(µV̂ − δ2,n∆)vδ2,n = κδ2,nµV̂ Rvδ2,n >
(RM − ε0/2)µV̂ vδ2,n

RM − ε0
.

It follows that, in B(x0, a),

−
∆vδ2,n
vδ2,n

>
ε0

2δ2,n(RM − ε0)
µV̂ .

Let κ′ be the principal eigenvalue of −∆ in domain B(x0, a) with Dirichlet boundary441

condition. By a minimax formulation of κ′ ([3]), we have442

(A.2) κ′ = sup
u∈W 2,p(B(x0,a)),u>0

inf
x∈B(x0,a)

−∆u

u
>

ε0
2δ2,n(RM − ε0)

inf
x∈B(x0,a)

{µV̂ }.443

Noticing that V̂ ≥ min{β(x) : x ∈ Ω̄}/max{µ(x) : x ∈ Ω̄}, the right hand side of444

(A.2) tends to ∞ as δ2,n → 0. This is a contradiction. Hence, κδ2 → 1/RM and445

rδ2 → RM as δ2 → 0.446
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