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ON THE BASIC REPRODUCTION NUMBER OF
REACTION-DIFFUSION EPIDEMIC MODELS*

PIERRE MAGALT, G.F. WEBB , AND YIXIANG WU #§

Abstract. The basic reproduction number R serves as a threshold parameter of many epidemic
models for disease extinction or spread. The purpose of this paper is to investigate R for spatial
reaction-diffusion partial differential equations epidemic models. We define Ry as the spectral radius
of a product of a local basic reproduction number R, and strongly positive compact linear operators
with spectral radii one. This definition of R, viewed as a multiplication operator, is motivated by
the definition of basic reproduction numbers for ordinary differential equations epidemic models. We
investigate the relation of Ry and R.
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1. Introduction. For epidemic differential equation models, the basic reproduc-
tion number Ry is a threshold value such that below this value the disease vanishes,
while above this value the disease spreads. The calculation of Ry for ordinary dif-
ferential equations epidemic models has been developed extensively based on [9, 10].
Many authors have used reaction-diffusion partial differential equations models to
study the transmission of diseases in geographical regions (see [1, 5, 6, 7, 8, 11, 12,
16, 19, 20, 22, 23, 27, 29, 30, 32, 33, 35]). The purpose of this paper is to connect
basic reproduction numbers for partial differential equations epidemic models to basic
reproduction numbers for ordinary differential equations models.

In a recent study, Thieme [28] provided a general theoretical approach to define
Ry as the spectral radius of a resolvent-positive operator for a wide range of epidemic
models, which is a generalization of the finite dimensional version in [9, 10]. Another
approach to characterize Ry for reaction-diffusion epidemic models relied on a varia-
tional characterization of Ry, which works when the model is relatively simple (the
stability of the disease free equilibrium is determined by the sign of an eigenvalue
problem consisting of only one equation). For example, Allen et al. [1] characterize
Ry for a simple diffusive SIS model by the formula

Jo By*dx .
Jo(dr|Vel? +~yp?)dx

Rozsup{ wEHl(Q)Ap#O},

where § = f(z) is the transmission rate, v = () is the removal rate, and d; is the
diffusion coefficient. This allows the authors to show that Ry is strictly decreasing in
dr, Ry — [qB/vdx as d; — 0, and Ry — [ 8/ [q7y as di — oo. Here p(z)/~(x) is
the basic reproduction number for the corresponding model without diffusion (which
we will call the local basic reproduction number).

For some reaction-diffusion epidemic models, Ry is related to the principal eigen-
value of an elliptic system, which makes the analysis more difficult. Peng and Zhao
[27] write Ry as the principal eigenvalue of an eigenvalue problem consisting of a sin-
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2 PIERRE MAGAL, G.F. WEBB, AND YIXIANG WU

gle equation. Cui and Lou [6] study the impact of the advection rate on Ry for a
reaction-diffusion-advection SIS model, where they take advantage of the variational
characterization of Ry. We note that calculations of Ry for reaction-diffusion epidemic
models have been discussed by Wang and Zhao [31]. We also note the papers [14, 25]
for Ry analysis of stream population models, and [36] for Ry analysis of time-delayed
compartmental population models in periodic environments. Other investigations of
Ry for partial differential equations epidemic models are found in [19, 26, 29, 30, 32],
where the computation of Ry is mostly for constant coefficients in space. Here we
explore this question with non-constant coefficients, which will allow us to explore
the impact of the (small and large) diffusion coefficients and spatial heterogeneity.

Although our approach is applicable to a wide range of reaction-diffusion epidemic
models, we will focus on the vector-host model in [12] (see also [24]). Suppose that
individuals are living in a bounded domain Q C R™ with smooth boundary 0f). Let
H,(z),H;(z,t),V,(z,t) and V;(z,t) be the density of uninfected hosts, infected hosts,
uninfected vectors, and infected vectors at position x and time ¢, respectively. Then
the model in [12] to study the outbreak of Zika in Rio De Janerio is the following
reaction-diffusion system:

8Hl/8t —V-06VH;, = —)\H; + OlHu(.IZ)V;‘,

OV /Ot =V - 05VVy = =02V Hi + B(Viy + Vi) — u(Vu + Vi) Va,
(1.1) OV, [0t — V- 559V = 0V H, — u(Vi + Vi)V,

0H;/On =0V, /On = 9V;/On =0,

(Hi(., 0), Vu(, 0), V;(LL‘, 0)) = (Hi07 Vu07 V;o) S C(Q, Ri),

where 61,2 € C'12(Q) are strictly positive, and the functions H,, A, 3,01, 09 and
are strictly positive and belong to C*(Q). It is assumed that uninfected hosts are
stationary in space, and the diffusion of infected hosts corresponds indirectly to the
movement of the Zika virus in the spatial environment. Both uninfected and infected
vectors are assumed to diffuse in the spatial environment.

Following [28, 31], the basic reproduction number Ry for (1.1) is defined as the
spectral radius 7(—CB~!) of —CB~1, where B : D(B) C C(Q;R?) — C(Q;R?) and
C : C(Q;R?) — C(£;R?) are the linear operators

(V- 01V -\ o1H, . 0 0
(1.2) B= (V : 52V> + ( 0 —/.LV) » O= <0’2V 0) ’
[ ~
_ 2,p 2 vy _ L2
D(B) (¢, pol W2P(Q;R?) : o= = o =0 on 09 and B(p,v) € C(%R?)

and V is the unique positive solution of the elliptic problem

(1.3) —V - 0a(2)VV = B(z)V — p(x)V?, x €,
' 2V =0, x € 9N
The system (1.1) in the case without diffusion, and viewed as an ordinary differ-
ential equations system at a specific location z, is

(1.4)
dH;/dt = —X(z)H;(t) + o1(2) Hu(2)Vi(t),
dVy/dt = *02( )W (t)Hi(t) + )(w)(‘(/ w(t) + Vi) — p(@)(Vau(t) + V(1) Vul(t),

dVi/dt = oo (2)Vu (1) Hi(t) — () (Vu(t) + Vi(1)) Vi (D).
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The basic reproduction number of (1.4) at a specific location z, obtained by the next
generation method, is
o1(z)Hy(z)

(1.5)  R(z) = Ry(x)Ra(z), where Ry(z) = @) and Ry(x) =

oo (x)
pu(z)

Ri(z) and Ra(x) have their own biological meanings: at a specific location z, Ry(x)
measures the impact of one infected vector on susceptible hosts while Ry (x) measures
the impact of one infected host on the susceptible vectors. Since Ry is difficult to
visualize, our main purpose of this research is to study the relation between Ry and
R(x), the latter being a function of z € Q.

In sections 3 and 4, we study the relation of Ry and R(x), where our approach is
based on the formula

(1.6) Ry =r(L1R1LyRy), Ly := (A—=v-6,V)" '\, and Ly := (uV —V-6,V) 'V,

where R; and Rs are viewed as multiplication operators on C(Q), and Ly and Lo
are strongly positive compact linear operators on C(). This formula establishes
an interesting connection between Ry and R as r(LiLs) = r(L1) = r(L2) = 1 (see
Lemma 3.4). Consequences of this formula are

e If Ry and Ry are constant, then Ry = R (see Corollary 3.5);

e Rp>1if Ri(z)>1,i=1,2,forallz € Qand Ry < 1if Rj(z) <1,i=1,2,

for all € Q (see Theorem 3.6).

When the diffusion coefficients §; and d are constant, we establish a quantitative
connection of Ry and R. To this end, we prove a result (Theorem 4.1) about the con-
vergence of spectral radii for a sequence of strongly positive compact linear operators

in an ordered Banach space. Based on Theorem 4.1, we show

Jo AR1 (L2 R2)da
fQ Adz

for 6; > 0 (see Theorem 4.5);

. AR1dx Rodx
o lims, 5,)—(c0,00) B0 = %% (see Remark 4.4).

(] Hm(;l_ﬁo lim52%0 RO = Hm(szﬁo lim(;lﬁo RO = lim(51752)ﬁ(070) RO = max{R(x) :
x € Q} (see Theorem 4.9-4.11).
In section 5, we conduct numerical simulations to illustrate our results. In section 6,
we give concluding remarks and provide two examples about adopting our approach
to analyze Ry for reaction-diffusion epidemic models.

fQ pR2(Ly Ry )dx

[ ] hm51—>oo RO = fg ndx

for 6o > 0 and lim(;z_mo Ry =

2. Preliminaries. The global dynamics of (1.1) have been analyzed in [24], and
we first summarize the results that will be used here. Let V =V, +V;. Then V(z, )
satisfies

Vi = V- 6a(2)VV = B(2)V — u(x)V?,  x€Q,t>0,

(2.1) oV/on =0, B x € 0, t >0,

The following result about (2.1) is well-known (see [4, Proposition 3.17] [15, Lemma
A.1], and [18, Proposition 2.5]):

LEMMA 2.1. For any nonnegative nontrivial initial data Vo € C(2), (2.1) has a
unique global classic solution V (z,t). Moreover, V(x,t) > 0 for all (x,t) € Qx (0, 00)
and

(2.2) lim V() = V] =0,

t—+oo

This manuscript is for review purposes only.
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4 PIERRE MAGAL, G.F. WEBB, AND YIXIANG WU

where V is the unique positive solution of the elliptic problem (1.3). Moreover, if do
is a constant parameter, then

. N dz -
lim V — 5 and  lim V — fﬂi in C(Q).
62—0 7 d2—00 fQ ,uda:
The definition of Ry for (1.1) is closely related to the stability of the semi-trivial
equilibrium E; = (0,V,0) of (1.1). Linearizing the model at E7, one can see that the
stability of E; is determined by the sign of the principal eigenvalue of the problem:

K =V 01V — Ap+ o1 Hy1, x € €,
(2.3) K =V -6V + oV —uVa, x € €,
Op/on = p/on =0, x € 0N.

Problem (2.3) is cooperative, so it has a principal eigenvalue kq associated with a
positive eigenvector (¢o,%0) ([17]).

Let A = B + C, where B and C are defined in section 1. Then A and B are
resolvent positive ([28]), and A is a positive perturbation of B. By [28, Theorem 3.5],
ko = s(A) and 7(—CB~!) — 1 have the same sign, where s(A) is the spectral bound
of A. We then have the following result:

THEOREM 2.2. Ry—1 and k¢ have the same sign. Moreover, E; is locally asymp-
totically stable if Ry < 1 and unstable if Ry > 1.

The main results proved in [24] about the global dynamics of the model (1.1) are
as follows:

THEOREM 2.3. The following hold: -
e If Ry <1, then for any nonnegative initial data (H;o, Vuo, Vio) € C(Q;Ri)
with Vo + Vio £ 0, the solution (H;, V,,,V;) of (1.1) satisfies

(2.4) m [(H; (), Va (-, 2), Vi(, 1)) — Erllee = 0,

t—o0

where By = (0,V,0).
e If Ry > 1, then for any initial data (H;g, Vo, Vio) with Vo + Vi Z 0 and
H;o + Vo #0, the solution (H;,V,,V;) of (1.1) satisfies

tlizgo ||Hz(7t)7vu(7t)a ‘/l(vt)) - (ﬁia Vua‘A/l)Hoo = Oa

where By = (Hy, V,,, Vi) is the unique EE of (1.1).

Let X be an ordered Banach space with positive cone X, and let L1, Lo : X — X
be two bounded linear operators. Then it is well-known that

(2.5) r(LiLa) = r(LaL1) < [[Lalll|L2],

where r(L;) denotes the spectral radius of L;, i = 1,2. Indeed, this can be derived
easily from the Gelfand’s formula

(2.6) r(Ly) = Tim [|LF(1M".

Remark 2.4. Tt is very important to note that (2.6) does not imply r(LyLoL3) =
T‘(LngLl).
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Suppose that X has non-empty interior int(X ;). Then L, is strongly positive
if L1(X4+\0) Cint(X;). The operator L, is compact if the image of the unit ball is
relatively compact in X. We will need the following generalization of Krein-Rutman
theorem ([2]).

THEOREM 2.5. Let X be an ordered Banach space with positive cone X such that
X1 has non-empty interior. Suppose that T : X — X is a strongly positive compact
linear operator. Then the spectral radius r(T) is positive and a simple eigenvalue
of T associated with a positive eigenvector, and there is no other eigenvalue with a
positive eigenvector. Moreover if S : X — X is a linear operator such that S > T,
i.e. S(v) > T(v) for allv e X, then r(S) > r(T). If, in addition, S — T is strongly
positive, then r(S) > r(T).

3. General diffusion rates. Our basic result about the basic reproduction
number Ry of (1.1) is

THEOREM 3.1. Let Ry = r(—CB™1), where B and C are defined in (1.2). Then,
(3.1) RO = T(LlRngRg),

where Ry and Ry defined in (1.5) are multiplication operators on C(§2), and Ly and
Lo defined in (1.6) are strongly positive compact linear operators on C(S2).

Proof. 1t is not hard to compute

g1 (V07— AN —(V-0V = AN o Hy (V- 62V — pV) !
B 0 (V-6 —pV)~! '

Therefore,

—CB™' = 0 0
B O'QV(/\—V~(51V)_1 O'QV(/\—V~(51V)_1O'1HU(MV—V'(SgV)_l '
It then follows that

Ry = ’I“(—CB_l) =r (0‘2‘7()\ - V- (51V)_101HU(/LV - V- (SQV)_l)

~ 1
=T (O'QVLlRlLQ = ) .
N4
From (2.5), we have

1 ~
= UQV) = T(LlRngRg).
n4

RO =T (L1R1L2

It is well-known that the elliptic estimates and maximum principles imply that L;
and Lo are strongly positive compact linear operators on C(f2). ]

LEMMA 3.2. ||Li|| =1 and || Ls|| = 1.

Proof. Notice that L;(+1) = £1 for i = 1,2. For any u € C(Q) with |lu| < 1,
we have —1 < u < 1. By the comparison principle, we have

—1= LZ(—l) S Liu S Lll = 1, for i = 1,2.

Therefore, ||L;u|lco < 1 = ||t||co, which implies ||L;|] < 1 for ¢ = 1,2. Moreover, since
Li1=1and Lyl =1, we must have ||Lq|| = || Lz|| = 1. d
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We immediately have the following result from (2.5):
THEOREM 3.3. If Rij(z) < 1,i=1,2, for all z € Q, then Ry < 1.
Proof. Ro = r(LiRiLyRy) < [[La[[|Balll| L2 ||| Rell = [[Ra[[| Rl < 1. 0

We apply the Krein-Rutman theorem to study the spectral radius of L, Lo and
LyLs.

LEMMA 3.4. The spectral radius of L1, Ly and L1Ls is 1,i.e. (L) = r(La) =
T‘(LlLQ) =1.

Proof. Since L; and Ly are strongly positive compact operators on C(Q), so is
LiLy. By Theorem 2.5, 7(L1), 7(L2), and r(L1L2) are simple positive eigenvalues of
Ly, Lo, and Ly Lo, associated with positive eigenvectors, respectively. Moreover, there
is no other eigenvalue of Ly, La, or Ly Lo associated with a positive eigenvector. Since
L1 =Ly1=1L;1L1 =1, we must have r(Ly) = r(L2) = r(L1La) = 1. 1]

Noticing that Ry = r(L1R1LaRs), Lemma 3.4 implies that there is a significant
connection between the basic reproduction number Ry and the local basic reproduc-
tion number R(z). A consequence of Lemma 3.4 is the following result:

COROLLARY 3.5. If Ry and Rs are constant, then Ry = R.

Our next result, based on the Krein-Rutman theorem, is stronger than Theorem
3.3.

THEOREM 3.6. The following hold:
1. If Ri(x) > 1,i=1,2, for all x € Q, then Ry > 1. If, in addition, Ry(x) # 1
or Ry(x) # 1, then Ry > 1.
2. If Ri(z) <1,i=1,2, for all x € Q, then Ry < 1. If, in addition, Ry(z) # 1
or Ro(x) £ 1, then Ry < 1.
3. RimRom < Ry < RiprRopy, where Ry, = min{R;(z) : 2 € Q) and Ry =
max{R;(z) :x € Q},i=1,2.

Proof. We only prove part 1 as the proof of the rest is similar. If R;(z) > 1
for all x € Q, then Ly R1LyRy > L1Ly. By Theorem 2.5 and Lemma 3.4, we have
RO = T(L1R1L2R2) Z T(Lng) =1.

Let ¢ be a positive eigenfunction corresponding to principal eigenvalue Ry of
LiR1LoRy. If, in addition, Ri(x) # 1 or Ry(x) # 1, by the strong positivity of L
and Lo, we have

Ro¢p = L1R1 Lo Ro¢p >> L1L2¢.

Therefore, there exists € > 0 such that Ro¢ > (14€)L1La¢. Let ¢, = ming g ¢(x) >
0. Then, by the positivity of L;Lo and LLs1 = 1, we have

Rop > (1+€)LiLagp > (14 €)L1Lag, = (1 + €)m.
Therefore, Ry¢ > (1 + €)¢yy,, which implies Ry > 1+ € > 1. O

We next study the monotonicity of Ry. Here, we need the assumption:
(H1) o1H, = 02V, or both ¢1H, and o3V are constants.
THEOREM 3.7. Suppose that (H1) holds. If 01 is constant, then Ry is decreasing
mn 51 .

Proof. Let & = 1/Ry. By the Krein-Rutman theory, & is an eigenvalue associated
with a positive eigenvector ¢ ( we normalize ¢ such that ||@]|2 = 1) of the following
problem:

kLiR1LaRogp = ¢.
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Therefore, we have

(3.2) KAR1LaRad = (A — §1A)o.
Differentiating both sides with respect to d;, we have

(3.3) ks, AR1 LoRog + kAR1 LoRogps, = —Ad + (A — 01A)ds, -

Multiplying (3.3) by ¢ and (3.2) by ¢s,, and integrating their difference over Q, we
obtain

551/¢)\R1L2R2¢dx:/ |V |2de,
Q Q

where we used the assumption (H1) to derive

/ ¢51 )\Rl L2R2¢d$ - ¢)‘R1L2R2¢61 dx.
Q Q

Since ARjLsRy is strongly positive, AR;LaRa¢ > 0. Therefore, k5, > 0 and & is
increasing in d;. Hence, Ry is decreasing in 4. O

Remark 3.8. If 5/ is constant, V is independent of 8. Then, similar to Theorem
3.7, Ry = r(LaR2L1 Ry) is decreasing in d5 if (H1) holds. Moreover, from the proof of
Theorem 3.7, Ry is strictly deceasing, if the eigenvector is non-constant.

4. Small or large diffusion rates. We prove the following result on the con-
vergence of spectral radii for strongly positive compact linear operators, which is
essential for our investigation of the role of diffusion rates for the basic reproduction
number Ry.

THEOREM 4.1. Let X be an ordered Banach space with positive cone Xy such
that X1 has nonempty interior. Let T,,,n > 1, and T be strongly positive compact

linear operators on X. Suppose T, SOT, (Strong Operator Topology) which means
T,(u) = T(u) for any v € X. If Up>1T,(B) is precompact, where B is the closed
unit ball of X, and r(T},) > 1o for some ro > 0, then r(T,,) — r(T).

Proof. Since T and T,, are compact and strongly positive, by Theorem 2.5, r(T')
and 7(T,,) are positive simple eigenvalues of T' and T,,, respectively. So there exists
en € int(X4) with ||e, || = 1 such that T,e,, = (T}, )ey for alln > 1. Since U, >17T,,(B)
is precompact and r(7,,) > ro > 0, {e, } is precompact. So there exists a subsequence
{en, } of {en} such that e,, — e for some e € X.

We claim T, e, — Te. Note that sup,,~; |Tn(u)| < oo for any u € X by the

convergence assumption T, SOT 7 Then by the uniform boundedness principle,

there exists M > 0 such that sup,,~; [|T5]| < M. Let € > 0 be arbitray. Since e,, — e
and T, e — Te, there eixsts N > 0 such that ||e,, —¢|| < € and ||T},, e — Tel|| < € for
all £k > N. Hence for all £ > N, we have

[T — Tell < [Tug (e, — )l + [T — Tel| < Me +e.

Since € > 0 was abitrary, T}, e,, — Te.

Since Ty, en, = 7(Tn,)eny, Tnpen, — Te and e,, — e, we have r(T,,) =
|Th,en,ll — ||Te|l and Te = || Telle. Since e, € X+ and |e,]| = 1, e € X4 and
lle]l = 1. Thus e is a positive eigenvector of T' corresponding to eigenvalue ||Tel.

Again by Theorem 2.5, we have r(T') = ||Te|. Hence (T}, ) — r(T) and r(T},) — r(T)
(Here we use a well-known result: if every subsequence of the sequence {a,} has a
convergent subsequence with limit a, then a,, — a). 0
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The convergence of a sequence of compact operators in the strong operator topol-
ogy is not sufficient to guarantee the convergence of their spectral radii. We use the
following simple example to illustrate this fact:

EXAMPLE 4.2. Let H be a Hilbert space with an orthonormal basis {e;}2,. For
n>1, defineT,, : H— H by

o0
T, (a) = ane, for any a = Zaiei € H.
i=1
Then {T,} is a sequence of compact operators with r(T,,) = 1, and T, 50T ). Since
r(T,)=1and r(T) =0, r(T,) % r(T).
It is interesting to see whether some of the hypotheses in Theorem 4.1 can be dropped.

We leave this as an open problem.

4.1. Large diffusion rates. In the following two subsections, we investigate Rg
quantitatively when the diffusion rates are large or small. To this end, we assume that
91 and Jy are constants. Define two integral operators L o, L2 o : C'(2) = C(€) by

Lioo(9) = W and Lo oo(¢) = W for any ¢ € C(Q).
Q Q
sSoT

LEMMA 4.3. Ly === L1 o in C(Q) as §; — oco.

Proof. Let u € C(f2) be given. We need to prove that L;(u) — L1 o (u) in C(Q2)
as 01 — oco. For any 6; > 0, let v5, = Li(u). Then vy, is the solution of the problem

{ \vs, — 61Avs, = \u, z €,

o)

(41) Vs = 0, x € 0N).

By the comparison principle, we have —||ullcc < v5, < |lul|oo for all 6; > 1. Hence
by the LP estimate, {vs, }s,~1 is uniformly bounded in W?2?(Q2) for any p > 1. Since
the embedding W2?(Q) C C(Q) is compact for p > n, up to a subsequence, vs, — v
weakly in W?2P(Q) and strongly in C(Q) for some v € W?2P(Q) as §; — co. Moreover,
v satisfies

—Av =0, x € Q,
%v =0, x € 0N.

By the maximum principle, v is a constant. Integrating both sides of the first equation

of (4.1) and taking d; — oo, we find v = fﬁlA/\z;clez. 0

LEMMA 4.4. Ly 290, L o in C(Q) as 63 — o00.

Proof. Let u € C(2) be given. We need to prove that La(u) — La o (u) in C(Q)
as 02 — oco. For any d2 > 0, let vs, = La(u). Then vy, is the solution of the problem

(4.2) { :“Vvéz — 62Avg, = uVu, x €N,

5%1)52 =0, x € 0.
Noticing that V is the positive solution of

— 0, AV = BV — V2, x € Q,
2V =0, x € 09,

This manuscript is for review purposes only.
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252 it satisfies

. d
253 (4.3) V- Jo8 x’ as 0y — 00.
Jo nda
254 (see [4, Proposition 3.17] and [18, Proposition 2.5]). The rest of the proof is essentially
255 the same as the proof of Lemma 4.3. ]
256 We now investigate Ry for large diffusion rates by Theorem 4.1.
257 THEOREM 4.5. The following statements hold:
1. For fized 6 > 0,
AR (LoR2)d
RO — T(L1 OoRlLQRQ) = fQ 1( 2 2) x as 51 — 005
’ Jo Adz
2. For fized 61 > 0,
Ro(L1Ry)d
Ry — 1(LaosRoL1Ry) = Jo pla(Iifa)de: 5y — 00.
Jo ndz

Proof. For i = 1,2, define two bounded linear operators H; o, : C(2) — C(£2) by

AR1 Lo Ryod RoL i Ry¢pd
Hl,w(¢):fﬂ 1L2Ropdx and H27m(¢):fgu 2 L1 Rigdx
Jo pdz

f c(9).
Toadz or any ¢ € C({2)
Then Hi o = L1,ccR1L2Ry and Hy oo = Ly oo RoL1 Ry . By Lemmas 4.3-4.4, we have

LiR1LsRs SO—T> Hl,oo as 51 — o0 and LoRsL1 Ry SO—T> HQ’OO as 52 — OQ.

Clearly, LiR1LoRo, LoRo L1 Ry, Hy o and Hj o are strongly positive compact opera-
tors on C(Q). In the proof of Lemma 3.2, we have shown that L;(B) C B, i = 1,2.
This implies that U51>1L1R1L2R2(B) C L1R1(R2MB) and U52>1L2R2L1R1(B) C
LyRy(RypB) are precompact in C(f2), where Riy and Rgys are defined in Theo-
rem 3.6. By Theorem 3.6, we have T(LlRngRg) = T(L2R2L1R1) > Ry Ropm > 0.
Then by Theorem 4.1, we have Ry = r(L1R1LoRy) — 7(H1,0) as 61 — oo and
Ry = r(LaRaL1Ry) — r(Hz,00) as 62 — oco. Finally, we observe that the eigenfunc-
tions of His and Hso, must be constants, and

B fQ )\Rl (LQRQ)dLIJ

fQ ,LLRQ (LlRl)dz
Hi )= = .
r(H100) T, Az

and 1(Hz o) = T pde
Q

Remark 4.6. If Ry is constant, then Lo Ry = Ry and

fQ /\R1 (LgRQ)d.’E o fQ ARdx

R -
O o M Jo Az

as d; — 00,

which is independent of d5. Similarly, if R; is constant, then

Jo nR2(Ly Ry)da _ Jo nRdx
Jo Adx [ udz

Ry — as dy — 00,

258  which is independent of d;.
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Define
B Jo ARy dx _ Joo1Hydx and By — Jo nR2dx _ Jo o2dx
R ;7 Jo Adz C o pdx Jo pdz
259 THEOREM 4.7. The following statements hold:
260 1. T(LLOORlLQRQ) — R1Rs. as 52 — 00;
261 2. T(L2700R2L1R1) — lefg as (51 — OQ.
Proof. By Lemmas 4.3-4.4, we have
Rod ARd _
Lol - Jodr gy Je AT
Jo ndz Jo Adz
262 Our claim now just follows from Theorem 4.5. O

Remark 4.8. By Theorems 4.5-4.7, we have

lim lim Ro= lim lim Ry = R Ro.

51 —00 3 —00 d2—00 01— 00

263 We can actually prove

264 (4.4) lim Ro = Ri R,

(51,52)*}(00,00)

265 by making use of L1 Ry LoRy ED—T% Ly o R1Ly o Ry and Theorem 4.1.

266 4.2. Small diffusion rates. We next study Ry when the diffusion rates are
267 small.

268 THEOREM 4.9. The following statements hold:

269 1. For fized §3 > 0, Ry — r(RL3) as 1 — 0;

270 2. For fized 61 > 0, Ry — r(RL1) as d3 — 0.

Proof. 1. Tt is well-known that, for each ¢ € C(Q), L1¢ — ¢ in C(Q) as §; — 0.
So we have RiLyRyL; ~2% RiLyRy as 6 — 0. Let B be the closed unit ball
in C(Q). Since Li(B) C B, we have Us,c1R1LaRoLi(B) € RyLyRy(B). By the
compactness of Ly, Us, <1 Ry LaRoLy(B) is precompact in C(Q)). By Theorem 3.6,
we have T(RlLQRQLl) Z leRQm > 0. Noticing that R1L2R2L1 and R1L2R2 are
strongly positive compactor operators on C(£2), by Theorem 4.1, we have

R() = T(R1L2R2L1) — r(RngRg) = T(RgRng) = T(RLQ), as (51 — 0.

271 2. By [15, Lemma A.1], V — 8/u in C(Q) and Ly¢ — ¢ for any ¢ € C(Q) as
272 09 — 0. Hence RoL1R1Lo sot, RyL1R; as 05 — 0. The rest of the proof is similar
273 to part 1. ]

274 Let Ry = max{R(z) : z € Q}. The proof of the following result is similar to
275 [21, Lemma 3.1], and we attach it in the appendix for readers’s convenience. Unfor-
276  tunately, we can not apply Theorem 4.1, since R is not compact. Can we generalize
277  Theorem 4.1 so that it can be used to prove the following result? We leave this as an
278 open question.

279 THEOREM 4.10. The following statements hold:
280 1. r(RL3) — Ry as d3 — 0;
281 2. 7(RL1) — Ry as 61 — 0.
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Combining Theorems 4.9-4.10, we actually have
4. . . _ . . _ : ~ .
(4.5) 5111§0 6121§0 Ry 5121§0 5111§0 Ry = max{R(z) : z € Q}
We can apply [17] to prove the following result.
THEOREM 4.11. The following statement holds:
4.6 li Ry = R(z):xz € Q}.
(4.6) ol Ry = max(R(x) 2 € 0)
Proof. Let Ry = max{R(x) : * € Q}. Firstly, suppose Ry = 1 and Vs
independent of d;. We need to show that Ry — 1 as (d1,02) — (0,0). Let Kk = 1/Ry

and view it as a function of (41, d2). Since Ry is the principal eigenvalue of Ly Ry Ls Ra,
there exists a positive @ = (po,%0)7 (satisfying homogeneous Neumann boundary
conditions) such that k satisfies

(4.7) Ady + kB®, = 0,

where

(A=) 0 _ (0 AR
A‘(WRQ 52A—W> and B_(O 0>'

For any positive a, 01, and d2, let e = e(a, d1,02) be the principal eigenvalue of the
following eigenvalue problem (with homogeneous Neumann boundary conditions)

(4.8) A® + aB® = ed.

Then, we have e(k, 01, 02) = 0.
It has been shown in [17, Theorem 1.4] that

lim e =maxé(Cy(x)),
(61,52)4}(0,0) xeQ)

where é(Cy (7)) denotes the eigenvalue of the matrix C,(z) with greater real part for
each z € Q (By the Perron-Frobenius Theorem, the eigenvalues of C,(z) are real),

and
C, = T)‘ CL}\R} .
WV Ry  —pV

Therefore, for each a, e = e(a, d1,02) can be extended to be a continuous function of
(01, 02) on (0,00) x (0,00) U{(0,0)} by e(a,0,0) := max,cq é(Cy(z)).

We claim that e is increasing in a for each (d1,d2) € (0,00) x (0,00). To see this,
we can choose ® = (p,1) to be a positive eigenvector with ||i||2 + [[¢|l2 = 1 of (4.8).
Then differentiate both sides of (4.8) with respect to a, we obtain

(4.9) AD, + aBP, + BD = e,® + ed,,.

Multiplying (4.9) by ®7 to the left and (4.8) by ®1 to the left, and integrating their
difference over Q, we obtain ®TB® = e¢,®T ®. Therefore, e, = fQ AR1ppdz > 0 and
e is strictly increasing in a.

Noticing max{R(x) : * € Q} = 1, it is not hard to check that e(a,0,0) =
max,cq é(Co(z)) = 0 if and only if a = 1. Moreover, e(a,0,0) is strictly increas-
ing in a. Assume to the contrary that x(d1,02) # 1 as (01,02) — (0,0). Then there
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exists a sequence {(d1p,02,)}52, and ag # 1 such that x, := K(d1n,d2n) — ao as
n — o0o. Without loss of generality, we may assume ag > 1. Choose ¢y > 0 such that
ap — €9 > 1, which implies k(ag — €,0,0) > x(1,0,0) = 0. Then there exists N > 0
such that k, > ag — €g for all n > N. By the monotonicity of e, we have

0 = e(kn, O1n, 02n) > e(ap — €0, 01p, 02,,) for all m > N.
Taking n — oo and by the continuity of e(ag — €, -, -), we have

0> lim e(ag — €g, 01n, 02n) = €(ap — €o,0,0) > 0,

n—oo

which is a contradiction. Therefore, x(d1,02) — 1 as (d1,02) — (0,0). This proves
the case max{R(z):z € Q} = 1.

Then, we drop the assumption Ry; = 1 but still suppose that Vis independent
of 5. We have

i)
R

=r <L1R1L2R2> — max{Rl(:E)R2<x) cxr € Q} =1 as (§1,d2) — (0,0).
Ry Ry
This means Ry — Ry as (d1,92) — (0,0).
Finally, we drop the assumption that Vs independent of d5. Let € > 0 be given.
By Lemma 2.1, there exists 4 > 0 such that ||V — 8/ul|oe < € for all §, < 6. By the
comparison principle, for d < J, we have

g -1 B - 17 s -1 B
(ﬂ(; +€) —24) 1#(; —€) < Ly = (uV —6:8) "'V < (H(; —€)—02A) 1#(; +e).
Define

s B 1, B
(4.10) Ly = (M(; —€) = 02A) lﬂ(; —€)
and
(4.11) Ry = g * ER2'
I

Similarly, we define Lo, and Ry, only with e replaced by —e in (4.10)-(4.11). Then,
we have

LiRyLocRo. < LiR1LyRy < Ly Ry Lo Ry, for 6y < 4.

It follows from Theorem 2.5 that

(4.12) ’I"(LlR]_IVJQERQE) < Ry < T(L1R1i2€R26)7 for 6o < 4.

By the previous step,

lim r(LiRyLocRo.) = max{R;(z)Rac(z) : z € Q} := Ryse
(81,02)—(0,0) ( 1ARE2 2) { 1() 2() } M

and

I LiRyLocRy.) = Ri(2)Roc(z) : 7 € Q) = Rage.
(51,521)1(3(070)r( 1R1L2cRyc) = max{R;(v)Rae(x) : v € Q} "
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Taking (01, d2) — (0,0) in (4.12), we obtain

Rye < liminf Ry < limsup R < Raye.
(61,02)—(0,0) (01,62)—(0,0)

Taking € — 0, we have

liminf Rg= limsup Rg= Ry.
(61152)4)(070) (51,52)*}(0,0)

By Theorem 4.11, we have the following result.

PROPOSITION 4.12. The following statements hold:
1. If R(z) < 1 for all x € Q, then there exists 5 > 0 such that Ry < 1 for all
(81, 02) with 81,0, < 6;
2. If R(z) > 1 for some x € Q, then there exists & > 0 such that Ry > 1 for all
(51,52) with 51,52 S S

5. Simulations.

5.1. Dependence on 4;. In this section, we investigate the dependence of Ry
on d;. Let Q = [0,1] x [0,1]. We fix all the coefficients except for d1: d2 = 4,01 =
5sin(z) + 3,00 = p =B = (x+1)> + 0.1, H, = cos(y) + 1.5, X = 12. Since B/p = 1,
the unique positive solution of (1.3) is V = 1. By Theorem 3.6, Ry < max{R(z) :
x € Q} = 1.5015. Noticing that Ry = 0o/ = 1 and \ are constant, by Remark 4.6,

ARd Rd
(5.1) Ry — f? Ad; - me' T~ 0.5854 as &) — .
Q

We then find r(RLs3). Using the fact that ' = 1/r(RLs) is the principal eigenvalue
of the following problem (with homogenous Neumann boundary conditions):

(1V — 02A)¢ = kuV Ro,
we can compute r(RLg) = 1.0075 numerically. By Theorem 4.9, we expect
(5.2) Ry — T(RLQ) = 1.0075 as (51 — 0.

We now compute Ry. By the definition, k = 1/Ry is the principal eigenvalue of
the following problem (with homogeneous Neumann boundary conditions):

—V 61V n A 701!-[” %) _ OA 0 %)

—V - 8V 0 uv ) T\omV 0)\Y)°
For different values of d; € [0.001,400], we solve the eigenvalue problem numerically
and plot Ry in Figure 1. In particular, Ry = 1.0074 when ¢; = 0.001 and Ry = 0.5904

when ¢§; = 400, which agrees with (5.1)-(5.2). Moreover, we observe that Ry is
decreasing in ;. We conjecture that this is true in general.

5.2. Simulations in a realistic situation. In this section, we will simulate
the model using geometric and population data of Puerto Rico. The domain 2 is
taken as the geometric boundary of Puerto Rico, which can be obtained from Math-
ematica as a polygon. The population density data of the 76 districts of Puerto
Rico can also be found in Mathematica, which can be used to construct the suscep-
tible human distribution, i.e. H,(z), by interpolation. H;y is assumed to be 100
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F1G. 1. The basic reproduction number Rq for different values of 41 .

20 a0 60 80

F1c. 2. Local basic reproduction number R(x).

people, distributed normally, centered at (0, -20). Set Vo = 10H;0, Vo = 150,

o1 = 0.000001, 0o = 0.7, A = 1, f = 5, and g = 0.0005. The local basic re-

production number R(z) = o109H,/Ap is shown in Figure 2. Then we compute

max{R(z): = € 0} =4.3167 and Jo M}l(fgfz)dw = fﬂlgldm = 0.6513. By Theorems

2.3, (4.5)-(4.7), and (4.9)-(4.10), we expe& that the solution of (1.1) converges to a

positive steady state when the diffusion rates are small and to the semitrivial equi-

librium (0, v, 0) when 65 is large. For verification, we choose different diffusion rates

and use finite element method in Matlab to solve (1.1).

Case 1. Set 0; = d5 = 4. We plot the total infected host cases in Figure 3 and the
density of infected hosts for t = 4,8,12,16 in Figure 4. In this case, the
solution converges to the positive steady state and the disease persists.

Case 2. Set d; = 4 and d; = 4000. We plot the total infected host cases in Figure
5 and the density of infected hosts in Figure 6. In this case, the density of
infected hosts converges to zero and the disease dies out.

6. Discussion. In this paper, we have shown that the basic reproduction number
Ry of the reaction-diffusion model (1.1) can be written as Ry = r(L1 R1 LaR3), where
the local basic reproduction number R(z) = Ry(z)Rz(x) is a multiplication operator
on C(Q), and L; and Ly are strongly positive compact linear operators with spectral
radii one. We are then able to study the relation of Ry and R(x). We prove that
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Weeks

Fic. 3. Total infected host cases, i.e. [q Hi(z,t)dx, with 61 = d2 = 4.
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0.005
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eQ — ———— eQ —
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F1G. 4. The density of infected hosts, i.e. H;(x,t), at t =4,8,12,16 with 61 = d2 = 4.

Ro > 1if Ry(z) > 1 and Ryo(x) > 1 for all x € Q, and Ry < 1 if Ry(x) < 1 and
Rs(x) < 1. Actually, Ry is bounded below and above by the products of the minimum
and maximum of R; and Ry. When the diffusion rates are small, Ry > 1 provided that
R(z) > 1 for some z € 2. When the diffusion rates are large, Ry approximates RiRo.
Moreover, our numerical simulations suggest that Ry is decreasing in §;, however we
are only able to prove it under the assumption (H1). The dependence of Ry on 09 is
more difficult to study since V is also dependent on 5. We only know that if 3 /i is
constant, then Vis independent of d5 and Ry is decreasing in do under the assumption
(H1).

We remark that our approach can be applied to many other reaction-diffusion
epidemic models. For example, if we adopt our approach to analyze R for the diffusive
SIS model in Allen et al. [1], we will compute Ry = r(—=CB~1) = r(8(y — d;A)71).
Then we can write Ry as Ry = r(RL), where R(z) = B(z)/v(x) is the local basic
reproduction number and L = (y — d;A)~ 1y is a strongly positive compact linear
operator in C({2) with spectral radius one. To further illustrate this, we briefly adopt
this approach to study the basic reproduction number of some other models in the
following two subsections.
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Total infected population

Fia. 5. Total infected host cases, i.e. [q Hi(z,t)dz, with 61 = 4, 52 = 4000.
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FI1G. 6. The density of infected hosts, i.e. H;(z,t), at t = 4,8,12,16 with §1 = 4,52 = 4000.

6.1. A within-host model on viral dynamics. Suppose that T'(x,t), I(z,t),
and V(x,t) are the density of target cells, infected cells and free virus particles at
position = and time ¢, respectively. The model proposed in [19] to study the repulsion
effect of superinfecting virion by infected cells is the following;:

9 — DrAT + h(z) — drT — B(z)TV,
(61) %/: D[AI"Fﬂ(x)TV—d]I,
S =V - (Dyv()VV) +~(z)] —dvV,
subject to homogeneous Neumann boundary conditions and nonnegative initial con-
ditions.
Let T'(z) be the unique positive solution of

Linearizing (6.1) at the equilibrium (T ,0,0), the stability of it is related to the fol-
lowing eigenvalue problem

{ ke = DiAp —drp+ BT,
kY = DoAY + v — dy,
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391 where Dy = Dy (0). As before, we define

392 B = (D(I)A DSA) + (_Sll —§€V> and C = (3 8) ;
and the basic reproduction number
Ry =r(—CB™).
Similar to Theorem 3.1, we write Ry as
Ro =7 (y(di = D1A) 8T (dy — Do) ™).

393 We have

394 (6.2) Ro = r(L1R1 L2 Ry),
with
Ly = (d; — D;A)'d;, Ly = (dy — DoA)tdy,
and .
BT Y
L= 2= 4
The local basic reproduction number is defined as
vBT
R=RiRy = .
e =00

Here, Ly and Ly are strongly positive compact linear operators on C' () with spectral
radius one, and T' = (dr — DrA)~!h satisfies

. . drRsd
lim 7 =Ry, lim T:M,
Dr—0 Dr—00 fQ drdz
and - A -
min{R3(z) : v € Q} <T < max{R3(z) : z € Q},
with L
Ry = —.

37 ur

395 An immediate consequence of (6.2) is the following result.
396 THEOREM 6.1. The following statements hold:
397 e If Ry and Ry are constant, tizen Ry = R; -
o Let Ry, = min{R;(z) : € Q} and R;pr = max{R;(x) : x € Q} fori=1,2,

then
RimRom < Ro < Rip Ran
. — —
5 __Byh
1m 0= ===,
(D1,Dr,Dv )= (00,00,00) drdydr
398 where f denotes the average of f, i.e. f = [q fdx/|Q| for f =B, ~, h, d,

399 dy,dr.
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lim lim Rg= lim lim Ry = lim Ro = max{R(z) : x € Q}.
D;—0Dyv—0 Dy —0Dr—0 (Dy,Dv)—(0,0)

We notice that R is consistent with the basic reproduction number defined using [13]
(R can be viewed as the total number of newly infected cells produced by one infected
cell) for the corresponding ordinary differential equation model. We will leave the
interested readers to investigate the monotonicity of Ry with respect the diffusion
rates.

6.2. An HIV model with cell-to-cell transmission. Let T'(x,t), T*(z,t),
and V (z,t) be the density of healthy T cells, infected T cells and virions at position
and time ¢, respectively. The model proposed in [26] to describe the cell-to-cell HIV
transmission is the following:

9L = dy AT + Nx) — d(2)T — p1(2)TV — Ba(a)TT*,
(6.3) % = dyAT* + B1(2)TV + Bo(x)TT* — ~(2)T*,
9L = dsAV + N(2)T* — e(2)V,

subject to homogeneous Neumann boundary conditions and nonnegative initial con-
ditions.
Let To(x) be the unique positive solution of

diAT + A(z) — d(2)T = 0.

Linearizing (6.1) at the equilibrium (7}, 0,0), we obtain the following eigenvalue prob-
lem

(6.4) { ke = doAp + (BTo — ) + B1Tov,
. Iﬁ:'(/) :dgA’l/J'FNSD_ew»

We define

=[5 )+ (¥ 2) o= (5 )
and the basic reproduction number

Ry =7r(-CB™).
Similar to Theorem 3.1, we compute Ry as

Ro=r (ﬁQTQ(’}/ — dQA)_l + ﬁlTo(e — dgA)_lN(’y — dgA)_l) .

So we have
(6.5) Ry = 7(La(R3 + RAL3R3)),
with
L2 = (’Y - dQA)_l’Ya L3 = (e - d3A)_1€7
and

T T N
R%:ﬂl 0. R%zﬂQ o g =N
Y 0

e

This manuscript is for review purposes only.



419

420
121

422
423
424

425
426
427
428
429
130
431
432

433

436

BASIC REPRODUCTION NUMBER OF EPIDEMIC MODELS 19

Here L; and Lo are strongly positive compact linear operator on C({2) with spectral
radius one, and L;1 = 1 for ¢« = 1,2. The local basic reproduction number R is defined

as
R—R%-'—R%R:;_(l erze) Oa

where Ty = (d — d;A) 71\ satisfies

dR
lim Ty = Ry, lim Tp = Jo L
dl—)O d1—>00 .[Q d
and - -
min{R;(z) : x € Q} <Tp <max{Ry(z): x € Q},
with

A
Rlza.

We can also prove:

THEOREM 6.2. The following statements hold:
o If R} RZ and R3 are constant, then Ry = R;
o Let S, = min{S(z) : x€Q} and Sy = max{S(z) : x€Q} for S =
R}, R3, R, then

o BN R
(dl,dz,d3)4)(00,00,00) er
where f denotes the average of f over Q, ie. f = [o fdx/|Q| for f =

51,52,677”,6[,)\. B
o limg, ,0limg, 0 Rp = max{R(x) : z € }.

Proof. We will only sketch the proof of the last part. Noticing that Ls¢p — ¢

in C(Q), we have Lo(R2 + RLL3R3) 225 Lo(R2 + RLR3) = LoR as d3 — 0. Let

B C C(Q) be the closed unit ball, then
Uss>0La(R3 + RyLaR3)(B) C La((Ryay + R3yRanr)B),

which is compact. By Theorem 4.1, we have Ry = r(Ly(R3 + R5L3R3)) — r(L2R)
as d3 — 0. The proof of r(L2R) — max{R(z) : z € Q} as da — 0 is the same with
Theorem 4.10. |

7. Acknowledgement. The authors would like to thank the referees for many
helpful comments, which lead to improvements in Theorem 3.6 and the proof of The-
orem 4.11. The authors would like to thank Cheng Chu for pointing out Remark
2.4 and Ben Hayes, King-Yeung Lam, Yuan Lou, and Pengfei Song for many helpful
discussions.

Appendix A. Appendix - Proof of Theorem 4.10.

Proof. We only prove part 1. Define r5, =: r(RL3) = r(L2R). Then ks, = 1/rs,
is the principal eigenvalue of the problem

(A1) { (uV — 83A)w = kuV R, z€Q,

a—anU:O, x € 0N.
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By (A1),
1 82 [o |Vv2dz + [, uVv2d
K§, = — = min 2 Jo |70 o Jo Vv x:vEHl(Q)andv#O
s, Jo RuVvtda
1 82 [o |Vv2da + [, uVv2d 1
> — min 2 Jo 70! il Jo Vv x:veHl(Q)andv#O =—.
Ry Jo nVv2dz Ry

It then follows that liminfs, 0 ks, > 1/Rp.

We only need to show limsupg, ,o ks, < 1/Ras. Assume to the contrary that the
statement does not hold, i.e. limsups, ks, > 1/Ry. Then there exists ¢g > 0 and
a sequence {0z, } with do , — 0 such that s, , > 1/(Ry —¢€o). Let 20 € Q and a > 0
such that R(z) > Ry — €0/2 in B(wg,a). Let vs,, be a positive eigenvector of (A.1)
associated with the principal eigenvalue £, ,. Then in B(xg,a), we have

(Rar — €0/2)uVvs,,,

(NV - 627HA)U52,7L = “62,W,H‘A/Rvézm > R
M — €0

It follows that, in B(zg,a),

A’l}52 €0 ~
— > V.
Uy 209 (Ry — 60)'u

Let ' be the principal eigenvalue of —A in domain B(xg,a) with Dirichlet boundary
condition. By a minimax formulation of ' ([3]), we have

—Au €0 ~
A2 K = su inf > inf V1.
#-2) u€W2vT’(B(£)0,a)),u>0 z€B(z0,a) U 2020 (Rpm — €0) IGB(zo,a){u }

Noticing that V > min{(z) : z € Q}/max{u(z) : = € Q}, the right hand side of
(A.2) tends to oo as 3, — 0. This is a contradiction. Hence, ks, — 1/Rpy and
rs, — Rar as d2 — 0. 0
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