Mathématiques Appliquées Bordeaux

Licence d' Ingénierie Mathématiques

Année 2 et 3

L4MIngMa3: modèles et méthodes d'optimisation

Leçon 2:

Introduction à la programmation linéaire

Sommaire:

- 1. Qu'est ce qu' un programme linéaire
 - Hypothèses faites en programmation linéaire
 - Représentation graphique d'un LP
 - Solution graphique d'un LP
- 2. Méthode de résolution: algorithme du Simplex
- 3. Dégénerecence
- 4. Dualité et interprétation économique

François Vanderbeck, MAB, Bur.: A33:257, Email: fv@math.u-bordeaux.fr

Exemple de PL: Production de verre

Une entreprise fabrique des verres à jus et à cocktail

	jus	coktail	capacité
profit	500	450	
produire 100 boites	6 heures	5 heures	60 h/sem
espace de stockage	$10 p^3$ /boite	$20 p^3$ /boite	$oxed{15000~p^3}$
# maximum vendu	8		

Formulation:

Qu'est-ce qu'un programme linéaire (LP)?

Exemple 1:
$$\min \ -3 \, x_1 + x_2$$
 s.a. $x_1 + x_2 \leq 2$ $2 \, x_1 + 2 \, x_2 \geq 10$ $x_1 \ , \quad x_2 \geq 0$

Variables:

variables réelles: $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$

Objectif:

Fonction objectif linéaire: $c_1x_1 + c_2x_2 + \ldots + c_nx_n$

Contraintes:

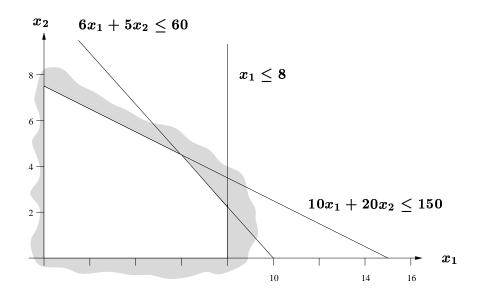
équations linéaires:
$$a_{1,1}x_1+a_{1,2}x_2+\ldots+a_{1,n}x_n=b_1$$
 inéqualités linéaires:
$$\begin{cases} a_{2,1}x_1+a_{2,2}x_2+\ldots+a_{2,n}x_n \leq b_2 \\ a_{3,1}x_1+a_{3,2}x_2+\ldots+a_{3,n}x_n \geq b_3 \end{cases}$$

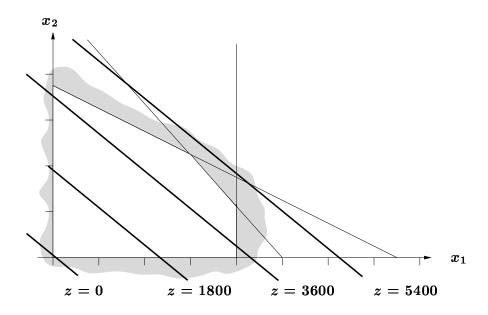
Hypothèses fondamentales:

Linéarité: coût/profit par unité et consommation des ressources par unité reste constant.

Continuité: les variables peuvent prendre n'importe quelle valeur réelle.

Représentation graphique





Résolution graphique

Translater l'hyperplan "équi-profit" vers un profit maximum tant qu'il a une intersection non vide avec la région réalisable.

Observations

- 1. solution optimale ∉ intérieur de la région réalisable
- 2. la solution optimale en un sommet (point extrême)
- 3. s'il y a de multiples solutions optimales, on peut en trouver une en un sommet

\Rightarrow il suffit d'examiner les sommets

 $\Rightarrow PL \subseteq \{\text{problèmes d'optimisation combinatoire}\}\$

- 4. le long d'une arête,
 - (a) l'objectif croît, ou
 - (b) l'objectif reste constant, ou
 - (c) l'objectif décroît.

Algorithme (procédure de résolution) géométrique

- 1. Commencer à n'importe quel sommet réalisable, x.
- 2. A partir de x, trouver une arête le long de laquelle l'objectif croît.

Si il n'y en a pas, x est optimal, STOP.

3. Aller au point y au bout de cette arête tq

redéfinir x = y; et retourner en 2.

L'ALGORITHME DU SIMPLEX sur un exemple

Problème linéaire:

$$egin{array}{ll} \max & 5\,x_1 + 4\,x_2 + 3\,x_3 \ & ext{s.a.} & 2\,x_1 + 3\,x_2 + 1\,x_3 & \leq & 5 \ & 4\,x_1 + 1\,x_2 + 2\,x_3 & \leq & 11 \ & 3\,x_1 + 4\,x_2 + 2\,x_3 & \leq & 8 \ & x_1, x_2, x_3 & \geq & 0 \end{array}$$

On introduit des variables d'écart et une variable de profit

$$egin{array}{lll} x_4 &=& 5-2\,x_1-3\,x_2-1\,x_3 \ x_5 &=& 11-4\,x_1-1\,x_2-2\,x_3 \ x_6 &=& 8-3\,x_1-4\,x_2-2\,x_3 \ z &=& 5\,x_1+4\,x_2+3\,x_3 \end{array}$$

Ce système s'appelle un **dictionnaire**; les variables de gauche sont appelées **variables de base**; les variables de droite sont appelées **variables hors base**.

Le problème devient

$$\max\{z:\ z=\ldots,\ x_4=\ldots,\ x_5=\ldots,\ x_6=\ldots \ x_1,\ x_2,\ldots,\ x_6\geq 0\}$$

On trouve une solution initiale

$$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 5, x_5 = 11, x_6 = 8, z = 0$$

On tente d'améliorer cette solution

Augmenter x_1 en gardant $x_2 = x_3 = 0$. De combien peut-on augmenter x_1 en restant réalisable: $x_4, x_5, x_6 \ge 0$?

Réponse: $x_4 \geq 0x_1 \leq \frac{5}{2}, x_5 \geq 0x_1 \leq \frac{11}{4},$ $x_6 \geq 0x_1 \leq \frac{8}{3}$. Donc, la solution suivante sera

$$x_1=rac{5}{2},\,x_2=0,x_3=0,\,x_4=0,\,x_5=1,\,x_6=rac{1}{2},\,z=rac{25}{2}$$

Peut-on encore l'améliorer? Difficile à voir sans un système d'équations aussi simple qu'au départ.

Exprimons x_1, x_5, x_6 et z en termes de x_2, x_3, x_4 .

On reconstruit le système d'équations: Exprimons la variable entrante x_1 en utilisant l'équation de la variable sortante x_4 :

$$x_1 = rac{5}{2} - rac{3}{2} \, x_2 - rac{1}{2} \, x_3 - rac{1}{2} \, x_4$$

Ensuite, on remplace x_1 dans les équations définissant x_5, x_6 et z:

$$egin{array}{lll} x_5 &=& 11-4\,(rac{5}{2}-rac{3}{2}\,x_2-rac{1}{2}\,x_3-rac{1}{2}\,x_4)-1\,x_2-2\,x_3 \ x_6 &=& 8-3\,(rac{5}{2}-rac{3}{2}\,x_2-rac{1}{2}\,x_3-rac{1}{2}\,x_4)-4\,x_2-2\,x_3 \ z &=& 5\,(rac{5}{2}-rac{3}{2}\,x_2-rac{1}{2}\,x_3-rac{1}{2}\,x_4)+4\,x_2+3\,x_3 \end{array}$$

Le nouveau système (dictionnaire) s'écrit

$$egin{array}{lll} x_1 &= rac{5}{2} - rac{3}{2} \, x_2 - rac{1}{2} \, x_3 - rac{1}{2} \, x_4 \ x_5 &= 1 + 5 \, x_2 - 0 \, x_3 - 2 \, x_4 \ x_6 &= rac{1}{2} + rac{1}{2} \, x_2 - rac{1}{2} \, x_3 + rac{3}{2} \, x_4 \ z &= rac{25}{2} - rac{7}{2} \, x_2 + rac{1}{2} \, x_3 - rac{5}{2} \, x_4 \end{array}$$

On réitère le processus:

Augmentons x_3 dont le coéfficient dans l'objectif est positif, tout en maintenant $x_2 = x_4 = 0$ et $x_1, x_5, x_6 \ge 0$.

 x_3 peut augmenter jusqu'à 1 (la borne étant dictée par $x_6 \ge 0$). Donc x_6 quite la solution courante et le nouveau système devient:

$$egin{array}{lll} x_3 &=& 1+1\,x_2+3\,x_4-2\,x_6 \ x_1 &=& 2-2\,x_2-2\,x_4+1\,x_6 \ x_5 &=& 1+5\,x_2+2\,x_4+0\,x_6 \ z &=& 13-3\,x_2-1\,x_4-1\,x_6 \end{array}$$

Jusqu'à ce que la solution courante soit optimale:

Dans la solution courante, augmenter x_2, x_4 ou x_6 fait décroître l'objectif z. On en déduit que pour toutes solutions réalisables $z \leq 13$ et que donc la solution courante de profit z = 13 est optimale.

Dégénérescence:

Quand il y a plusieurs candidats "variable sortante", la nouvelle solution de base aura une ou plusieurs variables de base prenant la valeur zéro:

$$\overline{b}_i = 0$$
 pour certain $i \in \mathcal{B}$.

On dit alors que la solution de base est dégénérée.

EXEMPLE:

$$egin{array}{lll} x_4 &=& 1+0\,x_1+0\,x_2-2\,x_3 \ x_5 &=& 3-2\,x_1+4\,x_2-6\,x_3 \ x_6 &=& 2+1\,x_1-3\,x_2-4\,x_3 \ z &=& 0+2\,x_1-1\,x_2+8\,x_3 \end{array}$$

Solution de base associée x=(0,0,0,1,3,2) et z=0

$$egin{array}{lll} x_3 &= rac{1}{2} + 0\,x_1 + 0\,x_2 - rac{1}{2}\,x_4 \ x_5 &= 0 - 2\,x_1 + 4\,x_2 + 3\,x_4 \ x_6 &= 0 + 1\,x_1 - 3\,x_2 + 2\,x_4 \ z &= 4 + 2\,x_1 - 1\,x_2 - 4\,x_4 \end{array}$$

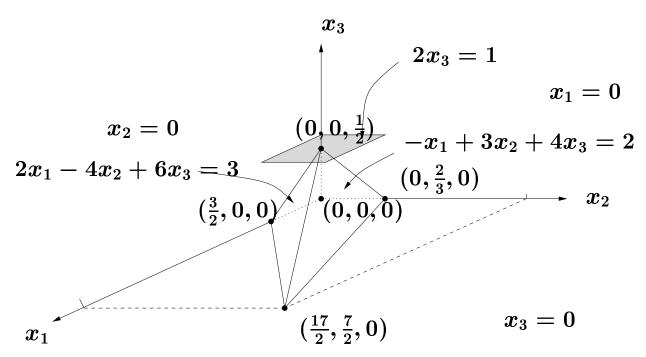
Solution de base associée $x = (0, 0, \frac{1}{2}, 0, 0, 0)$ et z = 4 A l'itération suivante,

$$egin{array}{lll} x_1 &=& 0+2\,x_2+rac{3}{2}\,x_4-rac{1}{2}\,x_5 \ x_3 &=& rac{1}{2}+0\,x_2-rac{1}{2}\,x_4+0\,x_5 \ x_6 &=& 0-1\,x_2+rac{7}{2}\,x_4-rac{1}{2}\,x_5 \ z &=& 4+3\,x_2-1\,x_4-1\,x_5 \end{array}$$

Solution de base associée $x=(0,0,\frac{1}{2},0,0,0)$ et z=4

Illustration de la géométrie du Simplex

$$egin{array}{lll} \max & 2\,x_1 - 1\,x_2 + 8\,x_3 \ & ext{s.a.} & 0\,x_1 + 0\,x_2 + 2\,x_3 & \leq 1 \ & 2\,x_1 - 4\,x_2 + 6\,x_3 & \leq 3 \ & -1\,x_1 + 3\,x_2 + 4\,x_3 & \leq 2 \ & x_1, x_2, x_3 & \geq 0 \end{array}$$



Cas de dégénérescence:

1. base
$$\{x_4, x_5, x_6\}$$
: sommet $(x_1, x_2, x_3) = (0, 0, 0)$

2. base
$$\{x_3, x_5, x_6\}$$
: sommet $(x_1, x_2, x_3) = (0, 0, \frac{1}{2})$

3. base
$$\{x_1, x_3, x_6\}$$
 : sommet $(x_1, x_2, x_3) = (0, 0, \frac{1}{2})$

4. base
$$\{x_1, x_2, x_3\}$$
: sommet $(x_1, x_2, x_3) = (0, 0, \frac{1}{2})$

5. base
$$\{x_1, x_2, x_4\}$$
: sommet $(x_1, x_2, x_3) = (\frac{17}{2}, \frac{7}{2}, 0)$

TERMINOLOGIE

Région réalisable: Ensemble des points qui satisfont aux contraintes du problème

$$X=\{x\in\mathbb{R}^n:\ A\,x\geq b,\ x\geq 0\}$$

Solution réalisable: Une solution x est réalisable si les valeurs numériques x_1, x_2, \ldots, x_n satisfont à l'ensemble des contraintes du problème.

$$x \in X$$

Solution optimale: Une solution réalisable x^* est optimale si la valeur qu'elle donne à la fonction coût est \leq aux valeurs données par les autres solutions réalisables. (Pas nécessairement unique.)

$$x^* \in X$$
 et $c \ x^* \le c \ x \ \forall x \in X$

Problème irréalisable: Un programme linéaire est irréalisable s'il n'y a pas de solution réalisable (cfr exemple 1).

$$X = \emptyset$$

Problème non borné: Un programme linéaire est non borné si quelle que soit la borne donnée B, il existe une solution réalisable de coût inférieur à cette borne (cfr exemple 2): $\forall B, \; \exists x \in X: \; c \; x < B$.

Forme Normale / Standard:

Normale Standard
$$\max c x$$
 $\max c x$ s.a. $A x \leq b$ s.a. $A x = b$ $x \geq 0$

Transformation:

 $\min c \ x \Leftrightarrow \max c' \ x \quad \text{où } c' = -c$

$$a \; x \geq b \Leftrightarrow a' \, x \leq b' \; \; ext{où } a' = -a ext{ et } b' = -b$$

$$a \ x \leq b \Leftrightarrow a \ x + w = b \ \mathrm{et} \ w \geq 0$$

$$a \ x = b \Leftrightarrow a \ x \leq b \ \mathrm{et} \ a \ x \geq b$$

- si une variable, x_i , est libre (peut prendre des valeurs négatives ou positives), on l'élimine du système d'équations:
 - on choisit une équation contenant x_i (\exists ?),
 - on isole x_i :

$$x_i = rac{b}{a_i} - rac{a_1}{a_i} x_1 - \ldots - rac{a_{i-1}}{a_i} x_{i-1} - rac{a_{i+1}}{a_i} x_{i+1} - \ldots - rac{a_n}{a_i} x_n$$

– on remplace x_i par cette expression dans les autres contraintes

DUALITÉ: Motivation

Obtenir une borne supérieure sur le profit maximum

- Toute solution réalisable, nous donne une borne inférieure,
 LB, sur le profit.
- Une **borne supérieure**, UB, permet de juger de la qualité de cette solution (et éventuellement de prouver son optimalité si LB = UB).

Exemple: production de boites de verres (ex 5, leçon 1).

$$egin{array}{llll} \max & 500 & x_1 & + & 450 & x_2 \ & ext{s.a.} & 6 & x_1 & + & 5 & x_2 & \leq & 60 & (1) \ & & 10 & x_1 & + & 20 & x_2 & \leq & 150 & (2) \ & & x_1 & & & \leq & 8 & (3) \ & & x_1 & , & & x_2 & \geq & 0 \ & 90 & (1) \Rightarrow 540 & x_1 & + 450 & x_2 & \leq 5400 & = UB \ & 80 & (1) & + & 3 & (2) \Rightarrow 510 & x_1 & + & 460 & x_2 & \leq 5250 & = UB \ \end{array}$$

Pour obtenir la meilleure borne possible (i.e. trouver les meilleurs multiplicateurs y_1, y_2, y_3), on résout

min
$$60 \, y_1 + 150 \, y_2 + 8 \, y_3$$

s.a. $6 \, y_1 + 10 \, y_2 + 1 \, y_3 \, \geq \, 500$
 $5 \, y_1 + 20 \, y_2 + 0 \, y_3 \, \geq \, 450$
 $y_1, y_2, y_3 \, \geq \, 0$

SOL:
$$y_1^* = 78\frac{4}{7}$$
, $y_2^* = 2\frac{6}{7}$, $y_3^* = 0$ $UB = 5142\frac{6}{7}$.

Les problèmes linéaires vont par paires

PRIMAL
$$\left\{egin{array}{ll} \max & \sum_{j} c_{j} \, x_{j} \ & ext{s.a.} & \sum_{j} a_{i,j} \, x_{j} \ \leq \ b_{i} \ i = 1, \ldots, m \ & x_{j} \ \geq \ 0 \ \ j = 1, \ldots, n \ . \end{array}
ight.$$

DUAL
$$\left\{egin{array}{ll} \min & \sum_i b_i \, y_i \ & ext{s.a.} & \sum_i a_{i,j} \, y_i \, \geq \, c_j \; j = 1, \ldots, n \ & y_i \, \geq \, 0 \; \; i = 1, \ldots, m \end{array}.
ight.$$

Dualité

Théorème 1 Dualité faible

Pour toute solution réalisable x du problème primal et toute solution réalisable y du problème dual,

$$\sum_{j=1}^n c_j\,x_j \leq \sum_{i=1}^m b_i\,y_i$$

Théorème 2 Dualité forte

Si P a une solution optimale $x^* = (x_1^*, \dots, x_n^*)$, alors D a une solution optimale $y^* = (y_1^*, \dots, y_m^*)$ tel que

$$\sum_{j=1}^n c_j \, x_j^* = \sum_{i=1}^m b_i \, y_i^*$$

Interprétation économique du dual

• Sans ressource, le profit serait nul. D'où l'idée d'essayer d'évaluer la contribution de chaque ressource au profit observé. Dans ce contexte, les

$$y_i \geq 0$$
 pour $i = 1, \dots m$

représente les **valeurs** unitaire des ressources i: y_i est la mesure de la contribution d'une unité de i au profit. C'est donc aussi le **prix** au quel on évalue la ressource i (prix auquel on serait près à vendre la ressource au lieu de l'utiliser).

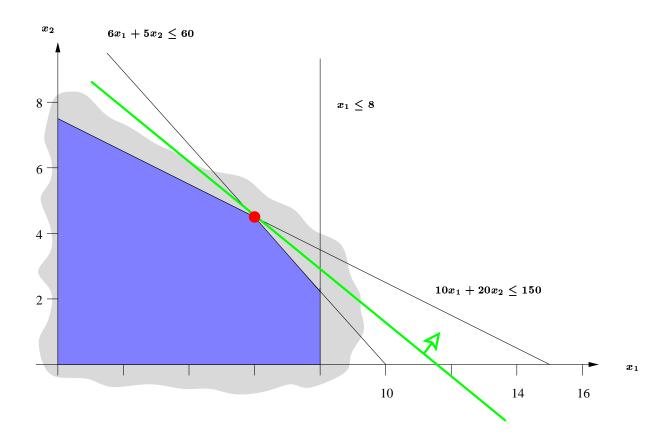
• Un système de prix (y_1, \ldots, y_n) (auxquels on serait prêt à vendre nos ressources) pour être **acceptable** doit nous compenser pour le profit qu'on aurait pu faire en utilisant ces ressources. Donc, if faut que

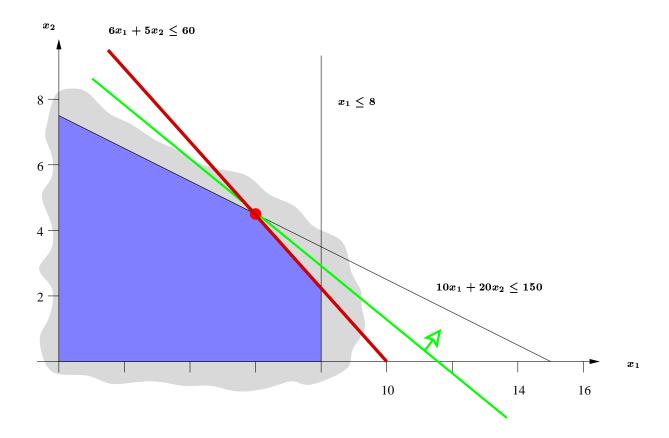
$$\sum_i a_{i,j} \, y_i \geq c_j \quad ext{pour} \, j = 1, \ldots, n$$

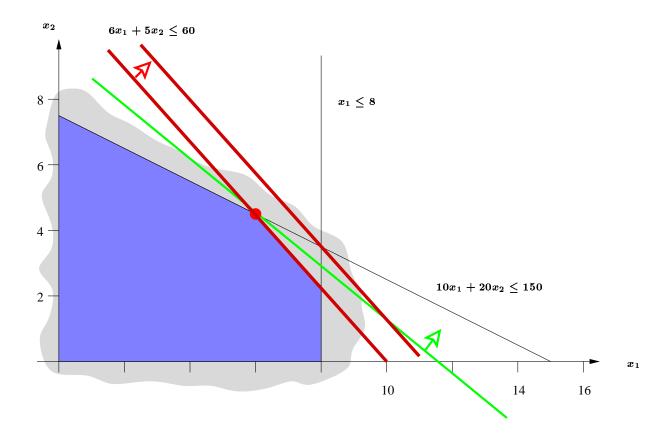
ce qu'on interprète aussi comme le fait que la valeur des ingrédients doit justifier entièrement le profit attribué à chaque produit.

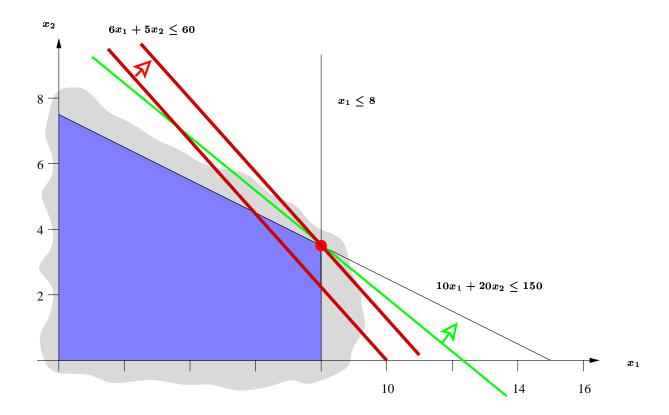
• Enfin, l'acheteur de nos ressources veillera à minimiser le coût total d'achat

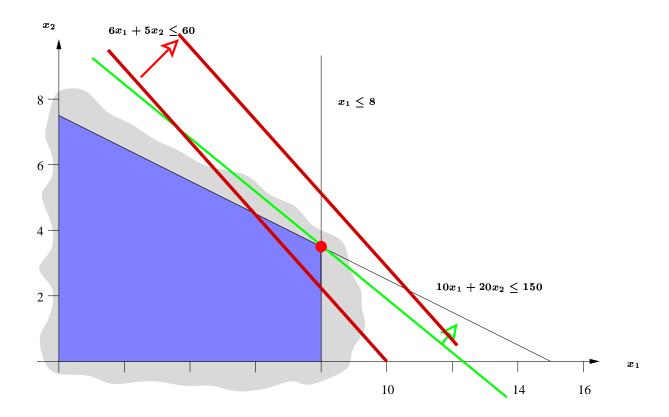
$$\min \sum_i b_i \, y_i$$

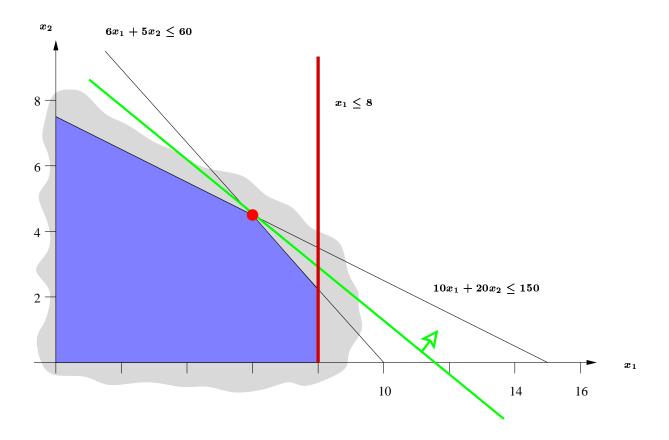


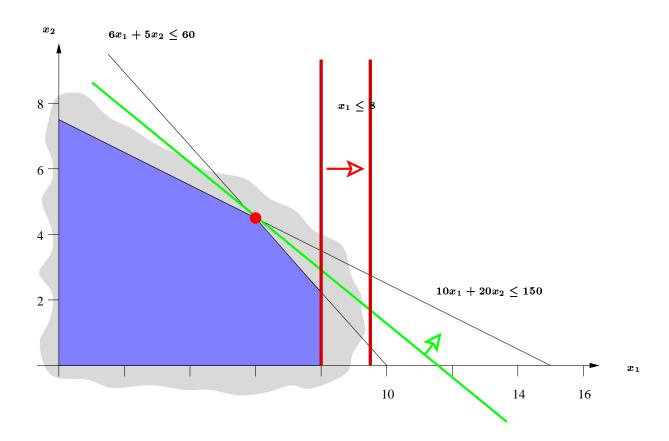












Relations de complémentarité

A l'optimum,

$$z^* = \sum_{j=1}^n c_j \, x_j^* \; = \; \sum_{i=1}^m b_i \, y_i^* \ \sum_{j=1}^n a_{i,j} \, x_j^* \leq b_i \; \leftrightarrow \; (y_i^*) \; ext{ et } \; \sum_{i=1}^m a_{i,j} \, y_i^* \geq c_j \; \leftrightarrow \; (x_j^*)$$

• Si une ressource n'est pas limitative du profit, sa valeur (expliquant de combien le profit augmenterait si la capacité était augmentée) doit être nulle:

$$\sum_{j=1}^n a_{i,j}\,x_j^* < b_i \quad \Rightarrow \quad y_i^* = 0$$

Inversément (contra-positive),

$$y_i^* > 0 \quad \Rightarrow \quad \sum_{j=1}^n a_{i,j} \, x_j^* = b_i$$

 Si la valeur totale des ressources utilisées pour produire j dépasse le profit escompté, on ne produira pas j:

$$\sum_{i=1}^m a_{i,j}\,y_i^* > c_j \quad \Rightarrow \quad x_j^* = 0$$

Inversement (contra-positive),

$$|x_j^*>0 \quad \Rightarrow \quad \sum_{i=1}^m a_{i,j}\,y_i^*=c_j$$

RELATIONS PRIMAL DUAL

• Le dual du dual est le primal.

DUAL
$$\left\{egin{array}{l} ext{max} & \sum_{i=1}^m (-b_i) \, y_i \ ext{s.a.} & \sum_{i=1}^m (-a_{i,j}) \, y_i \, \leq \, (-c_j) \; \; j=1,\ldots,n \ & y_i \, \geq \, 0 \qquad i=1,\ldots,m \; . \end{array}
ight.$$

$$ext{DUAL DUAL} \left\{egin{array}{ll} \min & \sum_{j=1}^n (-c_j) \, x_j \ ext{s.a.} & \sum_{j=1}^n (-a_{i,j}) \, x_j \, \geq \, (-b_i) \, \, i=1,\ldots,m \ x_j \, \geq \, 0 & j=1,\ldots,n \end{array}
ight.$$

		DUAL		
		optimum ∃	irréalisable	non-borné
	optimum ∃	possible	impossible	impossible
PRIMAL	irréalisable	impossible	possible	possible
	non-borné	impossible	possible	impossible

Prendre le dual d'un primal

• Mettre le primal sous la forme

PRIMAL
$$\begin{cases} \max & c x \\ \text{s.a. } A x \leq b \\ x \geq 0 \end{cases}$$

le dual est

DUAL
$$\begin{cases} \min & b \ y \\ \text{s.a.} & A^T \ y \ \geq \ c \\ & y \ \geq \ 0 \end{cases}$$

• Définir une variable duale pour chaque contrainte de P et une contrainte duale pour chaque variable de P:

$$ext{PRIMAL} \left\{egin{array}{l} \max & \sum_{j=1}^{n} c_{j} \, x_{j} \ ext{s.a.} & \sum_{j=1}^{n} a_{i,j} \, x_{j} \, \leq \, b_{i} \, \, i = 1, \ldots, p \ & \sum_{j=1}^{n} a_{i,j} \, x_{j} \, = \, b_{i} \, \, i = p+1, \ldots, q \ & \sum_{j=1}^{n} a_{i,j} \, x_{j} \, \geq \, b_{i} \, \, i = q+1, \ldots, m \ & x_{j} \, \geq \, 0 \, \, \, j = 1, \ldots, r \ & x_{j} \, \leq \, 0 \, \, \, j = s+1, \ldots, n \end{array}
ight.$$

$$ext{DUAL} \left\{egin{array}{ll} \min & \sum_{i=1}^m b_i \, y_i \ ext{s.a.} & \sum_{i=1}^m a_{i,j} \, y_i \, \geq \, c_j \, \, j = 1, \ldots, r \ & \sum_{i=1}^m a_{i,j} \, y_i \, = \, c_j \, \, j = r+1, \ldots, s \ & \sum_{i=1}^m a_{i,j} \, y_i \, \leq \, c_j \, \, j = s+1, \ldots, n \ & y_i \, \geq \, 0 \, \, \, i = 1, \ldots, p \ & y_i \, \leq \, 0 \, \, \, i = q+1, \ldots, m \end{array}
ight.$$