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The Vlasov-Poisson equation

Of +v-Vyf =V, U-V,f =0,

(VP.) —:2AXU:/fdv—1,

flt:o = fb;

o f="f(t,x,v), t >0, x €T veR?is the density of electrons in
the phase-space T? x RY,

e U = U(t,x) is the electric field generated by the electrons together
with the ions.

Global existence of classical solutions for d = 2 or 3 [Ukai, Okabe 78;
Lions, Perthame 91; Pfaffelmoser 92].

The parameter ¢ is the Debye length. It is typically very small w.r.t. the
scale of observations (~ 10~3m in the ionosphere, ~ 10~*m in a

tokamak).
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The kinetic Euler equation

Oef + v - Vif —Vyp- Vo f =0,

(kEu) AYp:divdiv/\/ vfdy,

f|t:0 - fb?

where again f = f(t,x,v), p = p(t,x).

As in the case of the incompressible Euler equation, p solves an elliptic
equation: .
—Ap(t,x) = divdiv/ v vif(t,x,v)dv.

The pressure p has the same number of spatial derivatives as f. (Same
scaling as in the Vlasov-Benney equation where p is replaced by the
spatial density p = [ fdv [Jabin, Nouri 11; Bardos, Nouri 12]).

[Grenier 96]: (kEu) is well-posed in spaces of analytic regularity.
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stationary solution with V,U = 0.
The linearization of (VP) around p leads to:

Ocf(t,x,v) + v Vif(t,x,v) — V, U(t,x)-V,u(v) =0,
(L) 7AXU(t,X):/f(t,X, v)dv =1,
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We look for exponential growing modes (EGM):

f(t,x,v) = g(v)exp(in- x)exp(At),

where n € Z9 is the frequency, A € C with ®(\) > 0 is the growing
rate.

If there exists an EGM, we say that y is unstable.
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Toward non-linear instability

Take (A, n) satisfying (Pen) and set the ansatz:

_ o (0 Vyu(v) - 5
f(t,x,v) =p(v)+oR (/\+l'n~ y exp(At +in-x) | + R°(t, x, v),
R6|t:0 = O

Main question: Up to which time Ty and in which norm || e || can you
justify:

Vte [0, Tsl, R (1)] < Sexp (%(A)t) ?
(We say that we justify the linear approximation in || e || up to time Ts.)
Ideal case: T5 = |logd|/R(A\) — C where C does not depend on 0.

Problem

.U
p(v) + 6R <m exp(in - x)>

needs to be sufficiently regular and nonnegative. It is hence needed to

add assumptions on p (regularity + cancellation conditions).



Lyapounov instability for (VP)

This question has been widely studied, see e.g. [Guo, Strauss 95;
Han-Kwan, Hauray 15; Han-Kwan, Nguyen 16].

Theorem (Han-Kwan, Nguyen 16)

Let 11 be smooth, Penrose unstable and satisfying cancellation
conditions. For all s, m € N, there exist solutions f° up to time Ts > 0
of (VP) such that:

e Convergence at the initial time:
1 "2
L+ )R — n}

e No convergence at time Ts = O(|log d|):

= 0(9),

H=(T9 xRR9)

“gﬂgf IF°(Ts) — tllc2(rexrey > 0.
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Ill-posedness for (kEu)

Proposition
If v is unstable, if (n, \) satisfies (Pen) for (kEu) and if k € N*, then
(kn, kX) also satisfies (Pen).

As a consequence, we define:

Yo = sup
(n,\) satisfying (Pen)

R(N)
T
~» EGMs of frequency n grow like exp(7o|n|t).

~~ The linear equation (L) is ill-posed in Sobolev spaces.
Theorem (Han-Kwan, Nguyen 16)

Let u be analytic, Penrose unstable and satisfying cancellation
conditions. For all s € N, o € (0, 1], there exist solutions f° up to T
with Ts — 0 and

If* — 5||L2([0,T5)><11‘;) e
@+ 1vey™2 {8 — i}

6—0

Hs (T4 xRY)
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a probability measure f(t, x, 8) € P(R?) in such a way that:

e for all o € C°(RY) U {v + |v|?}, the macroscopic observable
(fop) : (t,x) — /gp(v)f(t,x,dv) is smooth,
o for all p € C°(RY),
O (f, o) + divy(f,vp) + Vep - (f, V) =0,
—Aup(t,x) = divdiv/ v vf(t x,dv),
f|t:0 = fo.
Any p € P(RY) with [ |v|?dp(v) < +oc is a stationary measure-valued

solution. We say that 1 is Penrose unstable if there exists (n, \) with
R(A) > 0 satisfying (Pen) (e.g. superposition of Diracs are unstable).

Do there exist unstable solutions in the neighbourhood of these unstable
measures? 9



lll-posedness for (kEu) around measures

Theorem (B. 2019)

Take p an unstable measure, o1, ..., oy € C°(RY), s € N and
a € (0,1].

10



lll-posedness for (kEu) around measures

Theorem (B. 2019)

Take p an unstable measure, o1, ..., oy € C°(RY), s € N and
a € (0,1]. Then there exists, (Ts)s>o tending to 0 and (f9)s>o a family
of measure-valued initial data such that:

10



lll-posedness for (kEu) around measures

Theorem (B. 2019)

Take p an unstable measure, o1, ..., oy € C°(RY), s € N and
a € (0,1]. Then there exists, (Ts)s>o tending to 0 and (f9)s>o a family
of measure-valued initial data such that:

e for all §, there is a measure-valued solution (0, ps) of (kEu) starting
from £ up to time T;,

10



lll-posedness for (kEu) around measures

Theorem (B. 2019)

Take p an unstable measure, o1, ..., oy € C°(RY), s € N and
a € (0,1]. Then there exists, (Ts)s>o tending to 0 and (f9)s>o a family
of measure-valued initial data such that:

e for all §, there is a measure-valued solution (0, ps) of (kEu) starting
from £ up to time T;,

e we have:

||p5||L1([0,T5)><’JI‘d) s 400
N @
Zi:l H<f057§0/> _ <Ma @i)HWs‘oc(’H‘d) 6—0

10



Multiphase formulation

We look for solutions of the form:

f(t,x,v) = /6V:uw(tvx)pw(t7><) du(w).

11



Multiphase formulation

We look for solutions of the form: %

f(t,x,v) = /6V:uw(tvx)pw(t7><) du(w). y
/\/

11



Multiphase formulation

We look for solutions of the form:

f(t,x,v) = / Sy—uw (e 0" (t, x) dp(w). y
If p =1, u" = w, w € RY, we get f(t,x,0) = p.

11



Multiphase formulation

We look for solutions of the form: %

f(t,x,v) = /6V:uw(tvx)pw(t7><) du(w). y

P =1, 0 = wy w € RY, weget F(t,x,0) =

If (p%, u™)were is a classical solution of:

Oep” + div(p”u") =0,
O™ + (u” - V)u" = =Vp,

(MF) -
—Ap:dlvdlv/uw®uwpwdﬂ(w),

w w w w
P" =0 = pg and u"|e—0 = ug,

then f is a measure valued solution of (kEu).

11



Multiphase formulation

We look for solutions of the form: %

f(t,x,v) = /6V:uw(tvx)pw(t7><) du(w). y

P =1, 0 = wy w € RY, weget F(t,x,0) =

If (p%, u™)were is a classical solution of:

Oep” + div(p”u") =0,
O™ + (u” - V)u" = =Vp,

(MF) -
—Ap:dlvdlv/uw®uwpwdﬂ(w),

w w w w
P" =0 = pg and u"|e—0 = ug,

then f is a measure valued solution of (kEu). See [Grenier 95;
Brenier 97] for studies of this system.

11



Multiphase formulation

We look for solutions of the form:

f(t,x,v) = /5V:uw(tvx)pw(t7><) du(w). y
If p¥ =1, u” =w, w € RY, we get f(t,x,e) = p.

~——
/\/

If (p%, u™)were is a classical solution of:

Orp™ + div(p”u") =0,

O™ + (u” - V)u" = =Vp,
(MF) -
—Ap = div dIV/UW @ u”p” du(w),

w w w w
P" =0 = pg and u"|e—0 = ug,

then f is a measure valued solution of (kEu). See [Grenier 95;
Brenier 97] for studies of this system.

The stationary solution (1, w),,cpe is linearly unstable if and only if u is

Penrose unstable. "
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tending to zero and (p§, u3)s=o a family of initial data such that:
e for all §, there is a solution (p°, u’, ps) to (MF) starting from
(3, u) up to time T;,
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||p5||L1([0,T5)><’]Td) e

9, 9,
sup {1166 = LUffncw + 116" = wle } 20

weR
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e S s ¢! Goal: Under constraints related to in-
A #§ compressibility and to endpoints:

1 1
Minimize Z 5/ | |2 dt.
0

w path

LR SN
Formalisation: The endpoints are prescribed by a bistochastic measure
v € P(T? x T?) and we look for a solution in the set of generalized
flows P € P(C°([0, 1]; T?)) [Brenier 89].

Motivation: For a given P, if all the trajectories follow the same smooth
vector field v, then P is a solution "iff" v is a solution of the
incompressible Euler equation [Arnol'd 66; Brenier 89].

In general: An incompressible generalized flow P is a solution "iff" all the
trajectories are accelerated by the same scalar pressure field p.

By our ill-posedness result: p is not a smooth function of ~ [B. 2019].
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The Vlasov-Poisson case




Lyapounov instability in the Vlasov-Poisson case

Ongoing work with D. Han-Kwan.

This time, the multiphase system is:

Orp™ + div(p”u") =0,
O + (U - V)u" = -VU,

~aU= [ " du(w),

p*lezo = P and u*|e—o = uy.
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than for p.

e If d =1 and p is is a superposition of 2 Diracs, this is exactly the
framework of [Cordier, Grenier, Guo 2000] in which they prove
non-linear instability.

e A generalization of their proof in higher dimension and general
1 would provide a proof of non-linear instability for (VP) in a
measure-valued setting. 14



“@ Thank you! @
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Pictures from Frans Ebersohn, PEPL, University of Michigan.
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