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Generalized MHD equations

o Consider the Cauchy problem for the generalized MHD equations:
ut + (u-V)u4vA2%u +Vp = (b- V)b in R? x (0, 00)

bt + (u-V)b+ A28 = (b- V)u in R% x (0,00)
(1)

divu = divb =0 in R? x (0, c0)

u(0) = ug, b(0) = bo in R9,

o Notations:

- d > 2: the spacial dimension, «, 3: nonnegative constants

- v > 0: the viscosity constant, > 0; the magnetic diffusivity

- R?% x [0,00) — RZ: the velocity field, b: R? x [0,00) — R%: the magnetic field
- p:R% x (0,00) — R: a scalar pressure

- A = (=A)3/2: the fractional Laplacian of order s € R, defined via the Fourier
transform by

ASF(E) = lE°f(€)
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Sobolev spaces H*

e Sobolev spaces H®: For s € R,
H°=HRY) ={fes|JfeL?},
where J* = (I — A)5/2 is defined by

TrE) = (1+1€P) T f©) (Fes).

e H*® is a Hilbert space equipped with the inner product

(o) = (FPu ) = [ (14 |?)° (@@ e,
with (-, -) denoting the inner product on L2.

e For s > 0, H® may be equipped with the following equivalent norm:

2

1/
lullzrs = (lull® + [|A%u)?)? = [/ (1+1€1%%) |a(e) > de|
Rd

where || - || denotes the usual L2-norm.
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Energy identities

o Energy identities in L?2:
Multiplying the equations in (1) by u and b, respectively, and using the divergence-free
condition on u, we derive

& (102) + viAmal® = (- Db

and

d (1
dt (5“17\\2) + 1l A%l = (b V)u, b).
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Energy identities

o Energy identities in L?2:
in (1) by u and b, respectively, and using the divergence-free

Multiplying the equations
condition on u, we derive

% (%lluHQ) + VA% ul? = ((b- V)b, u)

and

d (1
dt (5“17\\2) +nllA%b)2 = (b V)u,b).

Since b is divergence-free,

1d
> a@ (llull® + 11611%) + vl Aull® + 7l A%b(®)]|* = 0.

Hence setting Mo = (||luo||? + ||b0||2)1/2, we derive a global energy estimate
¢ ¢
lu@)lI* + 1612 + 21//0 [A%u(r)]? dr + 277/0 IA%b(r)|1? dr < MG

for all ¢ > 0.
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Energy identities

e Energy identities in higher norms:

Multiplying the equations in (1) by A251u and A252b, respectively, we have

1d

a0 (A2 w)?) + v[ASFou? = — (A [(u - V)u], A1) + (AL [(b- V)B], A u)
and

1

5% (IA°2B]|%) + nl| A% HPb)|* = — (A2 [(u - V)B], A%2B) + (A®2[(b- V)u], A2D).

Combining these with the L2-energy identities, we obtain
1d

a

— ((b- V)b,u) — (A" [(u- V)ul, A w) + (A} [(b- V)b, A*1w),

2 2
lullrss) + vlIAullZs

1d
5 3 (IBl3ez) + mlA%8] e,

= ((b- V)u,b) — (A*?[(u - V)B], A*2b) 4 (A°2[(b - V)u], A*2b),
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Energy identities

and

1d
= = (lulron + 190352) + A ull3er + I APB3e

= — (A* [(u- V)ul, A% ) + (A% [(b- V)b, A® )
— (A%2[(u- V)b, AS2b) + (A®2[(b- V)u], AS2b).
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Energy identities

and

1d
= = (lulron + 190352) + A ull3er + I APB3e

= — (A* [(u- V)ul, A% ) + (A% [(b- V)b, A® )
— (A%2[(u- V)b, AS2b) + (A®2[(b- V)u], AS2b).

e To estimate each term of the right hand sides in the energy identities, we need to
estimate the trilinear form
(A®[(u - V)], A°w)

under various assumptions on vector fields u, v, w, and a nonnegative number s.

An obvious way is to derive some product estimates, since

(A*[(u - Vo], A%w) < [[A%[(u- Vo] ||| A%w]].

If w is divergence-free and w = v, then we may need commutator estimates, since

[(A%[(uw- V)v], A%v) = (A°[(u - V)v] — (u- V)A®v, A®v)
< [[A%[(u - V)v] = (u - V)AZ0[[[|A%0].
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Some known results in H*®

e Assuming that v > 0, n > 0, « > 0, and 8 > 0, J. Wu (2003) proved global
existence of a solution

uwe L®(0,T; L?) N L2(0,T; H*), be L*(0,T;L%) N L*(0,T; H?)
for any divergence-free (uq,bo) € L? x L?, where T is any finite time.
Moreover, if a, 8 > 1/2+ d/4 and (ug,bo) € H® x H® with s > max{2a, 28}, then

w e L®(0,T; H) N L2(0,T; HS1®), be L>®(0,T; H®) N L(0, T; H*TA).
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Some known results in H*®

e Assuming that v > 0, n > 0, « > 0, and 8 > 0, J. Wu (2003) proved global
existence of a solution

uwe L®(0,T; L?) N L2(0,T; H*), be L*(0,T;L%) N L*(0,T; H?)
for any divergence-free (uq,bo) € L? x L?, where T is any finite time.
Moreover, if a, 8 > 1/2+ d/4 and (ug,bo) € H® x H® with s > max{2a, 28}, then

w e L®(0,T; H) N L2(0,T; HS1®), be L>®(0,T; H®) N L(0, T; H*TA).

e Assuming that v =7 = 0, P. G. Schmidt (1988) proved local existence of a unique
solution
(u,b) € L°°(0,Tx; H™)

for m € N with m > 1+ d/2.
Remark. (i) The integer m can be replaced by any real s > 1+ d/2.

(i) A key tool is the following product estimate:

s . d
1A%[Cs - W)olll < Cllullz=[Vollas i s> 3.
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Some known results in H*®

e Assuming that v > 0, n = 0, and a = 1, C. Fefferman, D.S. McCormick, J.C.
Robinson, and J.L. Rodrigo (2014) proved local existence of a unique solution

uw € L®(0,T; H) N L2(0, Tw; H*1Y), b e L>®(0,Tx; H®)
for s > d/2.
Remark. A key tool is the following commutator estimate:
S s H d
IA%[(- V)] = (u- VYA < ClIVullas lolls if 5> 2,
which refines the classical one due to T. Kato and G. Ponce (1988):
[A%[(w- V)v] = (u- V)M )| < C([Vullasllvllas + lullzs[[Vollas)

fors>g.
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Some known results in H*®

e Assuming that v > 0, n = 0, and a = 1, C. Fefferman, D.S. McCormick, J.C.
Robinson, and J.L. Rodrigo (2014) proved local existence of a unique solution

uw € L®(0,T; H) N L2(0, Tw; H*1Y), b e L>®(0,Tx; H®)
for s > d/2.
Remark. A key tool is the following commutator estimate:

s s . d

[A%[(u - V)o] = (u- V)(A*0)|| < O Vullaslvllzs ifs> o,

which refines the classical one due to T. Kato and G. Ponce (1988):
[A%[(w- V)v] = (u- V)M )| < C([Vullasllvllas + lullzs[[Vollas)

for s > g

e C. Fefferman, D.S. McCormick, J.C. Robinson, and J.L. Rodrigo (2017) also proved
local existence of a solution

u € L®(0,Ty; HY) N L2(0, To; H* 1), b€ L=(0,Ty; H?)

for s2 > d/2 and s — 1 < s1 < sg, using the parabolicity of the equation for the
velocity field u.
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Some known results in H*®

Remark. A key tool is the following estimate: if u is a solution of the heat equation
ur—vAu=g inRYx (0,T), u(0)=up inRY

then
T s1+l—sp 1o
o ||u(t)HHS2+1 dt < CT 2 llwollfrsr +CT HgllLr(oyT;Hszfl)'

for 1 < r < oo, provided that so > d/2 and s — 1 < s1 < s2.
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Some known results in H*®

Remark. A key tool is the following estimate: if u is a solution of the heat equation
ur—vAu=g inRYx (0,T), u(0)=up inRY

then
T s1+l—sp 1o
o ||u(t)HHS2+1 dt < CT 2 llwollfrsr +CT HgllLr(oyT;Hszfl)'

for 1 < r < oo, provided that so > d/2 and s — 1 < s1 < s2.

e Assuming that v > 0 and n > 0, J. Jiang, C. Ma, and Y. Zhou (preprint) proved
local existence of a unique solution

(u,b) € L=(0,T%; H®)
for s > max{d/2+1— o, 1}.
Remark. A key tool is the following commutator estimate:
1A% [(uw - V)] — (u- V)(A*0)|| < Cllull gy llv]las

for v > % and 1 < s < «; the case v = s was due to Fefferman et al. (2014).
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Our result for v > 0 and n =10

Theorem [K.-Zhou]. Let v > 0 and n = 0. Suppose that o > 0,s1 > 0, and s2 > 0
satisfy one of the following conditions:

(i) «>1, s >d/2, and s — a < s1 < s2.
(i) a>1,s1+a>d/2+1, and s1 < sy <s;+a—1.
(i) 0<a<land sy =s2>d/2+1—a.

Then for every (ug,bo) € H51 x H®2 with divug = divbg = 0, there exists Ty > 0
such that the Cauchy problem (1) has a solution

w € L0, Tw; HS1) N L2(0, To; H511®), b e L™®(0, T; H2).

Hyunseok Kim Generalized MHD equations



Our result for v > 0 and n =10

Theorem [K.-Zhou]. Let v > 0 and n = 0. Suppose that o > 0,s1 > 0, and s2 > 0
satisfy one of the following conditions:

(i) «>1, s >d/2, and s — a < s1 < s2.
(i) a>1,s1+a>d/2+1, and s1 < sy <s;+a—1.
(i) 0<a<land sy =s2>d/2+1—a.
Then for every (ug,bo) € H51 x H®2 with divug = divbg = 0, there exists Ty > 0
such that the Cauchy problem (1) has a solution

w € L0, Tw; HS1) N L2(0, To; H511®), b e L™®(0, T; H2).

Remark. The conditions of the theorem are satisfied, in particular, for each of the
following cases:

(i) fa>d/2+1, then s1 >0, s2 >0, and s1 < s3 <s1 +a—1.
(i) fd/2<a<d/24+1,then1<s1 <syg<si+a—1lor0<s <d/2<s2<a.

(i) fl<a<d/2 thend/2<s1 <sp2<s1+a—1or
dj2—1<s <d/2<sy<d/2+a—1.

(iv) faa=1, thend/2 —1< s1 <d/2<s2 <s1+1.
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Our result for v > 0 and n > 0

Theorem [K.-Zhou]. Let v > 0 and n > 0. Suppose that o > 0,3 > 0,s1 > 0, and
s2 > 0 satisfy one of the following conditions:

(i) «>1, s >d/2, and s3 — a < s1 < s2.

(i) a>1,8>1,s2+B8>d/2+1,ands2 +B—1—a<s1 <sy+B8—1.

(i) a«>1, (a, 8) #(1,0), s1 +a>d/2+1, and s1 — /2 < s2 < s1 +a—1.

(iv) a+B>2,s1+a>d/2+1,s2+8>d/2+1, and
s1+1—pB<sy<s14+a-—1.

(V) B=21l,a+B8>2 s1+a>d/2+1,ands1 +a—1<s2 <s1+a.
Vi) B>1,1<a+B<2 s1+a>d/2+1,ands1 +1—B<s2<s1+a.
(vi) 0<a<1,0<8<1, (o,8)#(1,1), and s1 = s2 > d/2+1— a.
Then for every (ug,bo) € H®1 x H*2 with divug = divbg = 0, there exists Ty > 0
such that the Cauchy problem (1) has a solution

w € L0, Tw; H') N L2(0, Ty; H31T9),

be L0, Tw; H%2) N L2(0, Ty; H*21P).
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Our result for v > 0 and n > 0

Remark. Assume that v > 0, n > 0, and 8 = 1. Then the conditions of the theorem
are reduced as follows:

(i) a>1, s2>d/2, and s2 — a < 51 < s2.

(i) a>1,s1+a>d/2+1,and s1 —1/2 < s2 < 81 + .
(i) 0<a<l, s1+a>d/2+1, and s1 < s2 < s1 + a.
(iv) a=0and sy =s2 >d/2+1.
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Our result for v > 0 and n > 0

Remark. Assume that v > 0, n > 0, and 8 = 1. Then the conditions of the theorem
are reduced as follows:

(i) a>1, s2>d/2, and s2 — a < 51 < s2.

(i) a>1,s1+a>d/2+1,and s1 —1/2 < s2 < 81 + .
(i) 0<a<l, s1+a>d/2+1, and s1 < s2 < s1 + a.
(iv) a=0and sy =s2 >d/2+1.

In addition, if & = 1, then these conditions are reduced as:
(i) s2 >d/2and s3 — 1< s1 < s2.
(i) s1 >d/2and s1 —1/2 < s2 < s1+ 1.

Note that the condition (i) is exactly the same as the case n = 0 and (ii) is a new one,
due to the parabolicity of the equation for the magnetic field b.
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Tools of the proof: embedding results

e Sobolev embedding results:
Lemma.
(i) If0 < s <d/2, then H® — [24/(d=2s),
(i) If s > d/2, then H® — L°.
(iii) Ifs>0,2<p<oo,and1l/p>1/2—s/d, then H® — LP.
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Tools of the proof: embedding results

e Sobolev embedding results:
Lemma.
(i) If0 < s <d/2, then H® — [24/(d=2s),
(ii) Ifs>d/2, then HS — L°°.
(iii) Ifs>0,2<p<oo,and1l/p>1/2—s/d, then H® — LP.
Proof of (iii). Suppose that s >0, 2 <p < oo, and 1/p > 1/2 — s/d.

If s < d/2, then
—0
lullee < flull}50llul® 2 < Cllullas,
L d—2s

where 0 < 0 < 1 is defined by 1/p =1/2 — 6s/d.
If s > d/2, then choosing 0 < so < d/2 with 1/p = 1/2 — so/d, we have

lullzr < Cllullgso < Cllullms.
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Tools of the proof: embedding results

e A joint embedding result:

Lemma. Suppose that s1 > 0, s2 > 0, and s1 + s2 > d/2. Then there exists a pair
(p,q) with2 <p,q< oo and 1/p+1/q =1/2 such that

H*' < LP and H®2 — L9,
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Tools of the proof: embedding results

e A joint embedding result:

Lemma. Suppose that s1 > 0, s2 > 0, and s1 + s2 > d/2. Then there exists a pair
(p,q) with2 <p,q< oo and 1/p+1/q =1/2 such that

H*' < LP and H®2 — L9,

Proof. If s1 =0 or s = 0, then the lemma follows from the previous embedding
lemma (ii) by taking (p, q) = (2,00) or (p,q) = (0, 2).

Suppose that s1 > 0 and s > 0. Then since d/2 < s1 + s2, there exists 2 < p < 0o
such that
1 S1 1 . 1 s9
maxq - — —,0, < —<minq -, — /.
2 d P 2 d
If ¢ =2p/(p — 2), then

1
2<g<oo and - = %2

Hence the desired estimates immediately follow from the embedding lemma (iii).
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Tools of the proof: product and commutator estimates

e The classical estimates due to Kato and Ponce (1988, 1991):

Theorem. Let s > 0 and 1 < p < co. Suppose that 1 < p1,p2,q1,q2 < oo satisfy
1 1 1 1 1
SS =g =8 =g =
p p1 q1 p2 q2

Then for all f,g € S,

1A°(FDllee < C(IfllLrallTgllzar + 1°Fllrz(lgllzaz)

and

IA°(fg) = fA°glle < C(IVFllLe 15 glina + 17° fllzez llgllLez) ,

where C' = C(d, s,p, p1,p2)-
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Tools of the proof: product and commutator estimates

e The classical estimates due to Kato and Ponce (1988, 1991):
Theorem. Let s > 0 and 1 < p < co. Suppose that 1 < p1,p2,q1,q2 < oo satisfy

1 1 1 1 1
e e
p p1 q1 p2 q2

Then for all f,g € S,

1A°(FDllee < C(IfllLrallTgllzar + 1°Fllrz(lgllzaz)

and

IA°(fg) = fA°glle < C(IVFllLe 15 glina + 17° fllzez llgllLez) ,

where C' = C(d, s,p, p1,p2)-

Remark. Assume that s =~ > d/2. Then since HY < L°°, we have

IAY(FIl < CUFllLee T gllp2 + 17 fllz2llglizee) < Cllflle gl ez

and
IA7(fg) — fAYgll < CUIVFllar gl gv—2 + [1f v gl ey ) -
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Tools of the proof: product and commutator estimates

e Our product and commutator estimates:

Lemma. Let v > d/2
(i) Assume that 0 < s <~. Then for all f € H® and g € H",

1A (DIl < Cllfllms gl s

where C = C(d, 7, s).
(if) Assume that 0 < s <~y + 1. Then for all f € H® and g € H",

1A°(fg) — fAgll < Clifllsllgll v,

where C = C(d, 7, s).
(iii) Assume that 1 < s <~ + 1. Then for all f € HYt! and g € H5 1,

1A°(£9) = FA°gll < Cllflgv+1 gl =2,

where C = C(d,~, s).
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Tools of the proof: product and commutator estimates

e Our product and commutator estimates:

Lemma. Let v > d/2
(i) Assume that 0 < s <~. Then for all f € H® and g € H",

1A (DIl < Cllfllms gl s

where C = C(d, 7, s).
(if) Assume that 0 < s <~y + 1. Then for all f € H® and g € H",

1A°(fg) — fAgll < Clifllsllgll v,

where C = C(d, 7, s).
(iii) Assume that 1 < s <~ + 1. Then for all f € HYt! and g € H5 1,

1A°(£9) = FA°gll < Cllflgv+1 gl =2,

where C = C(d,~, s).

Remark. Taking s =~ in (ii) and (iii), respectively, we obtain

A7 (Fg) — FA7gll < C min || fllav lgll v, 1| v+ gl gr—13 -
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Tools of the proof: product and commutator estimates

Proof of (iii): Assume that 1 < s <~ + 1.

If 2<p,qg<ooand 1/p+ 1/q=1/2, then by the Kato-Ponce commutator estimate,

A% (fg) = fA°gll < C (IV fllzee 17 gl + 17° Fllzallglize )
S C U N ar+rliglgs—1 +19° fllzallgllze) -
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Tools of the proof: product and commutator estimates

Proof of (iii): Assume that 1 < s <~ + 1.
If 2<p,qg<ooand 1/p+ 1/q=1/2, then by the Kato-Ponce commutator estimate,

A% (fg) = fA°gll < C (IV fllzee 17 gl + 17° Fllzallglize )
S C U N ar+rliglgs—1 +19° fllzallgllze) -

Applying the joint embedding lemma to s1 = s—1 and s =~y + 1 — s, we can find
2 < p,q <oowith 1/p+1/q = 1/2 such that
H 1 [P and HYH17% < L9,

Then
lgllze < Cligllgs—1

and
175 fllLa < CNI°fllgvti—s < Cllflgv+r-
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Tools of the proof: product and commutator estimates

Lemma. Lety > d/2.
(i) Assume that 0 < s < ~. Then for allu € HY and v € H5T1,

1A%[(u - V)o]l| < Cllullay IVollas -
(ii) Assume that 0 < s < ~. Then for allu € H® and v € H 11,

A% [(u - V)]l| < Cllullzs Vol a -
(iii) Assume that 0 < s <+ 1. Then for all uw € H® and v € H't1,

[A°[(u - V)o] = (u- V)(A*0)|| < Cllullgs Vol a2~
(iv) Assume that 1 < s <~ + 1. Then for all w € H"t! and v € H®,
[A°[(w - V)v] = (u - V)(A*0)|| < Cllull gry+1 [ VO rs-1-

Remark. Essentially the same estimates as (iv) has been obtained by Fefferman et al.

(2014) for s = v and by Jiang et al. (preprint) for 1 < s < ~. In fact, the estimate
can be proved for all 0 < s < v+ 1.
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Tools of the proof: estimates for the fractional heat equation

e Using the Leray projection, we can remove the pressure term in the Navier-Stokes
equations. We then need to consider the following Cauchy problem for the fractional
heat equation:

u(0) =ug in RY, (2)
where v > 0, a >0, and 0 < T < 0.

{ ut FvA?*u =g inR% x (0,T)

e The solution formula via the Fourier transform:

A regular function u = u(z,t) is a solution of (2) if and only if its Fourier transform
4 = G(&, t) satisfies

i +vlEP*a =g inR%x (0,T)
G in RY.

Solving this ODE problem, we derive

2« t 2
a(g,t) = evél fao<£)+/ e~V =) g, 1) dr.
0
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Tools of the proof: estimates for the fractional heat equation

e Our estimates for solutions:

Lemma. Assume that ugp =0, g € L"(0,T; H*~%), s€ R, and 1 < r < co. Then the
Cauchy problem (2) has a unique solution w € L" (0, T; H*+%). Moreover, we have

llulloro,r;ms+ey < C QA+ T) gl Lr o, ms—o)-
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Tools of the proof: estimates for the fractional heat equation

e Our estimates for solutions:

Lemma. Assume that ugp =0, g € L"(0,T; H*~%), s€ R, and 1 < r < co. Then the
Cauchy problem (2) has a unique solution w € L" (0, T; H*+%). Moreover, we have

llulloro,r;ms+ey < C QA+ T) gl Lr o, ms—o)-

Proof. Define

2a,—v|€|?Yt ift 0
PE 1) — |&|*>e if t >
&1 { 0 if t <0.

Then

Roou(e, ) = /}R (&, t — 7)g(€,7) dr

A%z, t) = / / K(z — y,t — 7)g(y, 7) dydr,
R JRA

where K (-, t) is the inverse Fourier transform of ®(-,¢). By the parabolic
Calderon-Zygmund result due to I. Kim, S. Lim, and K. Kim (2016),

IA2%ull r (0, 7;2.2) < C(ds v, @, )l|gll L (0,7 12) U

Hyunseok Kim Generalized MHD equations



Tools of the proof: estimates for the fractional heat equation

Lemma. Assume that ug € H%, g =0, and s € R. Then the Cauchy problem (2) has
a unique solution

we L2(0,T; H*t®) with ~/tu € L?(0,T; H*F2%).
Moreover, we have
T 2 2 2 2
/0 (lu@®) 1 Fs+a + tlu@) | Fsr2a) dt < C (1 +T)? |luol|Zrs -

In addition, if 0 < € < «, then

u € L (0,T; HSF207¢)

T
/ [w(®)]| geszae dt < C(1 + T)T55 |[uo] e
0
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Tools of the proof: estimates for the fractional heat equation

Lemma. Assume that ug € H%, g =0, and s € R. Then the Cauchy problem (2) has
a unique solution

we L2(0,T; H*t®) with ~/tu € L?(0,T; H*F2%).
Moreover, we have
T 2 2 2 2
/0 (@5 s4a + tlu®)lFrar2a) dt < C (1 +T)? [Juol|7rs-
In addition, if 0 < € < «, then

u € L (0,T; HSF207¢)

T
/ [w(®)]| geszae dt < C(1 + T)T55 |[uo] e
0

Proof. A smooth solution u is given via the Fourier transform by

e, ) = eI g 6).
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Tools of the proof: estimates for the fractional heat equation

Hence
T T
Aa 2 — 2a | 2
/0 1A% u(t)]|? dt / / €2 a(e, )P dedt
_ 2a 72u|§\2“t 2
/]R/ € a0 (&) dede
2
<5 [, an©P ds
1
= L juol?.
Moreover,

[ tneuoiran= [ [ deriac o dear
:/ /Ttlé\‘*“e*"'ﬁ‘“ilﬁo(s)ﬁdtd£

<o [ lePee et (o) atae
1

2v)2
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Tools of the proof: estimates for the fractional heat equation

Suppose that 0 < € < a. Then by an interpolation inequality for H*®,

1-6
Hst2a

1—6
= Clwlera (Vlllwlgarza) 07072,
where 0 < 0 = ¢/a < 1. Hence by Holder's inequality,

T T , ¢
| Wolessecar <o ([ 1ol i)

T 2T 3
< ([ oz de) T ([ 00 )
0 0

< C( +T)luol|zr=T%. O

wll gret+za—e < Cllwl|fs o llwll
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Tools of the proof: estimates for the fractional heat equation

Suppose that 0 < € < a. Then by an interpolation inequality for H*®,

wll gst+2a—e < Cllwl|%erallwllretza
1—6
0 —(1-6)/2
= Cllwldpara (VElwlgasaa) ¢ 07072,
where 0 < 0 = ¢/a < 1. Hence by Holder's inequality,

T T , ¢
| Wolessecar <o ([ 1ol i)

T 2T 3
< ([ oz de) T ([ 00 )
0 0

< C( +T)luol|zr=T%. O

Lemma. Assume that ug € H®1, g € L™ (0,T; H*2~%), s1 < s2 < s1 + «, and
1 < r < oco. Then the Cauchy problem (2) has a unique solution

uwe L (0,T; H%2Te).

Moreover, we have

1 +T/ lw@)l oz +a dt < or™ “Jluollrer + CT = ||9HLT(O,T;H52*0¢)-
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Local existence results for generalized MHD equations

Thank you very much for your attention!
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