Elliptic curves and root numbers

Myungjun Yu

Korea Institute for Advanced Study

(joint work with Wan Lee)

November 26, 2019

1 Elliptic curves and the root numbers

2 Elliptic curves with complex multiplication

3 Lawful (CM) elliptic curves with $K \not\subset F$

Let F be a number field. Let E/F be an elliptic curve over F.

$$y^2 = x^3 + ax + b$$

where $a, b \in F$, and

$$\Delta := -16(4a^3 + 27b^2) \neq 0.$$

- 一司

Let F be a number field. Let E/F be an elliptic curve over F.

$$y^2 = x^3 + ax + b$$

where $a, b \in F$, and

$$\Delta := -16(4a^3 + 27b^2) \neq 0.$$

Question

If E is an elliptic curve $y^2 = x^3 + ax + b$, find all points of E over F.

$$E(F) := \{ (x, y) \in F \times F : y^2 = x^3 + ax + b \} \cup \{ \infty \}.$$

The group E(F) is a finitely generated abelian group.

< 4 → <

3

The group E(F) is a finitely generated abelian group.

By the structure theorem of finitely generated abelian group, we have

 $E(F)\cong \mathbb{Z}^{\operatorname{rk}(E(F))}\oplus\operatorname{torsion}$

where

The group E(F) is a finitely generated abelian group.

By the structure theorem of finitely generated abelian group, we have

 $E(F)\cong \mathbb{Z}^{\operatorname{rk}(E(F))}\oplus\operatorname{torsion}$

where

• rk(E(F)) is a non-negative integer called the *Mordell-Weil rank*,

The group E(F) is a finitely generated abelian group.

By the structure theorem of finitely generated abelian group, we have

$$E(F) \cong \mathbb{Z}^{\operatorname{rk}(E(F))} \oplus \operatorname{torsion}$$

where

- rk(E(F)) is a non-negative integer called the *Mordell-Weil rank*,
- There is no known general algorithm to find rk(E(F)).

Let L(E/F, s) be the Hasse-Weil *L*-function for E/F. Put $\Lambda(E/F, s) := N(E/F)^{\frac{s}{2}}((2\pi)^{-s}\Gamma(s))^{[F:\mathbb{Q}]}L(E/F, s).$

Let L(E/F, s) be the Hasse-Weil *L*-function for E/F. Put $\Lambda(E/F, s) := N(E/F)^{\frac{s}{2}}((2\pi)^{-s}\Gamma(s))^{[F:\mathbb{Q}]}L(E/F, s).$

The Hasse-Weil conjecture asserts that L(E/F, s) has an analytic continuation to the complex plane and satisfies a functional equation

$$\Lambda(E/F, 2-s) = W(E/F)\Lambda(E/F, s).$$

Let L(E/F, s) be the Hasse-Weil *L*-function for E/F. Put $\Lambda(E/F, s) := N(E/F)^{\frac{s}{2}}((2\pi)^{-s}\Gamma(s))^{[F:\mathbb{Q}]}L(E/F, s).$

The Hasse-Weil conjecture asserts that L(E/F, s) has an analytic continuation to the complex plane and satisfies a functional equation

$$\Lambda(E/F, 2-s) = W(E/F)\Lambda(E/F, s).$$

The constant $W(E/F) = \pm 1$ is called the (global) root number of E/F.

Let L(E/F, s) be the Hasse-Weil *L*-function for E/F. Put $\Lambda(E/F, s) := N(E/F)^{\frac{s}{2}}((2\pi)^{-s}\Gamma(s))^{[F:\mathbb{Q}]}L(E/F, s).$

The Hasse-Weil conjecture asserts that L(E/F, s) has an analytic continuation to the complex plane and satisfies a functional equation

$$\Lambda(E/F,2-s)=W(E/F)\Lambda(E/F,s).$$

The constant $W(E/F) = \pm 1$ is called the (global) root number of E/F.

Remark

The root number determines the parity of the vanishing order ord_{s=1}(L(E/F, s)).

Myungjun Yu (KIAS)

Let L(E/F, s) be the Hasse-Weil *L*-function for E/F. Put $\Lambda(E/F, s) := N(E/F)^{\frac{s}{2}}((2\pi)^{-s}\Gamma(s))^{[F:\mathbb{Q}]}L(E/F, s).$

The Hasse-Weil conjecture asserts that L(E/F, s) has an analytic continuation to the complex plane and satisfies a functional equation

$$\Lambda(E/F, 2-s) = W(E/F)\Lambda(E/F, s).$$

The constant $W(E/F) = \pm 1$ is called the (global) root number of E/F.

Remark

The root number determines the parity of the vanishing order ord_{s=1}(L(E/F, s)).

2 Assuming BSD conjecture : $rk(E(F)) = ord_{s=1}(L(E/F, s))$,

Let L(E/F, s) be the Hasse-Weil *L*-function for E/F. Put $\Lambda(E/F, s) := N(E/F)^{\frac{s}{2}}((2\pi)^{-s}\Gamma(s))^{[F:\mathbb{Q}]}L(E/F, s).$

The Hasse-Weil conjecture asserts that L(E/F, s) has an analytic continuation to the complex plane and satisfies a functional equation

$$\Lambda(E/F, 2-s) = W(E/F)\Lambda(E/F, s).$$

The constant $W(E/F) = \pm 1$ is called the (global) root number of E/F.

Remark

- The root number determines the parity of the vanishing order ord_{s=1}(L(E/F, s)).
- Assuming BSD conjecture : rk(E(F)) = ord_{s=1}(L(E/F, s)), the root number determines the parity of the rank.

Work of Langlands and Deligne

Work of Langlands and Deligne

() We can define the local root number $W(E/F_v)$ for all places v of F.

Work of Langlands and Deligne

- **(**) We can define the local root number $W(E/F_v)$ for all places v of F.
- 2 If there exist an analytic continuation of L(E/F, s), then

$$W(E/F) = \prod_{v} W(E/F_{v}).$$

Lemma (local root number formula)

$$W(E/F_v) = \begin{cases} +1, & \text{if } E/F_v \text{ has good reduction.} \\ -1, & \text{if } E/F_v \text{ has split multiplicative reduction.} \\ +1, & \text{if } E/F_v \text{ has non-split multiplicative reduction.} \\ -1, & \text{if } v \text{ is an Archimedean place.} \end{cases}$$

Let N be a number field or a (p-adic) local field. We say E/N is *lawful* if W(E/M) = 1 for all quadratic extensions M/N.

A 🖓 h

3 🕨 🔺

Let N be a number field or a (p-adic) local field. We say E/N is *lawful* if W(E/M) = 1 for all quadratic extensions M/N.

Remark

It was first defined and studied by Dokchitser-Dokchitser (2009).

Let N be a number field or a (p-adic) local field. We say E/N is *lawful* if W(E/M) = 1 for all quadratic extensions M/N.

Remark

- It was first defined and studied by Dokchitser-Dokchitser (2009).
- **2** If N is a number field, then $W(E/N)W(E^M/N) = W(E/M)$.

Let N be a number field or a (p-adic) local field. We say E/N is *lawful* if W(E/M) = 1 for all quadratic extensions M/N.

Remark

- It was first defined and studied by Dokchitser-Dokchitser (2009).
- 2 If N is a number field, then $W(E/N)W(E^M/N) = W(E/M)$.
- **3** Therefore if N is a number field, then E/N is lawful if and only if $W(E^M/N)$ is a constant for all quadratic extensions M/N.

Lemma

Suppose E is defined over a number field F. Then the following conditions are equivalent.

- E/F is lawful.
- **2** E/F_v is lawful for all places v of F.

Lemma

Suppose E is defined over a number field F. Then the following conditions are equivalent.

- E/F is lawful.
- 2 E/F_v is lawful for all places v of F.

Let C(F) denote the set of quadratic characters of F and define $C(F_v)$ similarly. Let S be a finite set of places of F containing all primes of bad reduction and infinite places. The restriction map

$$\mathcal{C}(F) \to \prod_{v \in S} \mathcal{C}(F_v)$$

is surjective.

1 Elliptic curves and the root numbers

2 Elliptic curves with complex multiplication

3 Lawful (CM) elliptic curves with $K \not\subset F$

- (A 🖓

э

The endomorphism ring End(E) can be one of the following.

The endomorphism ring End(E) can be one of the following.

Z

2 an order of an imaginary quadratic field K, i.e., $\operatorname{End}(E) \otimes \mathbb{Q} = K$.

The endomorphism ring End(E) can be one of the following.

Z

② an order of an imaginary quadratic field K, i.e., $\operatorname{End}(E) \otimes \mathbb{Q} = K$.

If it is the second case, we say E/F has CM over K.

The endomorphism ring End(E) can be one of the following.

Z

2 an order of an imaginary quadratic field K, i.e., $\operatorname{End}(E) \otimes \mathbb{Q} = K$.

If it is the second case, we say E/F has CM over K.

If $K \subset F$, then the rank of E(F) should be even because $E(F) \otimes \mathbb{Q}$ is a *K*-vector space and $[K : \mathbb{Q}] = 2$.

The endomorphism ring End(E) can be one of the following.

Z

2 an order of an imaginary quadratic field K, i.e., $\operatorname{End}(E) \otimes \mathbb{Q} = K$.

If it is the second case, we say E/F has CM over K.

If $K \subset F$, then the rank of E(F) should be even because $E(F) \otimes \mathbb{Q}$ is a *K*-vector space and $[K : \mathbb{Q}] = 2$. Then according to BSD conjecture, W(E/F) should be 1,

The endomorphism ring End(E) can be one of the following.

Z

2 an order of an imaginary quadratic field K, i.e., $\operatorname{End}(E) \otimes \mathbb{Q} = K$.

If it is the second case, we say E/F has CM over K.

If $K \subset F$, then the rank of E(F) should be even because $E(F) \otimes \mathbb{Q}$ is a *K*-vector space and $[K : \mathbb{Q}] = 2$. Then according to BSD conjecture, W(E/F) should be 1, which is indeed the case

Theorem

Suppose E/F has CM over K and $K \subseteq F$. Then there exists a Hecke character

$$\psi: \mathbb{A}_F^{\times} / F^{\times} \to \mathbb{C}^{\times}$$

satisfying the following properties.

- If v is a finite prime of F, then $\psi(\mathcal{O}_v^{\times}) = 1$ if and only if E has good reduction at v.
- ② If $x \in \mathbb{A}_{F}^{\times}$ is a finite idele (i.e., $x_{\infty} = 1$ for all infinite places ∞) and \mathfrak{p} is a prime of K, then $\psi(x) \in K = \operatorname{End}(E) \otimes \mathbb{Q}$, $\psi(x)(\mathbf{N}_{K}^{F}x)_{\mathfrak{p}}^{-1} \in \mathcal{O}_{\mathfrak{p}}^{\times}$ and for every $P \in E[\mathfrak{p}^{\infty}]$, we have

$$[x, F^{\mathrm{ab}}/F]P = \psi(x)(\mathsf{N}_{\mathsf{K}}^F x)_{\mathfrak{p}}^{-1}P,$$

where $[\cdot, F^{ab}/F]$ denotes the Artin map.

The root number of CM elliptic curve

Theorem

Suppose E/F has CM over K and $K \subseteq F$. Then W(E/F) = 1.

Theorem

Suppose E/F has CM over K and $K \subseteq F$. Then W(E/F) = 1.

Proof.

In the CM elliptic curve case, the *Weil-Deligne* representation for F_v given by the action on the *Tate module* is decomposed into the direct sum $\psi_v \oplus \overline{\psi_v}$. Then the ϵ -factor computation is done by considering the 1-dimensional case, which is established by Tate in his thesis. What one can show is in fact:

$$W(E/F_{v})=\psi_{v}(-1).$$

Then the result follows from the fact that ψ is a Hecke character on the idele class group.

Corollary

If E/F has CM over K and $K \subset F$, then E/F is lawful.

Myungjun Yu (KIAS)

3

1 Elliptic curves and the root numbers

2 Elliptic curves with complex multiplication

3 Lawful (CM) elliptic curves with $K \not\subset F$

Assumptions

• E/F has CM over K.

- 一司

3

Assumptions

• E/F has CM over K.

 $\bigcirc K \not\subset F.$

-

< 一型

3

Assumptions

• E/F has CM over K.

Ø K ⊄ F.

Theorem (Lee-Y)

There exist infinitely many quadratic extensions L/F such that E/L is lawful with W(E/L) = 1.

Assumptions

E/F has CM over K.

② *K* ⊄ *F*.

Theorem (Lee-Y)

There exist infinitely many quadratic extensions L/F such that E/L is lawful with W(E/L) = 1.

More interesting lawful elliptic curves

Lawful elliptic curves with W(E/L) = -1 are arithmetically more interesting.

3

(日) (同) (三) (三)

Theorem (Lee-Y)

Suppose that there exists a rational prime p such that the following conditions are satisfied.

- $p \equiv 3 \pmod{4}.$
- **2** p is ramified at K/\mathbb{Q} .

There exists a prime v of F such that e(v|p) and f(v|p) are both odd, where e(v|p) and f(v|p) denote the ramification index and the inertia degree of v above p, respectively.

Then there exist infinitely many quadratic extensions L/F such that E/L is lawful with W(E/L) = -1.

• Let w be the unique prime of KF above v.

- Let w be the unique prime of KF above v.
- **②** Condition 2 shows that E/FK has bad reduction at w.

- Let w be the unique prime of KF above v.
- **②** Condition 2 shows that E/FK has bad reduction at w.
- Solution 1 together with condition 3 show that $W(E/(FK)_w) = -1$.

- Let w be the unique prime of KF above v.
- ② Condition 2 shows that E/FK has bad reduction at w.
- Solution 1 together with condition 3 show that $W(E/(FK)_w) = -1$.
- Recall the restriction map

$$\mathcal{C}(F) \to \prod_{v \in S} \mathcal{C}(F_v)$$

is surjective.

- Let w be the unique prime of KF above v.
- 2 Condition 2 shows that E/FK has bad reduction at w.
- Solution 1 together with condition 3 show that $W(E/(FK)_w) = -1$.
- Recall the restriction map

$$\mathcal{C}(F) o \prod_{v \in S} \mathcal{C}(F_v)$$

is surjective.

Ohoose L so that the image of L and KF are the same except at v, and so that the image of L at v is the unramified quadratic extension.

- Let w be the unique prime of KF above v.
- **②** Condition 2 shows that E/FK has bad reduction at w.
- Solution 1 together with condition 3 show that $W(E/(FK)_w) = -1$.
- Recall the restriction map

$$\mathcal{C}(F) o \prod_{v \in S} \mathcal{C}(F_v)$$

is surjective.

- Ohoose L so that the image of L and KF are the same except at v, and so that the image of L at v is the unramified quadratic extension.
- Letting w' be the prime of L above v, we can prove $W(E/L_{w'}) = 1$.

Corollary

Suppose that $K \neq \mathbb{Q}(\sqrt{-d})$ for d = 1, 2 or 3. If $[F : \mathbb{Q}]$ is odd, then there exist infinitely many quadratic extensions L/F such that E/L is lawful with W(E/L) = -1.

3

Corollary

Suppose that $K \neq \mathbb{Q}(\sqrt{-d})$ for d = 1, 2 or 3. If $[F : \mathbb{Q}]$ is odd, then there exist infinitely many quadratic extensions L/F such that E/L is lawful with W(E/L) = -1.

Examples

Let
$$L = \mathbb{Q}(\sqrt{-m})$$
 for $m > 0$.
1 $y^2 + xy = x^3 - x^2 - 2x - 1$ with $(\frac{m}{7}) = 1$.
2 $y^2 + y = x^3 - x^2 - 7x + 10$ with $(\frac{m}{11}) = 1$.
3 $y^2 + y = x^3 - 38x + 90$ with $(\frac{m}{19}) = 1$.
4 $y^2 + y = x^3 - 860x + 9707$ with $(\frac{m}{43}) = 1$.

Thank you very much for your attention!