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Stationary linearized Boltzmann equation in R3

Bounded domain:
Qe RS,

We consider the linearized velocity distribution function:
f: QxR =R
We define

r—:={(x,v)| x € 0Q,n(x)-v < 0}.



Incoming Boundary Value Problem for linearized stationary
Boltzmann equation:

v -Vxf=L(f), xeQ veRd
f(x,v)=9(x,v), (x,v)el_,

where L is the linearized collision operator.



Our gaol is to classify the range of WP solution space
according to the geometry of the domain.

We focus on the stationary linearized Boltzmann equation in a
convex domain. To our surprise, the flatness has a dramatic
effect on the range of p.



Regularity of stationary Boltzmann equation in a
bounded domain

Mixture lemma: Collision and free transport move regularity
from velocity variable to space variable.

» (C. 2018 SIMA) Linearized equation, incoming boundary,
locally Holder.

» (C., Kawagoe, Hsia 2019 Annales de I'Institut Henri
Poincaré C ) Linearized equation, diffuse reflection,
pointwise estimate of derivatives.

» (Chen, Kim. 2022 ARMA) Nonlinear equation, diffuse
boundary, locally C'#.

» (Chen 2022 SIMA) Cercignani—Lampis Boundary condition



C., Kawagoe, Hsia 2019 Annales de I'Institut Henri Poincaré C:
IVxf| + [Vuf| < C1 + dy [+,

where
dy = dist(x, 0Q).

Chen, Kim. 2022 ARMA:

IIVEVfllee < CIIT — Tulloo-

(Notice that the Lemma 2.13 in this paper is not correct)



Velocity averaging lemma
» (C.,Chung, Hsia, Su 2022 JSP ) linearized equation,
incoming boundary, L2(R3, H}~(Q)).
We can not recover L2(R3, H}(Q)) by this estimates by
Bourgain-Brezis-Mironescu formula.



Time evolutional problem

Regularity for time evolutional problem:

(Guo, Kim, Tonon, Trescases 2017 Invent. Math.) Nonlinear
equation, diffuse reflection, WP for 1 < p < 2. Disprove H'
result to free transport equation.



Motivation:
What is the situation for stationary solution?



Existence of H' solutions to Stationary Linearized Boltzmann
Equation in a Small Domain.

Theorem (C.,Chung, Hsia, Kawagoe, Su April 19, 2023)
There exists a small ¢ > 0 such that

Suppose domain Q is of positive curvature with diam(Q2) < e,
the incoming boundary value problem for stationary linearized
Boltzmann equation has a unique solution f ¢ H'(Q x R3) ifg
is smooth enough.

Remark
Chen Kim investigate a related issue on asymptotic stability in
W, P for1 < p < 3 (ARMA 2024).



We classify the range of p for solution space W' according to
the geomtry of the domain.



Assumption A. We say L satisfies the condition A if the
operator L(f) can be decomposed into the multiplicative term
—v(v)f and the integral term K(f) = [ k(v, vi)f(vi)dv, with the
following estimates for some fixed 0 < v < 1.
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[Vor(v)] < C(1 + [v])" . (7)



Remark
The crosssection B = C|v|7 cos for0 < ~ < 1 yields a
linearized collision operator L satisfying Assumption A.

Remark
For Grad’s angular cutoff, 0 < B < C|v|Ycosf for0 <~y <1, (8)
and the upper bound in (7) was proved by Caflisch (1980 CMP).



(X, V) = tigg{t: X — vt ¢ Q},

q(x,v) == x —7(x,v)v.
, TU5v)

905v)

Q)



We rewrite

V- Vxf+v(V)f=K(f), xeQ, veRs
f(x,v) = 9(x,v), (x,v)erl_.

Integral equation:

f(X’ V) :eil/(V)T(XN)g(q(X) V)v V)

7(X,V)
+ / e " (SK(f)(x — sv,v)ds.
0

Hereafter, we define
(Jg)(x,v) == e -(Mg(q(x, v), v),

T(x,v)
(Saf)(x,v) == / e "($f(x — sv, v)ds.
0



We can rewrite

f(x, v) =J(g) + SaK(1).

Definition
We say f is a solution to (8) if f satisfies (12).



Let
LE(Q x B®) = {f | [|fll 5 (quzs) < 0},

where

- P apalv[?
117 sy = /Q /R Jf(x V)P dxa.



Also, for 1 < p < oo and a > 0, we define the function space
WIP(Q x R3) by

W P(Q x R?) := {f | 11l p(rsy < 2°F
where
1l e axrsy = Il @ursy + IVl 2 @xrs) + IV vfll 2 urs):

Notice that WiP(Q x R3) with a = 0 is the usual Sobolev space
WP(Q x R3).



Theorem (C., Hsia, Kawagoe, Su,11, 2023)

Suppose L satisfies Assumption A. Let0 < o < (1 — p)/2 and
Q be a bounded convex domain with C?> boundary. Then, the
following statements hold.

(i) For1 < p < 2, there exists ¢ > 0 depending on p and «
such that: for any Q with diam(Q2) < ¢, the boundary value
problem (3) has a unique solution f Wcl’p (Q x R3) if and
only if Jg € WaP(Q x R3).

(i) We further assume that 0X2 is of positive Gaussian

curvature. Then, the range of p in (i) can be extended to
1<p<3.

(iii) The conclusions in (i) and (ii) are optimal.

arXiv:2311.12387



To be more precise, (iii) means:

Lemma (Counter example p=2)

Forfixed1 <p<2and0<a<(1-p)/2, there exist a
bounded convex domain Q2 and a boundary data g such that
the boundary value problem (3) has a solution in

[2(Q x R3) N WLP(Q x R3) but not in W2(Q x R3).

Lemma (Counter example p=3)

Forfixed2 < p <3 and0 <a < (1—p)/2, there exist a
bounded convex domain Q with its boundary of positive
Gaussian curvature and a boundary data g such that the
boundary value problem (3) has a solution in

L3(Q x R3) N W2P(Q x R3) but not in W23 (Q x R3).



Nonlinear case for small domain with positive Gaussian
curvature is established in a norm that is a proper subspace of
WP for 1 < p < 3 by by C. Kawagoe, hsia,and Su in 3, 2024.

arXiv:2403.10016



Sketch of the proof

Recall
f(x,v) =J(g) + SaK(f). (13)

Performing Picard iteration, formally we have

f:i SaK)'Jg (14)

]

i=0
Goal: To prove the series (14) converges in the desired norm.



For L, space, we have

Lemma
Let1 <p<oocand0 < a<(1-p)/2, where p is the constant
in Assumption A. Then, for any h € LE(Q x R®), we have

, 1
1SaKhl| 2 (o xrs) < diam(Q)? || Al 5 o rs)- (15)

If diam(2) is small enough, by contraction mapping theorem, (3)
has a solution in 5.



Sobolev space case

We do not have a direct analogy for W!* case. Instead,

Lemma
Givenhe W)P(Q x R3) with1 <p<2and0<a<(1-p)/2
where p is the constant in Assumption A, we have

1
| S2Kbl 3oz S iam(2)2 1l oy + 1z e
1
+ diam(Q)~ | hlng(anH@)’

where [|h[| (o (9a«rs) is defined by

o 2
015 iy = [, [ 1Atz v) P aE(z)a

and dX denotes the surface measure on Of).



Trace inequalities

Lemma (Trace inequalities)

Let Q be a bounded domain with Lipschitz boundary. Also,
« > 0. Then,

(i) For1 < p < oo, there exists a positive constant C>($2, p)
such that

p=1 1
1hll 2 (9axre) < C2(2,P) (5 P IVxhll g oxrsy + 0 thHLg(QXRS))

forall h € W2P(Q x R3) and 0 < 6 < 1.
(ii)

1Al 1 (saxrsy < (1 + ) Vxhll 11 @xrsy + Cs(Q[1All 1 (oxrs)

forall h € W2 (Q x R3).



Forfixed1 <p<2and0 < a < (1-p)/2, taking 6 and
diam(Q2) sufficiently small and combining Lemmas above
together, we have

. 1 i
1(52K)' gl 1o sy <5 1(S2K) ™ SGllyo )
+ Cs\|(SQK)i_1JQ||Lg(QxR3)

(16)



For the case 2 < p < 3, we need to use a good property of
positive Gaussian curvature. We recall the following estimate.

Lemma (Proposition 5.9 in (C.,Chung, Hsia, Su 2022
JSP))

Let Q be a C? bounded convex domain of positive Gaussian
curvature. Then, there exists a positive constant Cy(Q2)
depending only on Q such that for any z € 9Q and v € R® we
have
z—q(z.v)| < GI(QN(z. V),
where
v

N(z,v):=|n(z)- V|, V:i=_—.
(z.v)=In(2) - ¥ v



From Lemma 7, we have the following estimate.

Lemma

Let Q be a C? bounded convex domain of positive Gaussian
curvature, and let C1(Q2) be a constant defined in Lemma 7.
Then, given h € W2P(Q x R3) with2 < p < 3 and

0 <a < (1-p)/2, where p is the constant in Assumption A,
we have

1
I SKhll 0y < am(Q) 1l sy + 12 @)

1
+ C1(Q)7 || All 12 (90 xr3)-



Counter-example for the case p =2

We choose Q2 as a small bounded convex domain such that

Dy, = {x = (0,x2,x3) € R® | |x| < ry} C OQ (17)
with a small radius ry and

{x = (x1,X%,x3) € R®| |x| < ry,xy <0} C Q. (18)

We remark that n(0) = (1,0, 0).



Counter-example for p = 2

=~ \LS =




Let ¢1 be a smooth cut-off function on 0Q2 such that 0 < ¢4 <1,
p1(x) = 1for x € Dy, j4, and ¢1(x) = 0 for x € 9Q\ Dy, o. We
pose the boundary data g of the form:

gix,v) = pi(x)e 2P, (x,v)er. (19)



Counter-example for p = 2




We assume f ¢ Wcl’z, then derive a contradiction. Recall
(Jg)(x, v) := e M™=CVg(q(x, v), v), (20)
(Saf)(x,Vv) = /0 e e "ISf(x — sv,v)ds. (21)
Thus,

Vxf(x,v) = = v([V[)(Vx7(x, v))Jg(x; v) + (Vxq(x, v))J(Vxg) (X, V)
+ Sa xKf(x, V) + SaK(Vf)(x, v).



By assumption, we see that SoK(Vf) € L2(Q x R3), and
therefore the integral

/ / IV f — SqKV,f? 62 dxav (22)
Q JR3

is bounded.



Let ., > 0 and

Dr1,r2 = {(X7 V) € x R3 ‘ Q(X, V) € Dr1/47T(X7 V) S 17 ’V’ < r2}'
(23)
In this region, we have J(Vxg) = 0



Counter-example for p = 2




SaxKf(x,v) =(Vxr(x, v))e "(7xV) / k(v,v)f(q(x,v),v*)dv*

r+

q(x,v)

+ (Vxr(x, v))e "7V k(v, v*)e*%"’*|2 av*.

e

We substitute the function f in the first term of the right hand
side by the integral equation again to obtain

k(v,v*)f(q(x,v),v*)dv*
r+

q(x,v)
- /+ K(v, v)Ja(q(q(x, v), v*), v*) dv*
Faten)
+ | k(v,v")SaKf(q(q(x, v),v"),v7)dv".
i



Here, since q(q(x, v), v*) ¢ D, for (x,v) € Dy, r, and

= F;F(X ) the first term in the right hand side is zero.



Counter-example for p = 2




On the other hand, we have

/ K(v, v)SaK(q(q(x, v), v*), v*) dv*
r+

)
Sl (@xreyur+) diam(€2)
< diam(Q).

Therefore, we can make contribution from the integral

/ k(v,v*)f(q(x,v),v*)av*
r+

q(x,v)

arbitrary small by taking diam(Q2) sufficiently small.



Thus, in Dy, r,

— (Vxf(x,v) — SaK(V«f)(x,Vv)) >

v(Iv)(VxT(x, V))e*V(V)T(va) (eélv2 _/

q(x,v)
k(v, v*)ef%l‘/*l2 _ 6)
(24)

k(v, v*)eﬁ%l‘/*l2 _6>

a(x.v)

> (V) (Ver(x, v))e ) (eW ) /



Lemma
There exist ng > 0 and r> > 0 such that

v(v))e 2V — /_ k(v,v)e 2l av* > g

q(x,v)

for all (x,v) € Dy, 1.



// \fo—SQKVXf\zezaMzdxdvz/ IV x7 (X, v)|? dxdv.
Q Jr3

ry 1o

Here, we perform the same change of variable.

/ V7 (X, v)|? dxdv
D,

rq,rp

min{7(z,—v),1} »
:/D /{ ol }/0 |Vx7(z + tv, V)| diN(z, v)|v|dv
/4 i< vi<r



It is known that

—n(CI(X, V)) (25)

Vxt(x,Vv) = NOx V]

min{7(z,—v),1}
N(z,v)|v]|

min{7(z,—v),1} 5
/ V(2 + tv, V)2 diN(z, v)|v| =
0



We restrict ourselves to the case |v| < ry/2. In this case, we
have 7(z,—v) > 1. Let r3 := min{ry /2, r>}. Then, we have

min{7(z,—v),1}
/ / / |Vxr(z + tv, v)[2 dtN(z, v)|v|dv
Dy, ja J{w<0}n{|v|<rz} JO
1
> 1 avas(2).
/0,1 /4 /{w <opn{lvi<re} N(Z,V)IV] (



Introducing the spherical coordinates to v so that § = 0
corresponds to (—1,0,0), we have

/2 o
/ S W / sinf 4y
(vi<0yn{vi<r} N(Z, V)|V o cost

which is divergent for all z € D,, /4. Therefore the integral (22) is
not bounded, and it is a contradiction.



Thank you!



Counter example for p = 3

We consider B(0, r). We parametrize the boundary by

X = (rcosf,rsinfcos ¢, rsinfsin¢) for 6 € [0, 7] and

¢ € [0,27). With these coordinates, for 6y € (0, ), let

0, ={x€02]0<0<0b}. Take0 <6y <bp <manda
smooth cut-off function ¢, on 9Q such that po(x) = 1 for

X € 0Qp,, p2(x) = 0for x € 002\ 0€y,, and 0 < pp(x) < 1 for
x € 09y, \ 0Qp,. We pose the boundary data g of the form:

9(x,v) = pa(x)e 2 (x,v)er. (26)



Thank you!



