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Stationary linearized Boltzmann equation in R3

Bounded domain:
Ω ∈ R3. (1)

We consider the linearized velocity distribution function:
f : Ω× R3 → R.
We define

Γ− := {(x , v)| x ∈ ∂Ω,n(x) · v < 0}. (2)



Incoming Boundary Value Problem for linearized stationary
Boltzmann equation:{

v · ∇x f = L(f ), x ∈ Ω, v ∈ R3,
f (x , v) = g(x , v), (x , v) ∈ Γ−,

(3)

where L is the linearized collision operator.



Our gaol is to classify the range of W 1,p solution space
according to the geometry of the domain.
We focus on the stationary linearized Boltzmann equation in a
convex domain. To our surprise, the flatness has a dramatic
effect on the range of p.



Regularity of stationary Boltzmann equation in a
bounded domain

Mixture lemma: Collision and free transport move regularity
from velocity variable to space variable.
▶ (C. 2018 SIMA) Linearized equation, incoming boundary,

locally Holder.
▶ (C., Kawagoe, Hsia 2019 Annales de l’Institut Henri

Poincaré C ) Linearized equation, diffuse reflection,
pointwise estimate of derivatives.

▶ (Chen, Kim. 2022 ARMA) Nonlinear equation, diffuse
boundary, locally C1,β.

▶ (Chen 2022 SIMA) Cercignani–Lampis Boundary condition



C., Kawagoe, Hsia 2019 Annales de l’Institut Henri Poincaré C:

|∇x f |+ |∇v f | ≤ C|1 + d−1
x | 4

3+ϵ,

where
dx = dist(x , ∂Ω).

Chen, Kim. 2022 ARMA:

∥|v |2∇v f∥∞ ≤ C∥T − Tw∥∞.

(Notice that the Lemma 2.13 in this paper is not correct)



Velocity averaging lemma
▶ (C.,Chung, Hsia, Su 2022 JSP ) linearized equation,

incoming boundary, L2
v (R3,H1−

x (Ω)).
We can not recover L2

v (R3,H1
x (Ω)) by this estimates by

Bourgain-Brezis-Mironescu formula.



Time evolutional problem

Regularity for time evolutional problem:
(Guo, Kim, Tonon, Trescases 2017 Invent. Math.) Nonlinear
equation, diffuse reflection, W 1,p for 1 ≤ p < 2. Disprove H1

result to free transport equation.



Motivation:
What is the situation for stationary solution?



Existence of H1 solutions to Stationary Linearized Boltzmann
Equation in a Small Domain.

Theorem (C.,Chung, Hsia, Kawagoe, Su April 19, 2023)
There exists a small ϵ > 0 such that
Suppose domain Ω is of positive curvature with diam(Ω) < ϵ,
the incoming boundary value problem for stationary linearized
Boltzmann equation has a unique solution f ∈ H1(Ω× R3) if g
is smooth enough.

Remark
Chen Kim investigate a related issue on asymptotic stability in
W 1,p

x for 1 ≤ p < 3 (ARMA 2024).



We classify the range of p for solution space W 1,p according to
the geomtry of the domain.



Assumption A. We say L satisfies the condition A if the
operator L(f ) can be decomposed into the multiplicative term
−ν(v)f and the integral term K (f ) =

∫
k(v , v∗)f (v∗)dv∗ with the

following estimates for some fixed 0 ≤ γ ≤ 1.

ν0(1 + |v |)γ ≤ ν(v) ≤ ν1(1 + |v |)γ (4)

|k(v , v∗)| ≤ C
1

|v − v∗|(1 + |v |+ |v∗|)1−γ
e

1−ρ
4 (|v−v∗|2+( |v|

2−|v∗|2
|v−v∗| )2)

,

(5)

|∇v k(v , v∗)| ≤ C
1 + |v |

|v − v∗|2(1 + |v |+ |v∗|)1−γ
e

1−ρ
4 (|v−v∗|2+( |v|

2−|v∗|2
|v−v∗| )2)

,

(6)

|∇vν(v)| ≤ C(1 + |v |)γ−1. (7)



Remark
The crosssection B = C|v |γ cos θ for 0 ≤ γ ≤ 1 yields a
linearized collision operator L satisfying Assumption A.

Remark
For Grad’s angular cutoff, 0 ≤ B ≤ C|v |γ cos θ for 0 ≤ γ ≤ 1, (8)
and the upper bound in (7) was proved by Caflisch (1980 CMP).



⌧(x , v) := inf
t>0

{t : x � vt /2 ⌦},

q(x , v) := x � ⌧(x , v)v .

τ (X, )

时

0
q(x, V)

…
…

…

⼝



We rewrite{
v · ∇x f + ν(v)f = K (f ), x ∈ Ω, v ∈ R3,
f (x , v) = g(x , v), (x , v) ∈ Γ−.

(8)

Integral equation:

f (x , v) =e−ν(v)τ(x ,v)g(q(x , v), v)

+

∫ τ(x ,v)

0
e−ν(v)sK (f )(x − sv , v)ds.

(9)

Hereafter, we define

(Jg)(x , v) := e−ν(v)τ−(x ,v)g(q(x , v), v), (10)

(SΩf )(x , v) :=
∫ τ(x ,v)

0
e−ν(v)sf (x − sv , v)ds. (11)



We can rewrite

f (x , v) =J(g) + SΩK (f ). (12)

Definition
We say f is a solution to (8) if f satisfies (12).



Let
Lp
α(Ω× R3) := {f | ∥f∥Lp

α(Ω×R3) < ∞},
where

∥f∥p
Lp
α(Ω×R3)

:=

∫
Ω

∫
R3

|f (x , v)|pepα|v |2 dxdv .



Also, for 1 ≤ p < ∞ and α ≥ 0, we define the function space
W 1,p

α (Ω× R3) by

W 1,p
α (Ω× R3) := {f | ∥f∥W 1,p

α (Ω×R3)
< ∞},

where

∥f∥W 1,p
α (Ω×R3)

:= ∥f∥Lp
α(Ω×R3) + ∥∇x f∥Lp

α(Ω×R3) + ∥∇v f∥Lp
α(Ω×R3).

Notice that W 1,p
α (Ω×R3) with α = 0 is the usual Sobolev space

W 1,p(Ω× R3).



Theorem (C., Hsia, Kawagoe, Su,11, 2023)
Suppose L satisfies Assumption A. Let 0 ≤ α < (1 − ρ)/2 and
Ω be a bounded convex domain with C2 boundary. Then, the
following statements hold.

(i) For 1 ≤ p < 2, there exists ϵ > 0 depending on p and α
such that: for any Ω with diam(Ω) < ϵ, the boundary value
problem (3) has a unique solution f ∈ W 1,p

α (Ω× R3) if and
only if Jg ∈ W 1,p

α (Ω× R3).
(ii) We further assume that ∂Ω is of positive Gaussian

curvature. Then, the range of p in (i) can be extended to
1 ≤ p < 3.

(iii) The conclusions in (i) and (ii) are optimal.

arXiv:2311.12387



To be more precise, (iii) means:

Lemma (Counter example p=2)
For fixed 1 ≤ p < 2 and 0 ≤ α < (1 − ρ)/2, there exist a
bounded convex domain Ω and a boundary data g such that
the boundary value problem (3) has a solution in
L2
α(Ω× R3) ∩ W 1,p

α (Ω× R3) but not in W 1,2
α (Ω× R3).

Lemma (Counter example p=3)
For fixed 2 ≤ p < 3 and 0 ≤ α < (1 − ρ)/2, there exist a
bounded convex domain Ω with its boundary of positive
Gaussian curvature and a boundary data g such that the
boundary value problem (3) has a solution in
L3
α(Ω× R3) ∩ W 1,p

α (Ω× R3) but not in W 1,3
α (Ω× R3).



Nonlinear case for small domain with positive Gaussian
curvature is established in a norm that is a proper subspace of
W 1,p for 1 ≤ p < 3 by by C. Kawagoe, hsia,and Su in 3, 2024.

arXiv:2403.10016



Sketch of the proof

Recall

f (x , v) =J(g) + SΩK (f ). (13)

Performing Picard iteration, formally we have

f =
∞∑

i=0

(SΩK )iJg. (14)

Goal: To prove the series (14) converges in the desired norm.



For Lp
α space, we have

Lemma
Let 1 ≤ p < ∞ and 0 ≤ α < (1 − ρ)/2, where ρ is the constant
in Assumption A. Then, for any h ∈ Lp

α(Ω× R3), we have

∥SΩKh∥Lp
α(Ω×R3) ≲ diam(Ω)

1
p ∥h∥Lp

α(Ω×R3). (15)

If diam(Ω) is small enough, by contraction mapping theorem, (3)
has a solution in Lp

α.



Sobolev space case

We do not have a direct analogy for W 1,p
α case. Instead,

Lemma
Given h ∈ W 1,p

α (Ω× R3) with 1 ≤ p < 2 and 0 ≤ α < (1 − ρ)/2,
where ρ is the constant in Assumption A, we have

∥SΩKh∥W 1,p
α (Ω×R3)

≲ diam(Ω)
1
p ∥h∥W 1,p

α (Ω×R3)
+ ∥h∥Lp

α(Ω×R3)

+ diam(Ω)
1
p ∥h∥Lp

α(∂Ω×R3),

where ∥h∥Lp
α(∂Ω×R3) is defined by

∥h∥p
Lp
α(∂Ω×R3)

:=

∫
R3

∫
∂Ω

|h(z, v)|pepα|v |2 dΣ(z)dv ,

and dΣ denotes the surface measure on ∂Ω.



Trace inequalities

Lemma (Trace inequalities)
Let Ω be a bounded domain with Lipschitz boundary. Also,
α ≥ 0. Then,
(i) For 1 < p < ∞, there exists a positive constant C2(Ω,p)
such that

∥h∥Lp
α(∂Ω×R3) ≤ C2(Ω,p)

(
δ

p−1
p ∥∇xh∥Lp

α(Ω×R3) + δ
− 1

p ∥h∥Lp
a(Ω×R3)

)
for all h ∈ W 1,p

α (Ω× R3) and 0 < δ < 1.
(ii)

∥h∥L1
α(∂Ω×R3) ≤ (1 + δ)∥∇xh∥L1

α(Ω×R3) + Cδ(Ω)∥h∥L1
α(Ω×R3)

for all h ∈ W 1,1
α (Ω× R3).



For fixed 1 ≤ p < 2 and 0 ≤ α < (1 − ρ)/2, taking δ and
diam(Ω) sufficiently small and combining Lemmas above
together, we have

∥(SΩK )iJg∥W 1,p
α (Ω×R3)

≤1
2
∥(SΩK )i−1Jg∥W 1,p

α (Ω×R3)

+ C3∥(SΩK )i−1Jg∥Lp
α(Ω×R3)

(16)



For the case 2 ≤ p < 3, we need to use a good property of
positive Gaussian curvature. We recall the following estimate.

Lemma (Proposition 5.9 in (C.,Chung, Hsia, Su 2022
JSP))
Let Ω be a C2 bounded convex domain of positive Gaussian
curvature. Then, there exists a positive constant C1(Ω)
depending only on Ω such that for any z ∈ ∂Ω and v ∈ R3 we
have

|z − q(z, v)| ≤ C1(Ω)N(z, v),

where
N(z, v) := |n(z) · v̂ |, v̂ :=

v
|v | .



From Lemma 7, we have the following estimate.

Lemma
Let Ω be a C2 bounded convex domain of positive Gaussian
curvature, and let C1(Ω) be a constant defined in Lemma 7.
Then, given h ∈ W 1,p

α (Ω× R3) with 2 ≤ p < 3 and
0 ≤ α < (1 − ρ)/2, where ρ is the constant in Assumption A,
we have

∥SΩKh∥W 1,p
α (Ω×R3)

≲ diam(Ω)
1
p ∥h∥W 1,p

α (Ω×R3)
+ ∥h∥Lp

α(Ω×R3)

+ C1(Ω)
1
p ∥h∥Lp

α(∂Ω×R3).



Counter-example for the case p = 2

We choose Ω as a small bounded convex domain such that

Dr1 := {x = (0, x2, x3) ∈ R3 | |x | < r1} ⊂ ∂Ω (17)

with a small radius r1 and

{x = (x1, x2, x3) ∈ R3 | |x | < r1, x1 < 0} ⊂ Ω. (18)

We remark that n(0) = (1,0,0).



Counter-example for p = 2

「
/
*



Let φ1 be a smooth cut-off function on ∂Ω such that 0 ≤ φ1 ≤ 1,
φ1(x) = 1 for x ∈ Dr1/4, and φ1(x) = 0 for x ∈ ∂Ω \ Dr1/2. We
pose the boundary data g of the form:

g(x , v) = φ1(x)e− 1
2 |v |

2
, (x , v) ∈ Γ−. (19)



Counter-example for p = 2

,
/ -

Y = 0

| 鸈"、



We assume f ∈ W 1,2
α , then derive a contradiction. Recall

(Jg)(x , v) := e−ν(v)τ−(x ,v)g(q(x , v), v), (20)

(SΩf )(x , v) :=
∫ τ(x ,v)

0
e−ν(v)sf (x − sv , v)ds. (21)

Thus,

∇x f (x , v) =− ν(|v |)(∇xτ(x , v))Jg(x , v) + (∇xq(x , v))J(∇X g)(x , v)
+ SΩ,xKf (x , v) + SΩK (∇x f )(x , v).



By assumption, we see that SΩK (∇x f ) ∈ L2
α(Ω× R3), and

therefore the integral∫
Ω

∫
R3

|∇x f − SΩK∇x f |2 e2α|v |2 dxdv (22)

is bounded.



Let r2 > 0 and

Dr1,r2 := {(x , v) ∈ Ω×R3 | q(x , v) ∈ Dr1/4, τ(x , v) ≤ 1, |v | < r2}.
(23)

In this region, we have J(∇X g) = 0



Counter-example for p = 2

, vl < rz
(x, v

)
qx, v) εDek/ 亽 τ (x
,
v) ≤ 1

.

: ∵"

| !、



SΩ,xKf (x , v) =(∇xτ(x , v))e−ν(v)τ(x ,v)
∫
Γ+q(x,v)

k(v , v∗)f (q(x , v), v∗)dv∗

+ (∇xτ(x , v))e−ν(v)τ(x ,v)
∫
Γ−q(x,v)

k(v , v∗)e− 1
2 |v

∗|2 dv∗.

We substitute the function f in the first term of the right hand
side by the integral equation again to obtain∫

Γ+q(x,v)

k(v , v∗)f (q(x , v), v∗)dv∗

=

∫
Γ+q(x,v)

k(v , v∗)Jg(q(q(x , v), v∗), v∗)dv∗

+

∫
Γ+q(x,v)

k(v , v∗)SΩKf (q(q(x , v), v∗), v∗)dv∗.



Here, since q(q(x , v), v∗) /∈ Dr1 for (x , v) ∈ Dr1,r2 and
v∗ ∈ Γ+q(x ,v), the first term in the right hand side is zero.



Counter-example for p = 2
器

。 vl < rz

(x, v
)

qx, v) εDek/ 亽 τ (x
,
v) ≤ 1

⼀ v

.
! 4"

|
⼀

淡
q

⼀ !、C
δ= 0虚



On the other hand, we have∣∣∣∣∣
∫
Γ+q(x,v)

k(v , v∗)SΩKf (q(q(x , v), v∗), v∗)dv∗

∣∣∣∣∣
≲∥f∥Cα((Ω×R3)∪Γ±) diam(Ω)

≲ diam(Ω).

Therefore, we can make contribution from the integral∫
Γ+q(x,v)

k(v , v∗)f (q(x , v), v∗)dv∗

arbitrary small by taking diam(Ω) sufficiently small.



Thus, in Dr1,r2

− (∇x f (x , v)− SΩK (∇x f )(x , v)) ≥

ν(|v |)(∇xτ(x , v))e−ν(v)τ(x ,v)

(
e− 1

2 |v |
2 −

∫
Γ−q(x,v)

k(v , v∗)e− 1
2 |v

∗|2 − ϵ

)

≥ ν(|v |)(∇xτ(x , v))e−ν(v)

(
e− 1

2 |v |
2 −

∫
Γ−q(x,v)

k(v , v∗)e− 1
2 |v

∗|2 − ϵ

)
(24)



Lemma
There exist η0 > 0 and r2 > 0 such that

ν(|v |)e− 1
2 |v |

2 −
∫
Γ−q(x,v)

k(v , v∗)e− 1
2 |v

∗|2 dv∗ > η0

for all (x , v) ∈ Dr1,r2 .



∫
Ω

∫
R3

|∇x f − SΩK∇x f |2 e2α|v |2 dxdv ≳
∫

Dr1,r2

|∇xτ(x , v)|2 dxdv .

Here, we perform the same change of variable.∫
Dr1,r2

|∇xτ(x , v)|2 dxdv

=

∫
Dr1/4

∫
{v1<0}∩{|v |<r2}

∫ min{τ(z,−v),1}

0
|∇xτ(z + tv , v)|2 dtN(z, v)|v |dv dΣ(z).



It is known that

∇xτ(x , v) =
−n(q(x , v))
N(x , v)|v | . (25)

∫ min{τ(z,−v),1}

0
|∇xτ(z + tv , v)|2 dtN(z, v)|v | = min{τ(z,−v),1}

N(z, v)|v |



We restrict ourselves to the case |v | < r1/2. In this case, we
have τ(z,−v) > 1. Let r3 := min{r1/2, r2}. Then, we have∫

Dr1/4

∫
{v1<0}∩{|v |<r2}

∫ min{τ(z,−v),1}

0
|∇xτ(z + tv , v)|2 dtN(z, v)|v |dv dΣ(z)

≥
∫

Dr1/4

∫
{v1<0}∩{|v |<r3}

1
N(z, v)|v | dv dΣ(z).



Introducing the spherical coordinates to v so that θ = 0
corresponds to (−1,0,0), we have∫

{v1<0}∩{|v |<r3}

1
N(z, v)|v | dv =πr2

3

∫ π/2

0

sin θ

cos θ
dθ,

which is divergent for all z ∈ Dr1/4. Therefore the integral (22) is
not bounded, and it is a contradiction.



Thank you!



Counter example for p = 3

We consider B(0, r). We parametrize the boundary by
x = (r cos θ, r sin θ cosϕ, r sin θ sinϕ) for θ ∈ [0, π] and
ϕ ∈ [0,2π). With these coordinates, for θ0 ∈ (0, π), let
∂Ωθ0 := {x ∈ ∂Ω | 0 ≤ θ < θ0}. Take 0 < θ1 < θ2 < π and a
smooth cut-off function φ2 on ∂Ω such that φ2(x) = 1 for
x ∈ ∂Ωθ1 , φ2(x) = 0 for x ∈ ∂Ω \ ∂Ωθ2 , and 0 ≤ φ2(x) ≤ 1 for
x ∈ ∂Ωθ2 \ ∂Ωθ1 . We pose the boundary data g of the form:

g(x , v) = φ2(x)e− 1
2 |v |

2
, (x , v) ∈ Γ−. (26)



Thank you!


