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Motivations

• Interacting multi-agent systems are ubiquitous in both classical physics and

socio-/econophysics

• In socio-/econophysics, unlike classical physics, interactions are often networked:

agents do not interact “all-to-all” but according to some preferential connections

• Prototype: opinion formation on social networks

• Large number of networked agents ⇝ need for a statistical description of the

network topology
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Particle Description

• Agents are understood as the vertices of a graph G = (I, E), I = {1, . . . , N}
• A representative agent X ∈ I features an opinion Vt ∈ O ⊂ R at time t ≥ 0

• Opinion exchange algorithm in randomly selected pairs of agents:

Vt+∆t = (1−Θ)Vt +ΘΨ(Vt, V
∗
t )

V ∗
t+∆t = (1−Θ)V ∗

t +ΘΨ∗(V
∗
t , Vt),

Θ ∼ Bernoulli(B(X,X∗)∆t)

in an interaction time step 0 < ∆t ≤ 1

• The interaction rate B encodes the information on agents’ connections:

B(X,X∗) =

{
1 if (X,X∗) ∈ E
0 otherwise

• Ψ, Ψ∗ : O2 → O represent the post-interaction opinions in case of a successful

interaction
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Derivation of a Kinetic Description 1/2

• Let (X, Vt) ∼ f(x, v, t), x ∈ I, v ∈ O

f(x, v, t) =
1

N

∑
i∈I

fi(v, t)⊗ δ(x− i)

with fi : O × [0, +∞) → R+ the pdf of the opinion of agent i at time t

• Taking the expectation of Φ(X,Vt+∆t) and of Φ(X∗, V
∗
t+∆t), where Φ is an

arbitrary scalar function, one obtains

d

dt

∑
h∈I

∫
O
Φ(h, v)fh(v, t) dv =

=
∑

h,k∈I

∫∫
O2

B(h, k)
Φ(h, v′) + Φ(k, v′∗)− Φ(h, v)− Φ(k, v∗)

2N
fh(v, t)fk(v∗, t) dv dv∗

where

v′ = Ψ(v, v∗), v′∗ = Ψ∗(v∗, v)
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Derivation of a Kinetic Description 2/2

• Taking Φ(x, v) = ϕ(x)φ(v) with

ϕ(x) =

{
1 if x = i ∈ I
0 otherwise,

φ : O → R arbitrary

we get

d

dt

∫
O
φ(v)fi(v, t) dv =

1

2N

∑
k∈I

B(i, k)

∫∫
O2

(φ(v′)− φ(v))fi(v, t)fk(v∗, t) dv dv∗

+
1

2N

∑
h∈I

B(h, i)

∫∫
O2

(φ(v′∗)− φ(v))fh(v, t)fi(v∗, t) dv dv∗

• Introducing the adjacency matrix M := (B(i, j))i,j∈I ∈ RN×N of G:

d

dt

∫
O
φ(v)f(v, t) dv =

1

2N

∫∫
O2

(φ(v′)− φ(v))f(v, t)⊙Mf(v∗, t) dv dv∗

+
1

2N

∫∫
O2

(φ(v′∗)− φ(v))MT f(v, t)⊙ f(v∗, t) dv dv∗

with f(v, t) = (fi(v, t))i∈I and ⊙ = Hadamard’s vector product
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Interlude

• The system of kinetic equations

d

dt

∫
O
φ(v)f(v, t) dv =

1

2N

∫∫
O2

(φ(v′)− φ(v))f(v, t)⊙Mf(v∗, t) dv dv∗

+
1

2N

∫∫
O2

(φ(v′∗)− φ(v))MT f(v, t)⊙ f(v∗, t) dv dv∗

for the array f of opinion distribution functions is valid on whatever graph

• Problem: it requires a “pointwise” description of the graph connections, which

gets readily unfeasible when the size N of G grows
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Towards a Statistical Description of the Graph Connections

• Global opinion distribution (v-marginal of f):

F (v, t) :=

∫
I
f(x, v, t) dx =

1

N

∑
i∈I

fi(v, t) =
1

N
1T f(v, t)

with 1 = (1, . . . , 1) ∈ RN

• The equation for F is not closed in general:

d

dt

∫
O
φ(v)F (v, t) dv =

=
1

2N2

∫∫
O2

(φ(v′) + φ(v′∗)− φ(v)− φ(v∗))f
T (v, t)Mf(v∗, t) dv dv∗

• A preliminary idea is to see whether this equation closes at least for special classes

of interaction rules
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Polarised Memory Interactions

• We say that an interaction rule v′ = Ψ(v, v∗) is of polarised memory type if Ψ

depends only on either v or v∗

• If v′ = Ψ(v) we say that the interaction rule has perfect memory

• If v′ = Ψ(v∗) we say that the interaction rule is memoryless

• To fix the ideas, in the following we will focus on the case

v′ = Ψ(v), v′∗ = Ψ∗(v),

i.e. v′ has perfect memory whereas v′∗ is memoryless

• In this case:

d

dt

∫
O
φ(v)F (v, t) dv =

=
1

N2

∫
O

(
(w+)T

φ(v′) + φ(v′∗)

2
− (w−)T + (w+)T

2
φ(v)

)
f(v, t) dv

with w−, w+ vectors of incoming and outgoing degrees of the vertices of G
• Notice: information about M is lumped in w−, w+
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Statistical Distribution of the Degrees

• To obtain a kinetic formulation free from references to single vertices we augment

the space of microscopic states by including also information on the

connections via the incoming and outgoing degrees:

gN (v, w−, w+, t) :=
1

N

∑
i∈I

indeg(i)=w−

outdeg(i)=w+

fi(v, t), w−, w+ ∈ {0, . . . , N}

• Then:

F (v, t) =
N∑

w−,w+=0

gN (v, w−, w+, t), (w±)T f(v, t) = N
N∑

w−,w+=0

w±gN (v, w−, w+, t)

whence we deduce a closed equation for gN :

d

dt

N∑
w−,w+=0

∫
O
φ(v)gN (v, w−, w+, t) dv =

=
1

N

N∑
w−,w+=0

∫
O

(
w+φ(v′) + φ(v′∗)

2
− w− + w+

2
φ(v)

)
gN (v, w−, w+, t) dv
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Formal Limit of Growing Graph (N → ∞) 1/2

• Scaling:

w̃± :=
w±

N
∈ WN :=

{ n

N
, n = 0, . . . , N

}
, g̃(v, w̃−, w̃+, t) := N2gN (v,Nw̃−, Nw̃+, t)

• Introduce the steps ∆w̃± := 1
N so that

∑
w̃−,w̃+∈WN

∫
O
g̃(v, w̃−, w̃+, t) dv∆w̃− ∆w̃+ =

N∑
w−,w+=0

∫
O
gN (v, w−, w+, t) dv = 1

and the r.h.s. may be understood as a Riemann sum approximating, for every N ,

the integral of the pdf
∫
O g̃ dv on the square mesh of [0, 1]2 produced by the grid

WN ×WN ⇝ cf. a graphon

• Moreover:

d

dt

∑
w̃−,w̃+∈WN

∫
O
φ(v)g̃(v, w̃−, w̃+, t) dv∆w̃− ∆w̃+ =

=
∑

w̃−,w̃+∈WN

∫
O

(
w̃+φ(v′) + φ(v′∗)

2
− w̃− + w̃+

2
φ(v)

)
g̃(v, w̃−, w̃+, t) dv∆w̃− ∆w̃+
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Formal Limit of Growing Graph (N → ∞) 2/2

• Passing formally to the limit N → ∞, the Riemann sums w.r.t. w̃± become

integrals:

d

dt

∫∫
[0, 1]2

∫
O
φ(v)g̃(v, w̃−, w̃+, t) dv dw̃− dw̃+ =

=

∫∫
[0, 1]2

∫
O

(
w̃+φ(v′) + φ(v′∗)

2
− w̃− + w̃+

2
φ(v)

)
g̃(v, w̃−, w̃+, t) dv dw̃− dw̃+

• This is a single kinetic equation in which the pointwise information on the graph

topology encoded in M has been replaced asymptotically by the statistical

distribution of the (normalised) incoming and outgoing degrees of the vertices
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The Case of General Interaction Rules

• For general interaction rules:

v′ = Ψ(v, v∗), v′∗ = Ψ∗(v, v∗)

the kinetic equation for F can be written, using g̃, as:

d

dt

∑
w̃−,w̃+∈WN

∫
O
φ(v)g̃(v, w̃−, w̃+, t) dv∆w̃− ∆w̃+ =

=
1

2N2

∫∫
O2

(
φ(v′) + φ(v′∗)

)
fT (v, t)Mf(v∗, t) dv dv∗

− 1

2

∑
w̃−,w̃+∈WN

∫
O

(
w̃− + w̃+

)
φ(v)g̃(v, w̃−, w̃+, t) dv∆w̃− ∆w̃+

• The first term on the r.h.s. cannot be closed in terms of the statistics of the graph

connections only. In general, it requires a pointwise knowledge of the connections
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Rank-one Approximation of M

•

M ≈ w+(w−)T

MN
, MN :=

∑
i∈I

indeg(i) =
∑
i∈I

outdeg(i)

is a natural rank-one approximation of M with given incoming/outgoing degrees

• Within this approximation it results:

1

2N2

∫∫
O2

(
φ(v′) + φ(v′∗)

)
fT (v, t)Mf(v∗, t) dv dv∗ ≈

≈ N2

2MN

∑
w̃−

∗ ,w̃+
∗ ∈WN

∑
w̃−,w̃+∈WN

∫∫
O2

w̃+w̃−
∗
(
φ(v′) + φ(v′∗)

)
g̃(v, w̃−, w̃+, t)

× g̃(v∗, w̃
−
∗ , w̃

+
∗ , t) dv dv∗ ∆w̃− . . . ∆w̃+

∗

• Moreover, it can be shown that

MN

N2

N→∞−−−−→ m :=

∫∫
[0, 1]2

∫
O
w̃±g̃(v, w̃−, w̃+, t) dv dw̃− dw̃+
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General Formal Limit of Growing Graph (N → ∞)

• Within the rank-one approximation of M, the equation for g̃ converges formally to:

d

dt

∫∫
[0, 1]2

∫
O
φ(v)g̃(v, w̃−, w̃+, t) dv dw̃− dw̃+ =

=
1

2

∫∫∫∫
[0, 1]4

∫∫
O2

w̃+w̃−
∗

m

(
φ(v′) + φ(v′∗)− φ(v)− φ(v∗)

)
× g̃(v, w̃−, w̃+, t)g̃(v∗, w̃

−
∗ , w̃

+
∗ , t) dv dv∗ dw̃

− . . . dw̃+
∗

• Interestingly, this is a classical Boltzmann-type equation for the distribution

function g̃ on the space state O × [0, 1]2 with

w̃+w̃−
∗

m

as collision kernel
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