Dynamical Billiard and a long-time behavior of the Boltzmann equation in general 3D toroidal domains

Gyounghun Ko (Joint with C.Kim and D.Lee)

Center for Mathematical Machine Learning and its Applications, POSTECH Webinar Kinetic and fluid equations for collective behavior

2024.06.10

1 Introduction to the Boltzmann equation

2 Problem and main results

Introduction to the Boltzmann equation

Gyounghun Ko (Joint with C.Kim an Dynamical Billiard and a long-time b

Here, F = F(t, x, v) stands for the density distribution function of particles with position $x \in \Omega$ and velocity $v \in \mathbb{R}^3$ at time t > 0.

• Boltzmann equation

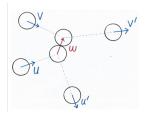
$$\partial_t F + v \cdot \nabla_x F = Q(F, F),$$

describes collisions among particle interactions.

• Collision operator

$$Q(F_1, F_2) := \iint_{u \in \mathbb{R}^3, \omega \in \mathbb{S}^2} B(v - u, \omega) \Big[F_1(u') F_2(v') - F_1(u) F_2(v) \Big] \, d\omega du$$
$$:= Q_+(F_1, F_2) - Q_-(F_1, F_2),$$

where $B(v - u, \omega)$ is a collision kernel for hard potential.



We assume these collisions to be elastic : Momentum and energy conservation

$$\begin{cases} v + u = v' + u' \\ |v|^2 + |u|^2 = |v'|^2 + |u'|^2 \end{cases}$$

where $u' = u + [(v - u) \cdot \omega]\omega$, $v' = v - [(v - u) \cdot \omega]\omega$.

• Collision kernel $B(v - u, \omega)$

$$\begin{split} B(v-u,\omega) &= |v-u|^{\gamma} b(\cos\theta), \quad 0 \leq \gamma \leq 1 \text{ (hard potential)}, \\ 0 \leq b(\cos\theta) \leq C |\cos\theta| \text{ (angular cut-off)}, \end{split}$$

where
$$\cos \theta = \langle \frac{v-u}{|v-u|}, \omega \rangle$$
.

Boundary conditions

We denote the phase boundary in the space $\Omega \times \mathbb{R}^3$ as $\gamma = \partial \Omega \times \mathbb{R}^3$, and split it into an outgoing boundary γ_+ , an incoming boundary γ_- :

$$\begin{split} \gamma_+ &:= \{(x,v) \in \partial \Omega \times \mathbb{R}^3 : \quad n(x) \cdot v > 0\}, \\ \gamma_- &:= \{(x,v) \in \partial \Omega \times \mathbb{R}^3 : \quad n(x) \cdot v < 0\} \end{split}$$

where n(x) is the outward normal vector at $x \in \partial \Omega$.

1. The in-flow boundary condition: for $(x, v) \in \gamma_{-}$,

$$F(t, x, v)|_{\gamma_{-}} = g(t, x, v)$$

2. The bounce-back boundary condition: for $x \in \partial \Omega$,

$$F(t, x, v)|_{\gamma_{-}} = F(t, x, -v)$$

3. Specular reflection: for $x \in \partial \Omega$,

$$F(t, x, v)|_{\gamma_{-}} = F(t, x, v - 2(n(x) \cdot v)n(x)) = F(t, x, R(x)v)$$

4. Diffuse reflection: for $(x, v) \in \gamma_{-}$,

$$F(t, x, v)|_{\gamma_{-}} = c_{\mu}\mu(v) \int_{u \cdot n(x) > 0} F(t, x, u)\{n(x) \cdot u\} du$$

• Does a solution have the **global well-posedness**?

There exists a unique solution F(t, x, v) which satisfies the system for any time t > 0 when an initial distribution function F_0 is given.

• Does a solution reach the **physical equilibrium**?

In Stat. Physics, the Maxwellian $\mu(v) = \frac{1}{\sqrt{(2\pi)^3}} e^{-\frac{|v|^2}{2}}$ is regarded as an equilibrium state. We expected our solution reaches that.

$$F(t, x, v) \to \mu(v)$$
 as $t \to \infty$?

Problem and main results

Gyounghun Ko (Joint with C.Kim an Dynamical Billiard and a long-time b

The Boltzmann equation near Maxwellian

Let $F(t, x, v) = \mu(v) + \sqrt{\mu(v)} f(t, x, v) \ge 0$. Then, the Boltzmann equation can be rewritten as

$$\partial_t f + v \cdot \nabla_x f + Lf = \Gamma(f, f),$$

where L is a linear operator

$$\begin{split} Lf &= \nu(v)f - Kf = -\frac{1}{\sqrt{\mu}} \left[Q(\sqrt{\mu}f, \mu) + Q(\mu, \sqrt{\mu}f) \right], \\ \nu(v) &= \frac{1}{\sqrt{\mu}} Q_{-}(\mu, \sqrt{\mu}) = \iint_{\mathbb{R}^{3} \times \mathbb{S}^{2}} B(v - u, \omega) \mu(u) \ d\omega du \sim (1 + |v|)^{\gamma}, \\ Kf &= \frac{1}{\sqrt{\mu}} [Q(\sqrt{\mu}f, \mu) + Q_{+}(\mu, \sqrt{\mu}f)] = \int_{\mathbb{R}^{3}} \mathbf{k}(v, u) f(u) du, \\ \mathbf{k}(v, u) \lesssim \left(\frac{1}{|v - u|} + |v - u| \right) e^{-\frac{1}{8}|v - u|^{2} - \frac{1}{8} \frac{||v|^{2} - |u|^{2}|^{2}}{|v - u|^{2}}}, \end{split}$$

and Γ is a nonlinear operator

$$\begin{split} \Gamma(f,f) &:= \frac{1}{\sqrt{\mu}} Q(\sqrt{\mu}f, \sqrt{\mu}f) = \frac{1}{\sqrt{\mu}} Q_+(\sqrt{\mu}f, \sqrt{\mu}f) - \frac{1}{\sqrt{\mu}} Q_-(\sqrt{\mu}f, \sqrt{\mu}f) \\ &:= \Gamma_+(f,f) - \Gamma_-(f,f). \end{split}$$

For simplicity, let us consider a linearized Boltzmann equation

$$\partial_t f + v \cdot \nabla_x f + Lf = 0$$

We define the projection operator ${\bf P}$ onto the null space N(L) of L

$$\mathbf{P}f(t, x, v) := \left\{ a_f(t, x) + b_f(t, x) \cdot v + c_f(t, x) \frac{|v|^2 - 3}{\sqrt{6}} \right\} \sqrt{\mu(v)}$$

• Semi-positivity of L: $(Lf, f)_{L^2} \gtrsim \|\sqrt{\nu}(\mathbf{I} - \mathbf{P})f\|_{L^2}^2$

• L^2 coercivity estimate: $\|\mathbf{P}f\|_{L^2_{\nu}} \lesssim \|(\mathbf{I} - \mathbf{P})f\|_{L^2_{\nu}} + (\text{Contributions from B.C.})$ In L^2 energy estimate for f, L^2 coercivity estimate yields L^2 exponential decay for linearized Boltzmann equation:

$$||f(t)||_{L^2} \lesssim e^{-\lambda t} ||f_0||_{L^2}$$

Characteristics and Duhamel's principle

We define the characteristics associated with the specular boundary condition for given $t \geq s \geq 0$

X(s; t, x, v) := Position of the particle at time s, which was at (t, x, v), V(s; t, x, v) := Velocity of the particle at time s, which was at (t, x, v),

which is determined by $\frac{dX(s)}{ds} = V(s), \frac{dV(s)}{ds} = 0$, and [X(t), V(t)] = [x, v]. Remind the linearized Boltzmann equation

$$\partial_t f + v \cdot \nabla_x f + \nu(v) f = K f.$$

Along the characteristics

$$\frac{d}{ds}\left(e^{\nu(v)s}f(s,X(s;t,x,v),V(s;t,x,v))\right) = e^{\nu(v)s}Kf(s).$$

Taking the time-integration from 0 to t yields

$$f(t,x,v) = e^{-\nu(v)t} f_0(X(0;t,x,v),V(0;t,x,v)) + \int_0^t e^{-\nu(v)(t-s)} Kf(s) ds.$$

$L^2 - L^{\infty}$ bootstrap argument

We apply the Duhamel's principle for linearized Boltzmann equation

$$\begin{split} f(t,x,v) &\lesssim e^{-t} f_0(X(0;t,x,v),V(0;t,x,v)) \\ &+ \int_0^t e^{-(t-s)} \int_u \mathbf{k} (V(s;t,x,v),u) f(s,X(s;t,x,v),u) du ds \end{split}$$

If we apply the Duhamel's principle for integrand f(s, X(s; t, x, v), u) again, we obtain estimate

The key idea is to control the integration part by $L^2_{x,v}$ norm of f via a change of variables $u \mapsto X(s'; s, X(s; t, x, v), u)$. Hence, the major challenge in $L^2 - L^{\infty}$ bootstrap argument is whether the following **non-degeneracy condition** holds

$$\det\left(\frac{\partial X(s';s,X(s;t,x,v),u)}{\partial u}\right) \geq \delta > 0.$$

History

Small-amplitude problem

- Ukai (1974) : Global solution near Maxwellian in periodic box T³, f(t) ∈ L[∞]_β(H^s_x), s > 3/2.
- Y.Guo (2010) : Exponential decay to Maxwellian for boundary problems in analytic and uniformly convex domain.
- C.Kim and D.Lee (2018) : In general C^3 uniformly convex domain, exponential decay to Maxwellian in specular B.C.

Large-amplitude problem

- L.Devillettes and C.Villani (2005) : Almost exponential decay $(t^{-\infty})$ with large data under a priori assumption.
- R. Duan, F. Huang, Y. Wang, and T. Yang (2017) : Global well-posedness in a whole space ℝ³ and periodic box T³.
- R. Duan, K, and D. Lee (2023) : Convergence to equilibrium in general C^3 uniformly convex domain under specular B.C.

To treat IBVP in a domain with **physical boundaries**, it seems impossible to construct global solutions of small amplitude within high-order Sobolev spaces due to **the presence of singularity**.

2024.06.10

13/29

However, in general non-convex domains, establishing a global well-posedness of the Boltzmann equation with specular reflection boundary condition is still open problem!

Non-convex domains

• C.Kim and D.Lee (2018): They deal with the Boltzmann equation in a periodic cylindrical domain with non-convex analytic cross-section.

A general 3D toroidal domain Ω has 3D nontrivial non-convex structure. Actually, there are uncountably many grazing points in Ω , which makes it more difficult than previous research.

Main goal : For each $y \in \Omega$, construct "a bad set" $\mathcal{B}_y \subset \{|u| \leq N\}$ such that $\mu(\mathcal{B}_y) \ll 1$ and

$$\det\left(\frac{\partial X(s';s,y,u)}{\partial u}\right) \gtrsim 1 \quad \text{except a small subset } \mathcal{B}_y \text{ of } u.$$

Let $\overline{\xi} : xz$ -plane $\to \mathbb{R}$ be a real-analytic and uniformly convex function and satisfies

$$\overline{\xi} = 0$$
 on $\partial \Omega \cap xz$ -plane

We set an indication function in \mathbb{R}^3 , which is real-analytic and uniformly convex, by

$$\xi(x,y,z) := \overline{\xi}(\sqrt{x^2 + y^2}, z).$$

Now, we have

$$\begin{split} \Omega &:= \{ (x,y,z) \in \mathbb{R}^3 : \xi(x,y,z) := \overline{\xi}(\sqrt{x^2 + y^2}, z) < 0 \},\\ \partial \Omega &:= \{ (x,y,z) \in \mathbb{R}^3 : \xi(x,y,z) := \overline{\xi}(\sqrt{x^2 + y^2}, z) = 0 \}. \end{split}$$

We define the domain Ω as general 3D toroidal domains.

Example (Solid torus case) For fixed positive constants r, R with r < R,

$$\overline{\xi}(x,z) = (x-R)^2 + z^2 - r^2, \quad \xi(x,y,z) = (\sqrt{x^2 + y^2} - R)^2 + z^2 - r^2.$$

Main result (C.Kim, D.Lee and K, preprint)

Theorem

Assume that Ω is a general 3D toroidal domain. Define a weighted function

$$w(v) = (1+|v|)^{\beta}$$

with $\beta > 5/2$. We assume $F_0 = \mu + \sqrt{\mu} f_0 \ge 0$ satisfies

$$egin{aligned} &\iint_{\Omega imes \mathbb{R}^3}(F_0(x,v)-\mu)dxdv=0, \quad \iint_{\Omega imes \mathbb{R}^3}|v|^2(F_0(x,v)-\mu)dxdv=0, \ &\iint_{\Omega imes \mathbb{R}^3}\{x imes \hat{z}\}\cdot vF_0(x,v)dxdv=0. \end{aligned}$$

Then, there exists $0 < \delta \ll 1$ such that if

$$\|wf_0\|_{L^{\infty}(\Omega\times\mathbb{R}^3)}\leq\delta,$$

then the Boltzmann equation with specular boundary condition has a unique global-in-time solution $F(t, x, v) = \mu + \sqrt{\mu} f(t, x, v) \ge 0$. Moreover, there exists $\lambda > 0$ such that

$$\sup_{t \ge 0} e^{\lambda t} \| w f(t) \|_{L^{\infty}_{x,v}} \lesssim \| w f_0 \|_{L^{\infty}_{x,v}}.$$

Sketch of proof

Gyounghun Ko (Joint with C.Kim an Dynamical Billiard and a long-time b

Grazing sets γ_0

Note that the non-degeneracy condition is closely related with uniform non-grazing

$$\frac{1}{|v \cdot \mathbf{n}(x)|} \ge \delta > 0.$$

Let us introduce the grazing set γ_0

$$\gamma_0 := \{ (x, v) \in \partial \Omega \times \mathbb{R}^3 : n(x) \cdot v = 0 \}.$$

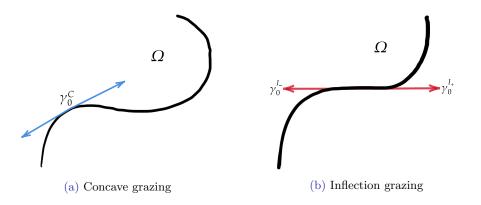
Before we decompose the grazing set, we define a backward exit time and position as

$$t_{\mathbf{b}}(x,v) := \sup\{\tau \ge 0 : x - sv \in \Omega \text{ for all } 0 \le s \le \tau\}, \ x_{\mathbf{b}}(x,v) := x - t_{\mathbf{b}}v \in \partial\Omega.$$

Examples of grazing points

- Concave grazing $\gamma_0^C := \{(x, v) \in \gamma_0 : t_{\mathbf{b}}(x, v) \neq 0 \text{ and } t_{\mathbf{b}}(x, -v) \neq 0\}$
- Inflection grazing $\gamma_0^I:=\gamma_0^{I_+}\cup\gamma_0^{I_-}$ where

$$\begin{split} &\gamma_0^{I_+} := \{(x,v) \in \gamma_0 : t_{\mathbf{b}}(x,v) \neq 0, t_{\mathbf{b}}(x,-v) = 0, \text{ and } \exists \delta > 0 \text{ s.t. } x + sv \in \mathbb{R}^3 \backslash \overline{\Omega} \text{ for } s \in (0,\delta) \}, \\ &\gamma_0^{I_-} := \{(x,v) \in \gamma_0 : t_{\mathbf{b}}(x,v) = 0, t_{\mathbf{b}}(x,-v) \neq 0, \text{ and } \exists \delta > 0 \text{ s.t. } x + sv \in \mathbb{R}^3 \backslash \overline{\Omega} \text{ for } s \in (-\delta,0) \}. \end{split}$$

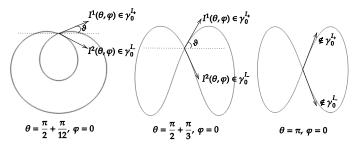


Structure of inflection grazing

Let us consider standard solid torus Ω with inner radius r and revolving radius R. Then, boundary $\partial \Omega$ can be parametrized by

$$\sigma(\theta,\varphi) := ((R + r\cos\theta)\cos\varphi, (R + r\cos\theta)\sin\varphi, r\sin\theta), \ 0 \le \theta \le 2\pi, 0 \le \varphi \le 2\pi$$

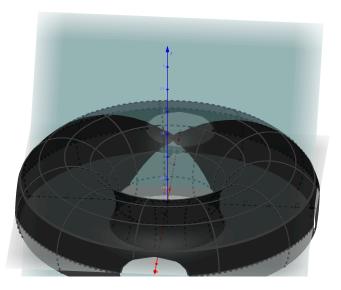
We visualize the intersection of tangent plane $T_p(\partial\Omega)$ at $p = \sigma(\theta, 0) \in \partial\Omega$ and the torus $(\partial\Omega)$ for each $\theta = \frac{\pi}{2} + \frac{\pi}{12}, \frac{\pi}{2} + \frac{\pi}{3}$, and π .



Moreover, we explicitly find inflection directions satisfying $\tan \vartheta = \sqrt{\frac{-r\cos\theta}{R+r\cos\theta}}$.

2024.06.10

20/29



Lemma

Let us fix a point $x \in \overline{\Omega}$ and velocity v with unit speed. If there is no inflection grazing (i.e. $[x^i(x,v),v^i(x,v)] \notin \gamma_0^I$ for all $i \in \mathbb{N}$), then

$$\sum_{i=1}^{\infty} |x^{i}(x,v) - x^{i-1}(x,v)| = \infty,$$

by excluding some cases.

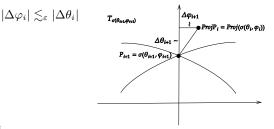
Key idea of proof) We used a contradiction argument. We suppose that

$$\sum_{i=1}^{\infty} |x^{i}(x,v) - x^{i-1}(x,v)| < \infty.$$

Then, $x^i(x,v)(=\sigma(\theta_i,\varphi_i)) \to x^{\infty}(x,v)(=\sigma(\theta_{\infty},\varphi_{\infty}))$. Using axial symmetric of Ω , specular boundary condition, and convexity of the cross section, we derive the following relation:

$$\Delta \theta_{i+1} - \Delta \theta_i = \mathcal{O}(\Delta \theta_{i+1}^2) + \mathcal{O}(\Delta \theta_i^2) + \mathcal{O}(\Delta \varphi_{i+1}^2) + \mathcal{O}(\Delta \varphi_i^2)$$

However, we also obtained the following relation between $\Delta \theta_i$ and $\Delta \varphi_i$ ($|\Delta \theta_i|, |\Delta \varphi_i| \ll 1$) through the figure:



Using two relations above, we have

$$\sum_{i=1}^{N} |\Delta \theta_{i+1}| \ge \sum_{i=1}^{N} (|\Delta \theta_{i}| - C(|\Delta \theta_{i+1}|^{2} + |\Delta \theta_{i}|^{2} + |\Delta \varphi_{i+1}|^{2} + |\Delta \varphi_{i}|^{2}))$$
$$\ge \sum_{i=1}^{N} (|\Delta \theta_{i}| - C_{\varepsilon} |\Delta \theta_{i+1}|^{2} - C_{\varepsilon} |\Delta \theta_{i}|^{2})$$
$$\vdots$$
$$\gtrsim \sum_{i=1}^{N} |\Delta \theta_{1}|$$

Hence, $\sum_{i=1}^{N} |\Delta \theta_{i+1}| \to \infty$ which contradicts to the hypothesis $\theta_i \to \theta_{\infty}$ and $\theta_i \to \theta_{\infty}$. Gyounghun Ko (Joint with C.Kim an Dynamical Billiard and a long-time by 2024.06.10 23/29

Uniform number of bounce for γ_0^I

To consider backward in time trajectory which belongs γ_0^I before finite travel length $L < \infty$, we define the set

$$B_L^{\varepsilon} := \left\{ (x,v) : \exists k \in \mathbb{N} \text{ such that } (x^k(x,v), v^{k-1}(x,v)) \in \gamma_0^{I^-}, \text{ and } \sum_{j=1}^k |x^j(x,v) - x^{j-1}(x,v)| \le L \right\}.$$

Lemma

If we define the number of bounce as

$$\mathcal{N}(x,v,L) := \sup\left\{k \in \mathbb{N} : (x^{j}(x,v), v^{j-1}(x,v)) \notin \gamma_{0}^{I-}, \ \forall 1 \le j \le k \ and \ \sum_{j=1}^{k} |x^{j}(x,v) - x^{j-1}(x,v)| \le L\right\}$$

then we have the uniform finite number of bounce

$$\sup_{(x,v)\in B_L^{\varepsilon}} \mathcal{N}(x,v,L) < K_{\varepsilon,L}.$$

Note that the backward in time trajectory from $(x, v) \in B_L^{\varepsilon}$ does not generate inflection grazing after its $K_{\varepsilon,L}$.

Gyounghun Ko (Joint with C.Kim an Dynamical Billiard and a long-time b

2024.06.10

24/29

÷

Motivated by this fact, We construct the following sets:

$$(G_1)_x := \{ v \in \mathbb{S}^2 : (x^1(x, v), v^0(x, v)) \notin \gamma_0^C \cup \gamma_0^I \}, (B_1)_x := \{ v \in \mathbb{S}^2 : (x^1(x, v), v^0(x, v)) \in \gamma_0^C \cup \gamma_0^I \},$$

$$(G_j)_x := \{ v \in (G_{j-1})_x : (x^j(x,v), v^{j-1}(x,v)) \notin \gamma_0^C \cup \gamma_0^I \}, (B_j)_x := \{ v \in (G_{j-1})_x : (x^j(x,v), v^{j-1}(x,v)) \in \gamma_0^C \cup \gamma_0^I \},$$

for all $1 \leq j \leq K_{\varepsilon,L}$, for a fixed point $x \in \overline{\Omega}$. Let us treat γ_0^I case which is easier than γ_0^C case.

Our main goal is to prove

$$\mathfrak{m}_2((B_j)_x) = 0, \quad \forall 1 \le j \le K_{\varepsilon,L}.$$

To obtain our goal, we will use the following lemmas related to analyticity:

Lemma (Zero set of analytic function)

Suppose that f is a non-constant real-analytic function on a connected open domain $D \subset \mathbb{R}^n$. Then, the zero set

$$Z_f := \{ x \in D : f(x) = 0 \}$$

has zero n-dimensional Lebesgue measure.

Lemma (Lusin's property)

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a Lipschitz continuous function. Then, f(E) has measure zero in \mathbb{R}^n for a measure zero set $E \subset \mathbb{R}^n$.

Sketch of proof) By one-to-one correspondence between $(\sigma(\theta, \varphi), I^2(\theta, \varphi))$ and $(x, v) \in B_L^{\varepsilon}$, we define

$$F_j(\theta,\varphi) := X(s(\theta,\varphi); 0, \sigma(\theta,\varphi), I^2(\theta,\varphi)) - x,$$

when forward in time trajectory from $(\sigma(\theta, \varphi), I^2(\theta, \varphi))$ passes S_0 ($\varphi = 0$ cross-section) after *j*-th bouncing. Here, $s(\theta, \varphi)$ is arrival time which measure traveling time from $(\sigma(\theta, \varphi), I^2(\theta, \varphi))$ to S_0 .

Lemma (Analyticity of non-grazing trajectory)

Assume that $(x, v) \in \Omega \times \mathbb{R}^3$ and $\mathcal{N}(x, v, N(t-s)) := M_1 < \infty$. If

$$\begin{aligned} (x^{i}(x,v),v^{i-1}(x,v)) \notin \gamma_{0} \quad for \ all \ 1 \leq i \leq M_{1}, \\ resp, \ (x^{i}(x,v),v^{i-1}(x,v)) \notin \gamma_{0}^{I} \quad for \ all \ 1 \leq i \leq M_{1}, \end{aligned}$$

then

(a) $(t^i(t, x, v), x^i(x, v), v^i(x, v))$ is locally analytic function of (x, v) (resp. locally continuous function of (x, v)).

(b) If $s \notin t^i(t, x, v)$ for any $1 \leq i \leq M_1$, then (X(s; t, x, v)), V(s; t, x, v)) is locally analytic (resp. locally continous) function of (x, v) for fixed s.

(c) There exists $\delta_{x,v} \ll 1$ such that if $|(y,u) - (x,v)| < \delta_{x,v}$, then $N(y,u,N(t-s)) \leq M_1$ (resp. $N(y,u,N(t-s)) \leq M_1$).

By applying (b) of Lemma above to forward in time trajectory, the function $F_j(\theta, \varphi)$ is analytic on $P_L^{\varepsilon,j}$ where

$$P_L^{\varepsilon,j} := \{(\theta,\varphi) : (\sigma(\theta,\varphi), I^2(\theta,\varphi)) = (x^j(y,u), v^{j-1}(y,u)) \in \gamma_0^I \text{ for some } (y,u) \in X^\varepsilon, u \in (G_{j-1})_y\}.$$

Once we prove that F_j is real-analytic, we have the following dichotomy:

(a) (F_j is identically zero) Fortunately, we can exclude such case, away from small sets, by using axial symmetric of Ω . More explicitly, we observe that

$$\frac{\partial X(s;0,\sigma(\theta,\varphi),I^2(\theta,\varphi))}{\partial \varphi} \parallel \hat{\varphi}(0) \text{ (y-axis).}$$

However, direction of $V(s(\theta, \varphi); 0, \sigma(\theta, \varphi), I^2(\theta, \varphi))$ must satisfy some specific direction except $\hat{\varphi}(0)$.

(b)(F_j is not identically zero) Then, from analyticity, zero set of F_j has measure zero in (θ, φ) space. And, by Lusin's property, we have

$$\{v \in \mathbb{S}^2 : v = V(s(\theta, \varphi); 0, \sigma(\theta, \varphi), I^2(\theta, \varphi)) \ (\theta, \varphi) \in Z_{F_j}\}$$

has also measure zero in \mathbb{S}^2 .

Proposition

Let S_0 be $\varphi = 0$ cross-section and $\varepsilon > 0$. There exists a compacat set $\mathcal{Y}^{\varepsilon} \subset \overline{S}_0 \times \mathbb{S}^2$ such that

$$[x^{j}(x,v),v^{j-1}(x,v)] \notin \gamma_{0}^{I} \cup \gamma_{0}^{C}, \quad \forall 1 \le j \le M,$$

and

$$\inf_{1\leq i\leq M} |v^{i-1}(x,v)\cdot n(x^i(x,v))| \geq C^*_{\varepsilon,L} > 0,$$

 $\textit{for } (x,v) \in \mathcal{Y}^{\varepsilon}. \textit{ In addition, for } x \in \bar{S_0}, \ \mu((\{\bar{S_0} \times \mathbb{S}^2\} \setminus \mathcal{Y}^{\varepsilon})_x) \leq \varepsilon, \textit{ where } A_x := \{v: (x,v) \in A\} (\subset \mathbb{S}^2).$

Thank you!

Gyounghun Ko (Joint with C.Kim an Dynamical Billiard and a long-time b

2024

< 17 ►

2