DISCRIMINANT OF HYPERELLIPTIC CURVES
QING LIU

ABSTRACT. We prove the well-known smoothness criterion of a
Weierstrass equation in terms of its discriminant.

It is well known that the smoothness of a hyperelliptic equation can
be checked with its discriminant (Proposition . In what follows we
give a proof of this well known fact.

0.1. Smoothness and resultants. Let A be a ring and let B = A[y|
with > + Qy = P (Q,P € A). Then B is free of rank 2 over A,
and we have the involution of B as A-algebra: o(y) = —y — @, the
A-linear map trace Trg/a(b) = o(b) — b, the multiplicative map norm
NB/A(b) = O'(b)b

Lemma 0.1. Let b€ B. Let I = 2y + Q,b) C B. Then we have

VT = /(F,Nga(b)).

Proof. The rhs is clearly contained in the lhs. Let p € Spec B contain-
ing (F,Np/a(b)). We have to show that p O I.

First p 2 2y + Q@ = y — o(y). This means that o(y) = y mod p,
therefore o(b) = b mod p, so b*> = Npg4(b) = 0 mod p, hence b = 0
mod p. U

Now fix g > 0. Consider the polynomial ring
AO = R[b()a ] bg+17 ag, - - - 7a2g+2]

over a given ring R and A = Ag[z]. Let Q = >, ba’, P = >, a;z' € A
and B := Aly|, with y?+Qy = P. Then B is flat over A. The Jacobian
criterion says that the primes p € Spec B of non-smoothness over A
are those containing the ideal

I:=2y+Q,Qy—P).
By the previous lemma,
Vi— JFGcB
where F' = —Np/4(2y + Q) and G = Np/4(Q'y — P’). We have

F=4P+Q* G=P?—-PQ"*+PQQ c Ayz].
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Corollary 0.2. Let s € Spec Ag. Then the fiber of Spec B — Spec Ag
at s is singular (non-smooth) if and only if Fs(x), Gs(z) € k(s)[x] have
a commun zero (in the algebraic closure of k(s)).

Proof. Use the surjectivity of Spec(B ®4 k(s)) — Spec k(s)[z] to prove
the if part. O

0.2. Resultants and discriminant. We see that the smoothness of
the affine curve is controlled by Res(F, ). Next we relate it to a more
common invariant, the discriminant of . We have

16G = Np/a(4Q'y — 4P") = Npa(2Q' 2y + Q) — F') = —4Q"F + F”
(note that Trp,a(2y + Q) = 0.)
Take
R = Z, AO = Z[ai, b]]
Then deg(—4Q"”F + F’?) = deg F?, so
Res(F, 16G) = Res(F, —4Q"™F + F'?) = Res(F, F'*) = Res(F, F')*

(wikipedia) where the first three resultants are in degrees (2g+2,4g+2),
while the last one is in degrees (29 + 2,2g + 1). But

Res(F, 16G) = 1698 Res(F, G) = 28@ Y Res(F, G).
This implies that
(Res(F, F') /2% = Res(F, G) € A,.

Recall that if V'(z) is a polynomial of degree d with leading coeffcieint
vg, then vy | Res(V, V') and by definition

disc(V) = (=1)4=D/2y " Res(V, V')
(12])

Denote by a,b the variables a;, b;. Let
c(a, b) = 4a29+2 —+ b§+1

be the leading coefficient of F. As c¢(a,b) divides Res(F, F’) and is
irreducible and prime to 2 in Z[a, b], we have ¢* | Res(F, G). Hence

2719 ) disc(F) € Ay = Z[as, bj).
Definition 0.3 With the above notation, define
Asgi2(a,b) = 274 disc(F) € Z[a, b].
By construction,

(1) c(a,b)*A3,,5(a,b) = Res(F,G) € Z[a,b).



DISCRIMINANT OF HYPERELLIPTIC CURVES 3

Consider now generic polynomials deg() = g and deg P = 2g + 1.
Similarly to the previous case we have

(Res(F, F')/2197%)? = Res(F, G) € Zlai, bjlo<i<agr1,0<j<g-
The leading coefficient of F' is 4agg11. We have
a3, (disc(F)/2%)? = Res(F, G),
hence a3, | Res(F,G) in Z[a, b].
Definition 0.4 We put
Aggi1(a,b) = 27%disc(F) € Z[a, b.
We have
(2) 394102g+1(a,b) = Res(F,G) € Za, b].
Next we relate Agyyio(a,b) to Aggiq(a,b).

Proposition 0.5. Let A(x) = agx? + ag_12% 1 + -+ € Zag, ..., aq).
Then

disc(A)(ag, ..., aq_1,0) = a_ disc(ag_12* + - - + ag).
Proof. See [1], A.IV.80, Corollaire 2. O

Corollar}f 0.6. Denote by (a,b) the variables ay, ..., azg12,bo, ..., byt1
and by a,b the variables after removing asgyo and byyq. Then we have
Aag12(@, b)lazgso=by1=0 = a§g+1A29+1<d7 i))

Let F' = 40D icngyr @i') + (30,2, bja?)?. Then
Nog (@, 0)|azy 1 2=by41=0 = 270 (dagg 1) disc(F).

Proposition 0.7. Let K be a field. Consider the affine curve C' over
K defined by an equation

y*+ ( Z tix! )y = Z s’
J<g+1 1<2g+2
with coefficients in K. Denote by q(x) = > t;27 and p(z) = 3, six".

Let C' be the completion of C' by gluing it with the affine curve Cy
defined by the equation

22+ (Z tudt )z = Z sutr = 1)1,z =y a9t
j i

Then Aggyo(s,t) # 0 if and only if C is smooth.
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Proof. We can suppose K algebraically closed, and char(K) = 2 (oth-
erwise the proof is easier by reducing to the case ¢(z) = 0.) Translating
y by \/s2g1229%" (in Cu, 2 is translated by ,/S3g42), we can suppose
that S2g42 = 0.

(1) Suppose t;11 # 0. Then Cy — Spec K[1/z] is étale above z =
00, and C' is smooth at co. We have

t3+1A29+2(37 t)Q = RGS(F, G) (S, t)

Let  be the degree of G(s,t)(z) € K[z]. As deg F(s,t)(z) = 29 + 2
with leading coefficient tf] +1, We have

tf]lilRes(F(s, t)(z),G(s,t)(x)) = Res(F, G)(s,1)

where k = deg G(z) — r (wikipedia). Therefore Aggyo(s,t) # 0 if and
only if C' is smooth.
(2) Suppose t,41 = 0. We have

A29+2(57t) = Sgg+1A29+1<§v£>'
If Aggia(s,t) # 0, then sop11 # 0. Similarly to the previous case,
the smoothness of C' is then equivalent to Ay, 1(8,1) # 0. Finally
the condition sy,41 # 0 is equivalent (when sq,10 = t;41 = 0) to the
smoothness at oo. This proves the statement when t,.; = 0. U

REFERENCES

[1] Bourbaki, Algebre, Chapter IV.

[2] Serge Lang: Algebra,

[3] Qing Liu: Modéles entiers de courbes hyperelliptiques sur un anneau de valu-
ation discréte, Trans. Amer. Math. Soc., 348 (1996), 4577-4610.

[4] Paul Lockhart: On the discriminant of a hyperelliptic curve, Trans. Amer.
Math. Soc. 342 (1994), 729-752.



	0.1. Smoothness and resultants
	0.2. Resultants and discriminant
	References

