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Abstract

This paper is devoted to the derivation of an Ellipsoidal Statistical model for a mixture
constituted by both monoatomic and polyatomic gases. The non translational degrees of freedom
are described by a continous variable and each polyatomic component is allowed to have its own
internal degrees of freedom. The construction of the model is based on the moment relaxed
method that has been developped in previous works that is generalized in the present paper
to a more general setting. More precisely, this method is based on the introduction of free
parameters and on the resolution of an entropy minimisation problem. The resulting model
satisfies conservation properties and a H theorem. Next, by performing a Chapman-Engskog
expansion, the model is shown to recover the right heat transfer coefficient, the shear viscosity
and the volume viscosity.
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1 Introduction

In the context of atmospheric reentry, it is necessary to use kinetic models, because in high altitude
the Knudsen number can be of order 1. However most of the kinetic models that have been
constructed up to now have been developped only for a monoatomic single gas. But in the upper
atmosphere the air is made of moleculars like molecular oxygen (O2) and molecular nitrogen (N2)
which are both diatomic. Moreover the atomic oxygen (O), the atomic nitrogen (N), and the
diatomic nitrogen (NO) monoxide are also present. Therefore a kinetic description involving in
the same time polyatomic and monoatomic gases is necessary. For this modelling, each polyatomic
components are represented by a distribution function f(t, x, v, I) depending on time t, space x,
velocity v and on a continous quantum number I ([1]). This last variable collects in particular
vibrational and rotational modes. In ([15]), the authors proposed a Boltzmann like collision operator
for a single polyatomic gas that is based on the Borgnakke-Larsen procedure ([14]). This means that
in each binary interaction, a fraction of the ingoing total energy is attributed to the internal energy
of the outgoing pair of molecules and then randomly distributed between the two single particles.
This operator is shown to satisfy the right conservation laws and a H theorem. In [25], an existence
theorem is proved for the nonlinear collision operator ([15]) in the space homogeneous case. Starting
from this model, a compressible Euler system with a general internal energy law has been derived
in ([20]) for a single gas. The generalisation of the collision operator in the context of a polyatomic
reacting gas mixture has been performed in ([21]) together with the derivation of a compressible
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Euler system. In ([6]), a Navier-Stokes system has been rigorously constructed starting from a
Boltzmann model in the context of a mixture of any monoatomic and any polyatomic components.
In particular, in the case of maxwellian and diatomic molecules explicit transport coefficients are
computed. In ([4]), the authors derive a two temperature Navier-Stokes system for a polyatomic
gas.

In some applications, the complicated Boltzmann collision operator has to be simplified into a
BGK model. The principle is to replace the complicated integral operator by a relaxation model
while keeping some important physical and mathematical properties: Maxwellian equilibrium states,
conservation laws, H theorem. However in the mixture case, even for monoatomic gases, things are
not clear. For example, the hydrodynamic limit is much more complicated to handle because
there are several transport coefficients and interspecies phenomena like thermal diffusion have to be
considered. There are mainly two familly of BGK models for gas mixtures. The first type is based
on a unique Maxwellian attractor per species ([2], [16]). The interactions between the particles are
modelled by fictitious macroscopic quantites. In particular, in ([2]), these quantities are chosen in
order to reproduce the same momentum and energy exchange terms per species like for Maxwell
molecules. Moreover [2], is generalized to reactive gas mixtures in ([17], [11] [27]). So when the
chemical reactions stop, the model derived in ([17], [11] [27]) correspond to ([2]). In ([40]), the
Shakhov model and the ESBGK are improved by introducing fictitious macroscopic velocities in
the model. The second type of BGK model is made by a sum of BGK models which reproduce
the Boltzmann structure ([5], [13]). In particular, in ([29]), the authors propose a BGK model
that is able to reproduce Coulombian cross-sections which is more appropriate for plasma physics
applications.

In the present paper, we consider polyatomic gas mixtures. More precisely, we aim to derive
from an entropy minimisation problem a BGK model that enables to recover in the same time
the shear viscositiy, the volume viscosity and the thermal conductivity coefficient for a mixture of
any number monoatomic components and any number of polyatomic components. The question is
crucial because in general the authors compute the hydrodynamic limit and eventually compare a
posteriori with some existing models. So even if the structure of the fluxes is recovered, the values
of the transport coefficients are not correct. By using this minimisation principle, an Ellipsoidal
Statistical Model (ESBGK model) ([3], [34]), has been constructed in the monoatomic case in ([18])
and in the polyatomic case in ([19]) for a single gas. Next this technics has been transported to a
monoatomic gas mixture ([16], [17]). In ([31]), the authors propose an ESBGK model for a binary
polyatomic mixture. In ([36], [37], [41]), existence theorems are proved for the ESBGK model.
Hence the main novelty of this paper is the rigorous construction of an Ellpsoidal Statistical Model
for a monoatomic and polyatomic gas mixture.

The internal energy variable can also be discrete. For example, a first paper ([33]) incorporates
discrete internal degrees of energy in a BGK model. Theses energies correspond in this model to
a vibrationnal energy. Moreover, in ([26]), the hydrodynamic limit is studied up to Navier-Stokes
system including chemical reactions by starting from a collisional model. In particular, transport
coefficients are explicitely computed. Moreover, BGK models have also been derived ([7], [12], [38])
for discrete energy variable. In particular, in ([38]), a generalisation of ([17]) is performed to the
polyatomic setting within the formalism of ([26]).

Concerning some applications of such models, we refer to ([24], [32]). In particular, in ([32]) the
authors highlight different types of shock profiles that are specific to a polyatomic framework.

The paper is organised as follows. In section 2, the notations that are used in this paper
are precised. In particular, hydrodynamic quantities are defined. In section 3, the ESBGK is

2



constructed by solving an entropy minimisation problem. The model is next shown to satisfy
a H theorem and an indifferentiability principle. In section 4, a Chapman-Enskog expansion is
performed for the present model and a compressible Navier-Stokes system is obtained. In this part,
the relaxation coefficients are detemined in order to fit the thermal conductivity coefficient, the shear
viscosity and the volume viscosity. Some concluding remarks and perspectives are summarized in
section 5.

2 Notations

In the present paper, we consider a mixture of A monoatomic components and B polyatomic com-
ponents. For i ∈ {1, . . . , A}, fi(t, x, vi, Ii) represents the distribution function of the ith component
where vi and Ii are respectively the velocity and the continous quantum number of the ith species.
The indexes of species are Sm = {1, . . . , A} and Sp = {A+ 1, . . . , A+B}.
The sets of quantum numbers are

Qi = {0} if i ∈ Sm,

Qi = [0,+∞[ if i ∈ Sp

and the associated integration measures dIi are defined by

dIi = δi if i ∈ Sm,

dIi = m+ if i ∈ Sp,

where δIi is the Dirac distribution and m+ the Lebesgue measure over R+.
Next, we introduce for i ∈ S, δi as the number of internal degrees of freedom for species i. This
parameter collects rotational and vibrational modes. For i ∈ Sm, δi = 0 and we use the convention

fi(t, x, vi, 0) = fi(t, x, vi) in order to be consistent with the monospecies case. In this context, I
2/δi
i

represents the internal energy of the ith species.

Next, we recall the definition of macroscopic quantities:

The number density of species i (at time t and space x) is given by

ni =

∫

R3×Qi

fidvidIi.

n =
∑

i∈S

ni represents the total number density.

The mass density of species i ∈ S (at time t and point x)

ρi =

∫

R3×Qi

mifidvidIi,

where mi represents the molecular mass of species i.

ρ =
∑

i∈S

mini represents the total mass density.

The momentum of species i ∈ S (at time t and point x)

ρiui =

∫

R3×Qi

mivifidvidIi.
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ρu =
∑

i∈S

ρiui represents the total momentum.

The total energy of species i ∈ S (at time t and point x)

ρiei =

∫

R3×Qi

(mi|vi − u|2 + I
2/δi
i )fidvidIi.

Next, the macroscopic internal energy is splitted into a translational and an internal part. So we
define the macroscopic translational energy of species i ∈ S (at time t and point x)

ρiei,tr =

∫

R3×Qi

1

2
mi(v − ui)

2fidvidIi, i ∈ S.

The macroscopic internal energy of species i ∈ S (at time t and point x) writes

ρiei,int =

∫

R3×Qi

I
2/δi
i fidvidIi.

The total energy for the mixture reads

ρe =
∑

i∈S

∫

R3×Qi

(
1

2
mi(vi − u)2 + I

2/δi
i )fidvi dIi = ρetr + ρeint, (2.1)

where

etr =
∑

i∈S

ciei,tr, eint =
∑

i∈S

ciei,int, ci =
ρi
ρ
. (2.2)

etr represents the translational energy for the mixture and eint reprents the internal energy for the
mixture.
We define δ as the number of internal degrees of freedom for the mixture

δ =
∑

i∈S

ciδi. (2.3)

Temperatures are associated to each energy e, etr, eint defined in (2.1, 2.2) by e = 3+δ
2 kBTeq,

etr =
3
2kBTtr, eint =

δ
2kBTint. Hence Teq writes

Teq =
3
2Ttr +

δ
2Tint

3
2 +

δ
2

. (2.4)

Moreover δi is related to ei,int by ei,int =
δi
2 kBTint. So, the relation (2.2) defining eint in function of

ei,int is consistent with the definition of δ given in (2.3)

Remark 1. In ([21], [6]), the authors use in kinetic models ϕifi instead of fi. In that case, ϕifi
represents the effective distribution function of species i. This means that in the definitions of
macroscopic quantities, a weight measure ϕi appears. Moreover, in the Boltzmann operator the
cross sections have to be modified accordingly into effective cross sections. We refer to ([6]) for
more details and to ([22]) where a comparison of the two formalisms is presented.
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Introduce the natural scalar product ([26])

〈〈φ,ψ〉〉 =
∑

i∈S

∫

R3×Qi

φiψidvidIi, (2.5)

where φ and ψ are tensors. Consider the vector distribution function f by

f = (fj)j∈S.

and the family of polynomials (Ψl)l∈S, Ψ
mm and Ψen

Ψl = (δlj)j∈S, l ∈ S, Ψmm = (mjvj)j∈S , Ψen = (
1

2
mj |vj − uj|2 + I

2/αj

j )j∈S.

Then, according to the notation (2.5), the macroscopic quantities write

ρi = 〈〈f ,Ψl〉〉, ρu = 〈〈f ,Ψmm〉〉, ρe = 〈〈f ,Ψen〉〉

and the Boltzmann entropy is defined by

H(f) = 〈〈f ln(f)〉〉. (2.6)

The stationary states M = (Mi)i∈S of the collision operator presented in ([6]) read

Mi =
ni

Qtr
i Qint

i

exp

(

−mi|vi − u|2 + 2I
2/δi
i

2kBT

)

, vi ∈ R
3, Ii ∈ Qi, i ∈ S (2.7)

with

Qtr
i =

(

2πkBT

mi

) 3
2

, Qint
i =

∫

Qi

exp(−I
2/δi
i

kBT
)dIi. (2.8)

3 Construction of an ESBGK model

The aim of this section is to construct an ESBGK model

∂tfi + v · ∇xfi = λ(Gi − fi), i ∈ S,

where, the function Gi is constructed according to an entropy minimisation principle. The steps
of the construction are the following. We firstly define the space of constraints (section 3.2), next
the entropy minimisation problem is solved (section 3.3). Finally the model is shown to satisfy a H
theorem (section 3.4) and an indifferentiability principle (section 3.5)

3.1 Important families of polynomials

In this section, we define polynoms that will be involved in the definition of the space of constraints
and in the computation of the hydrodynamic limit. Le us define

Ψpr = (Ψpr
j )j∈S =

(

mj

(

(vj − u)⊗ (vj − u)− 1

3
|vj − u|2Id

)

)

j∈S

, (3.9)
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where Id represents the identity matrix on R
3,

Ψint = (Ψint
j )j∈S =

(

δ

δ(3 + δ)

1

2
mj |vj − u|2 − 2

(3 + δ)
I
2/δj
j

)

j∈S

=

(

1

3
mj |vj − u|2 − 2

(3 + δ)
(mj

|vj − u|2
2

+ I
2/δj
j )

)

j∈S

, (3.10)

Ψtr = (Ψtr
j )j∈S =

(

1

2
mj|vj − u|2

)

j∈S

, (3.11)

Ψλ = (Ψλ
j )j∈S =

((

mj
(vj − u)2

2
− 5

2
kBT + I

2
δj

j − kBT
δj
2

)

(vj − u)

)

j∈S

. (3.12)

For any j ∈ S,

ΨDj = (Ψ
Dj

i )i∈S =
1

pi
(δij −

ρi
ρ
)(vi − u), i ∈ S,

where pi = nikBT represents the species partial pressure of the ith species.

3.2 Space of constraints

We define now the set constraints, in order to prescribe some properties to the BGK operator that
we aim to construct. The principle is to garantee firstly the classical conservation properties (mass,
total momentum, total energy). But also some supplementary moments have to be relaxed with a
correct rate in order to recover correct transport coefficients. So, f being given, K(f) is defined as
the set of functions g = (gj)j∈S s.t. gj ≥ 0 for j ∈ S and satisfying the constraints

〈〈g − f ,Ψl〉〉 = 0, l ∈ S ∪ {mm, en}, (3.13)

λ〈〈g − f ,Ψpr〉〉 = −λ1〈〈f ,Ψpr〉〉, (3.14)

λ〈〈g − f ,Ψint〉〉 = −λ2〈〈f ,Ψint〉〉. (3.15)

The constraints (3.13) impose the conservation of mass, momentum and total energy for the resulting
model. The relation (3.14) has been introduced in ([18]) for a single monoatomic gas and generalised
next ([19], [16]). This constraint means more precisely that the solution of the homogeneous BGK
model tends to an isotropic distribution function as time tends to infinity. The constraint (3.15)
implies that the distribution function tends to a distribution function whose translational and
internal macroscopic temperatures are equal. This relation has been introduced in ([19]). Hence
the constraints (3.14, 3.15) are consistant with the fact that the distribution function tends to the
Maxwellian (2.7, 2.8) when time tends to infinity.

In order to solve a entropy minimisation problem, the constraints (3.14, 3.15) should be recast
in a more convenient form. So, by using (3.13, 3.11, 3.10), it comes that

〈〈g − f ,Ψint〉〉 = 2

3
〈〈g − f ,Ψtr〉〉
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So, the equation (3.15) can be rewritten as

2

3
〈〈g,Ψtr〉〉 = 2

3
(1− λ2

λ
)〈〈f ,Ψtr〉〉+ λ2

λ

2

3 + δ
〈〈f ,Ψen〉〉.

Hence by using the definition e and etr given in (2.2, 2.1), the previous relation yields

2

3
〈〈g,Ψtr〉〉 = 2

3
(1− λ2

λ
)ρetr +

λ2
λ

2

3 + δ
ρe. (3.16)

But as e = 3+δ
2 kBTeq and etr =

3
2kBTtr and by setting θ = λ2

λ , the relation (3.16) reads

〈〈g,Ψtr〉〉 = 3

2
(1− θ)ρkBTtr +

3

2
θρkBTeq. (3.17)

From the definition (3.9) of Ψpr, the relation (3.14) gives

∑

i∈S

∫

R3×Qi

mi(vi − u)⊗ (vi − u)gi dvidIi =
2

3
〈〈g,Ψtr〉〉Id + (1− λ1

λ
)〈〈f ,Ψpr〉〉.

Moreover by setting

λ1
λ

= 1− ν(1− θ) (3.18)

and by using the relation (3.17), we get

〈〈g,Ψpr〉〉 = ((1− θ)ρkBTtr + θρkBTeq) Id + ν(1− θ)〈〈f ,Ψtr〉〉.

Hence by using the relation

〈〈f ,Ψpr〉〉 = ρΘ,

where Θ represents the pressure tensor, we get the relation

〈〈g,Ψpr〉〉 = ρT , (3.19)

with

T = (1− θ) [(1− ν)kBTtr Id + νΘ] + θkBTeqId. (3.20)

Hence, K(f) is constituted by distribution functions g satisfying (3.13, 3.17, 3.19, 3.20). In the next
steps of the paper, we will consider this version of K(f).

3.3 Entropy minimisation problem

In this section we consider the variational problem

Find a solution to the minimisation problem

G = argming∈K(f)H(g), (3.21)

where K(f) is the set of function g s.t gi ≥ 0 and s.t. the constraints (3.13, 3.17, 3.19, 3.20) are
satisfied. We recall that H is the Boltzmann entropy defined in (2.6).
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Theorem 3.1. Let f = (fj)j∈S, be a nonnegative function, ν ∈ [−1/2, 1[, θ ∈ [0, 1]. Then the
tensor T defined in (3.20) is symetric positive definite and the minimization problem (3.21) admits
a unique solution G = (Gj)j∈S, s.t.

Gi =
ni(kBT )

(3+δi)/2

Qtr
i Qint

i

√

det(T )(kBTrel)
δi
2

exp



−mi

2
〈T −1(vi − u), (vi − u)〉 − I

2
δi

i

kBTrel



 , i ∈ S (3.22)

where

Trel = θTeq + (1− θ)Tint. (3.23)

Proof. First of all, by arguing as in ([19]), we can show that T ∈ S+
3 (R) is equivalent to θ ∈ [0, 1]

and ν ∈ [−1/2, 1[. In ([3]) it is only proved that T ∈ S+
3 (R) implies that θ ∈ [0, 1] and ν ∈ [−1/2, 1[.

Moreover, in this proof, we follow the approach of Junk ([30]) that has been generalized to a
mixture setting in ([28]). So, we proceed as in ([16], [17], [18], [19]). Let vi,1, vi,2, vi,3 be the three
components of vi. Hence, we consider the set

L = {(λl)l∈S , (αr)r∈{1,...,3}, (βs)s∈{1,...,6}, γ, /
∫

R3×Qi

exp

(

∑

l∈S

λlΨ
l
i +

3
∑

r=1

αrvi,r +
3
∑

s=1

βsv
2
i,s + β4vi,1vi,2 + β5vi,1vi,3 + β6vi,2vi,3 + γI

2/δi
i

)

dvidIi < +∞}.

Let us show that L is open by proceeding as in ([16]). Let (λl)l∈S , (αr)r∈{1,...,3}, (βs)s∈{1,...,6}, γ ∈
L. In that case, γ < 0 and the signature of the quadratic form

q(vi) = β1v
2
i,1 + β2v

2
i,1 + β1v

2
i,3 + β4vi,1vi,2 + β5vi,1vi,3 + β6vi,2vi,3

is (0, 3). Hence the Gauss reduction of the quadratic form writes

q(vi) = β1

(

vi,1 +
β4
2β1

vi,2 +
β5
2β1

vi,3

)2

+ α1

(

vi,2 +
1

2α
(β6 −

β4β5
2β1

)vi,3

)2

+ α2v
2
i,3,

with β1 < 0, α1 < 0, α2 < 0 where

α1 = β2 −
β24
4β1

α2 = β2 −
β25
4β1

+
1

4α
(β6 −

β4β5
2β1

).

Therefore by proceeding in the same way, we can prove that for ε > 0 small enough, the signature
of the quadratic form whose terms are βj + ε and βj − ε is still (0, 3). Moreover, ε can be chosen
such as γ + ε < 0 and γ − ε < 0. So L is open. Moreover, L is non empty.

Hence according to ([28], [30]), the solution G = (Gi)i∈s of the minimisation problem (3.21) reads

Gi = αi exp(−mi〈vi − u,A(vi − u)〉 − aI
2
δi ), i ∈ S,

where A ∈ M3(R), αi ∈ R, a ∈ R. Next we aim to determine these parameters.
By using constraint (3.13), we get

αi = det(A)1/2ni
(kBT )

(3+δi)/2

Qtr
i Qint

i

aδi/2 , i ∈ S. (3.24)
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A straightforward computation gives

∫

R3×Qi

mi(vi − u)⊗ (vi − u)Gi dvidIi = αi
1

2
A−1 1

a
δi
2

Qtr
i Qint

i

T (3+δi)/2
=

1

2
niA−1.

Hence by comparing the two previous expressions with the relations (3.19, 3.20) we get A = 1
2T −1.

So (3.24) implies

αi =
ni

Qtr
i Qint

i

1
√

det(T )
(kBT )

(3+δi)/2aδi/2, i ∈ S.

By combining (3.13) and (3.16), it comes that

2

3
(e−

∑

i∈S

αimi

∫

R3×Qi

I
2
δi

i exp(−mi

2
〈v − u,T −1(v − u)〉 − aI

2
δi ) dvidIi) = (1− θ)

2

3
ρetr + θρe.

(3.25)

A straightforward computation gives that

(

∑

i∈S

∫

Qi

I
2
δi

i exp(−aI
2
δi

i ) dIi

)

a
δi
2 T

δi
2 ρi

1

Qint
i

=
1

a

∑

i∈S

δi
2
ρi.

Hence the relation (3.25) gives

2

3
(e− 1

a

∑

i∈S

δi
2

ρi
ρ
) = (1− θ)

2

3
etr + θ

2

3 + δ
e.

So

1

a

δ

3
=

2

3
e− (1− θ)

2

3
etr − θ

2

3 + δ
e.

By using that e = etr + eint, we get

1

a

δ

3
= (

2

3
− 2

3 + δ
)θe+

2

3
(1− θ)eint.

As 2
3 − 2

3+δ = 2δ
3(3+δ) , the previous relation gives a = 1

kBTrel
where Trel has been defined in (3.23)

and we recover that Gi is given by (3.22).

3.4 H theorem

Theorem 3.2. For all −1
2 ≤ ν < 1 and θ ∈ [0, 1], we denote by Gν,θ

i the expression of Gi given by

(3.22) and by Gν,θ the vector Gν,θ = (Gν,θ
i )i∈S . Hence, the entropy dissipation satisfies

D(f) =
∑

i∈S

∫

R3×Qi

(Gν,θ
i − fi) ln(fi)dvi dIi ≤ 0.

Moreover D(f) ≤ 0 for −1
2 ≤ ν < 1 and 0 ≤ θ ≤ 1 with equality iff f = M, where M is given by

(2.7).
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Proof. By using the convexity of x ln(x), it holds that

〈〈Gν,θ − f , ln(f)〉〉 ≤
∑

i∈S

∫

R3×Qi

(Gν,θ
i ln(Gν,θ

i )− fi ln(fi))dvidIi.

By using the minimisation problem for ν = 1 and θ = 0, we get

∑

i∈S

∫

R3×Qi

G1,0
i ln(G1,0

i )dvidIi ≤ H(f),

where we have used for G1,0
i the previous notation. So

〈〈Gν,θ − f , ln(f)〉〉 ≤
∑

i∈S

∫

R3×Qi

(

Gν,θ
i ln(Gν,θ

i )−G1,0
i ln(G1,0

i )
)

dvidIi.

Moreover a straightforward computation gives ([3]),

∫

R3×Qi

(Gν,θ
i ln(Gν,θ

i )−Gν,θ
i )dvidIi = ρi ln

(

ρi
√

(2πT )(kBTrel)
δi
2

)

− 3

2
ρi, i ∈ S (3.26)

we get

〈〈Gν,θ − f , ln(f)〉〉 ≤ 1

2
ρ ln

(

det(Θ)

det(T )

T δ
int

T δ
rel

)

.

The end of the proof is inspired fom ([18]). Consider λ1, λ2, λ3 the eigenvalues of Θ. Hence, we
have to study the sign of

p(ν, θ) = ln((

3
∏

i=1

λi)T
δ
int)− ln

(

det
(

(1− θ)((1− ν)TtrId + νΘ) + θTeqId)
)

T δ
rel

)

.

By using that tr(Θ) = 3Ttr, the maximum of p is reached by λ1 = λ2 = λ3 = Ttr. Then, we have to
study the sign of

ln((Ttr)
3T

δ
2
int)− ln

(

(

(1− θ)Ttr + θTeqId)
)3
T δ
rel

)

= 3 ln(Ttr) + δ ln(Tint)

− 3ln
(

(1− θ)Ttr + θTeq
)

− δ ln(Trel).

Then, by using the concavity of ln, we get

3 ln(Ttr) + δ ln(Tint)− 3(1− θ) ln(Ttr)− 3θ ln(Teq)− δ ln(Trel)

≤ 3 ln(Ttr) + δ ln(Tint)− 3(1 − θ) ln(Ttr)− 3θ ln(Teq)− δθ ln(Teq)− δ(1 − θ)Tint.

So,

3 ln(Ttr) + δ ln(Tint)− 3(1 − θ) ln(Ttr)− 3θ ln(Teq)− δ ln(Trel)

≤ 3θ ln(Ttr) + δθ ln(Tint)− θ(3 + δ) ln(Teq).

Therefore, by using the definition (2.4) of Teq and the concavity of ln, we get that the right-hand
side of the previous inequality is negative.

When D(f) = 0, from previously we get Θ = TtrId. Moreover, we obtain H(f) = H(G1,0) and
H(f) = H(Gν,θ). By uniqueness of the minimisation problem, f is the Gaussian distribution satis-
fying f = G1,0. Hence from (3.26), we get Tint = Trel. So Tint = Ttr = Teq. So f = M, where M is
given by (2.7).
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3.5 Indifferentiability principle

In this section, we show that our model satisfies the indiferentiability principle stated in ([2]) for
an inert monoatomic gas mixture. This means that when all the molecular masses are equal, the
distribution function that is obtained by adding all the species satisfies the single gas version of the
present BGK model. In this paper, we aim to compare the present model with the single gas BGK
models ([18], [19]).
If S = Sm, we consider a monoatomic mixture and we recover the model of ([16]). Therefore the

distribution function f =
∑

i∈Sm

fi is solution of the Ellipsoidal Statistical Model for monospecies ([3],

[18]).

In the case, where the mixture is purely polyatomic (S = Sp), the distribution function f =
∑

i∈Sp

fi

is solution of the polyatomic Ellipsoidal Statistical Model for monospecies ([3], [19]) when all the
molecular masses are equal.

4 Chapman-Enskog expansion

This section is devoted to the derivation of the Navier-Stokes system starting from the ESBGK
model obtained in Theorem 3.1. More precisely, we consider the system

∂tfi + v · ∇xfi =
λ

τ
(Gi − fi), i ∈ S, (4.27)

where τ is proportional to the Knudsen number. In this process, the relaxation coefficients λ, λ1
and λ2 are adjusted in order to fit the shear viscosity, the volume viscosity and the heat conductivity
coefficient.

4.1 Euler system

Starting from (4.27), we can derive the compressible Euler system as in ([21]). Hence, we get

∂tρi +∇ · (ρiu) = 0, i ∈ S,

∂t (ρu) +∇x · (ρu⊗ u+ p Id) = 0,

∂t(
1

2
ρu2 + E) +∇x · (u(

1

2
ρu2 + E + p)) = 0,

where the internal energy E per unit volutme is defined by

E = nkB(
3

2
+
δ

2
)

and p = nkBT represents the thermodynamic pressure.
The non conservative form of the Euler system writes

∂tni + (u · ∇)ni + ni∇ · u = 0, i ∈ S,

11



∂tu+ u · ∇u+
∇p
ρ

= 0,

∂tT + 2

∑

i∈S

ni

3
∑

i∈S

ni +
∑

i∈S

δini
T∇ · u+ u · ∇T = 0.

4.2 Derivation of the Navier-Stokes Fourier system

4.2.1 Computation of the expansion

f = (fi)i∈S is expanded around a Maxwellian M = (Mi)i∈S as

fi = Mi + τMif
1
i +O(τ2), (4.28)

with

〈〈Mf1,Ψl〉〉 = 0, l ∈ S ∪ {mm, en}. (4.29)

Moreover Gi satisfies for any i ∈ S,

Gi = Mi + τG1
i +O(τ2), (4.30)

with

G1
i = DGi(M) ·Mg = lim

τ→0

Gi(M+ τMg)−Mi

τ
.

Moreover, it can be proved that G1 = (G1
i )i∈S satisfies

〈〈G1,Ψl〉〉 = O(τ), l ∈ S ∪ {mm, en}.

Introduce (4.28) into (4.27) leads to

f1i =
G1

i

Mi
− 1

λ
(∂tMi + v · ∇xMi)

1

Mi
+O(τ). (4.31)

A direct computation gives

1

Mi
(∂tMi + v · ∇xMi) =

∑

j∈S

Ψ
Dj

i · ∇pj +
1

kBT
Ψpr

i : ∇xu+Ψλ
i · ∇T

kBT 2

+

(

2

kBT
Λ(
δi
2
kBT − I

2
δi

i ) +
2

kBT
(
1

3
− Λ)(mi

(vi − u)2

2
− 3

2
kBT )

)

∇ · u,

(4.32)

with

Λ =

∑

j∈S

nj

3
∑

j∈S

nj +
∑

j∈S

njδj
.

12



Finally, by using (4.32) f1 = (f
(1)
i )i∈S defined by (4.31) reads for i ∈ S

f
(1)
i =

G1
i

Mi
− 1

λ

(

∑

j∈S

Ψ
Dj

i · ∇pj −
1

kBT
Ψpr

i : ∇xu−Ψλ
i ·

∇T
kBT 2

)

−
(

2
Λ

kBT
(kBT

δi
2
− I

2
δi

i ) +
2

kBT
(
1

3
− Λ)(mi

(vi − u)2

2
− 3

2
kBT )

)

∇ · u. (4.33)

4.2.2 Macroscopic equations and computation of the fluxes

In this section, the fluxes are computed and the relaxation parameters λ, λ1 and λ2 are fixed during
the procedure.

By performing a Chapman-Engskog expansion we get

∂ρi +∇ · (ρiu) +∇ ·D(i) = 0,

∂t(ρu) +∇ · (ρu⊗ u+ pId) +∇ ·Π = 0,

∂t

(

ρ
u2

2
+ E

)

+∇ ·
(

(ρ
u2

2
+ E + p)u

)

+∇ · Q = 0,

where we have introduced the diffusion fluxes

D(i) =

∫

R3×Qi

Mif
(1)
i mivi dvidIi, i ∈ S,

where we have introduced the the pressure tensor

Π =
∑

i∈S

∫

R3×Qi

mivi ⊗ vi Mif
(1)
i dvidIi,

the heat flux Q

Q =
∑

i∈S

∫

R3×Qi

(mi
v2i
2

+ I
2
δi

i )viMif
(1)
i dvidIi.

As in ([26]), the diffusion velocity can be introduced as Vi =
D(i)

ρi
. Hence using the expression (4.33)

of f
(1)
i and according to eveness properties

D(i) = −
√
kBT

λ

∑

j∈S

∫

R3×Qi

ni
Qtr

i Qtr
i

exp

(

−mi
(vi − u)2 + 2I

2/δi
i

2kBT

)

Ψ
Dj

i · ∇pjmi(vi − u) dvidIi

− 1

3

∫

R3×Qi

mi
ni

Qtr
i Qtr

i

exp

(

−mi(v − u)2 + 2I
2/δi
i

2kBT

)

(vi − u)Ψλ
i · ∇T

kBT 2
dvidIi.

Moreover a direct computation gives

−1

3

∫

R3

mi
ni
Qtr

i

exp

(

−mi
(v − u)2

2kBT

)

(mi
(vi − u)2

2
− 5

2
kBT )(vi − u)2dvi = −ni

3
(
15

2
− 15

2
) = 0.

13



So, D(i) writes

D(i) = −
√
kBT

λpi

∑

j∈S

∫

R3×Qi

mi
ni
Qtr

i

exp

(

−mi
(vi − u)2

2T

)

(δij −
mjni
ρ

)(vi − u)2dvidIi ∇pj.

So

D(i) = −
√
kBT

λ
n
∑

j∈S

(δij −
mjni
ρ

)
∇pj
p
. (4.34)

Then by comparison with [26], the species multicomponent diffusion coefficient Dij for i, j ∈ S reads

Dij =

√
kBTn

λ

∑

j∈S

(δij −
mjni
ρ

),

where λ will be fixed during the computation of κ.
Moreover, according to (4.34), the model gives a Soret effect that is equal to 0. Indeed, we can
show that

〈〈ΨDi ,Mf1〉〉 = 1

ρi
D(i). (4.35)

More precisely, formula (4.35) is obtained by developping 〈〈ΨDi ,Mf1〉〉 as

〈〈ΨDi ,Mf1〉〉 =
∑

j∈S

∫

R3×Qj

1

pj
(δij −

ρj
ρ
)(vj − u)Mjf

(1)
j dvjdIj.

So by using the orthogonality relation for the momentum (4.29), we get (4.35). Therefore,

1

ρi
D(i) = Vi =

∑

j∈S

Dij
∇pj
p

− θi
∇T
T
,

with

θi =
1

3
〈〈ΨDi ,ΨλM〉〉.

θi represents the thermal diffusion coeffcient ([26]) and yields 0 in the present case. This term
correspond to the Soret effect.
Next, by using the constraint (3.15) and the expansions (4.28, 4.30), it holds that

∑

i∈S

∫

R3×Qi

mi(v − u)2λ(G1
i −Mif

(1)
i )dvi = −λ2

∑

i∈S

∫

R3×Qi

mi(vi − u)2Mif
(1)
i dvidIi.

Moreover by using (4.31), it comes that

−λ2
∑

i∈S

∫

R3×Qi

mi(vi − u)2Mif
(1)
i dvidIi =

∑

i∈S

∫

R3×Qi

(∂tMi + v · ∇Mi)mi(vi − u)2dvidIi.
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Hence from (4.32), it holds that

−λ2
∑

i∈S

∫

R3×Qi

mi(vi − u)2Mif
(1)
i dvidIi

= −
∑

i∈S

∫

R3×Qi

mi(vi − u)2

(

2Λ(
δi
2
− I

2
δi

kBT
) + 2(

1

3
− Λ)

(

mi
(vi − u)2

2kBT
− 3

2

)

)

MidvidIi ∇ · u.

A straightforward computation gives

∫

R3×Qi

mi(vi − u)2(
δi
2
− I

2
δi

kBT
)MidvidIi = 0,

and

∑

i∈S

∫

R3×Qi

mi
(vi − u)2

T

(

mi
(vi − u)2

2kBT
− 3

2

)

MidvidIi = 3
∑

i∈S

ni.

So

−λ2
∑

i∈S

∫

R3×Qi

mi(vi − u)2Mif
(1)
i dvidIi = −6kBT

∑

i∈S

ni

(

1

3
− Λ

)

∇ · u.

Then by comparing with the viscous stress tensor, it holds that the second viscosity η satisfies

η =
2

λ2
kBT

∑

i∈S

ni(
1

3
− Λ) =

2nkBT

λ2
(
1

3
− Λ).

and can be adjusted from λ2. Due to orthogonality relations (4.29), Π reads

Π =
∑

i∈S

∫

R3×Qi

mi(vi − u)⊗ (vi − u) Mif
(1)
i dvidIi.

Next, we insert the expansion (4.28) into the constraint (3.14). So

〈〈Ψpr,G1 −Mf (1)〉〉 = −λ1〈〈Ψpr,Mf (1)〉〉.

Hence by using the relation (4.33) together with orthogonality relations, it comes that

〈〈Ψpr,Mf (1)〉〉 = − 1

λ1

∑

i∈S

∫

R3×Qi

Ψpr
i : Ψpr

i MidvidIi
1

2

(

∇u+∇ut − 2

3
∇ · u

)

.

So

〈〈Ψpr,Mf (1)〉〉 = −nkBT
λ1

1

2

(

∇u+∇ut − 2

3
∇ · u Id

)

.

Then the viscosity µ, satisfies µ = nkBT
λ1

and can be adjusted from λ1.
Next, the heat flux writes

Q = Πu+
∑

i∈S

∫

R3×Qi

(mi
(vi − u)2

2
+ I

2
δi

i )(vi − u)Mif
(1)
i dvidIi.
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Therefore, it comes that

Q = Πu+ 〈〈Ψλ,Mf (1)〉〉+
∑

i∈S

kBT

∫

R3×Qi

Mif
(1)
i (

5

2
+
δi
2
)(vi − u)dvidIi.

Hence by introducing the enthalpy hi = (52T + δi
2 T )

kB
mi

of ith species, with the convention that δi = 0
for i ∈ Sm, it holds that

Q = Πu+ 〈〈Ψλ,Mf1〉〉+
∑

i∈S

hiD
(i).

By using the expression of Mif
(1)
i together with orthogonality properties, it holds that

Q = Πu− 1

λ

∑

i∈S

∫

R3×Qi

∑

j∈S

(Ψ
Dj

i · ∇pj)
(

1

2
mi(vi − u)2 − 5

2
kBT + I

2
δi

i − δi
2
kBT

)

(vi − u)Mi dvidIi

− 1

3λ
〈〈Ψλ,MΨλ〉〉 ∇T

kBT 2
+
∑

i∈S

hiD
(i).

Moreover, a direct computation gives

〈〈Ψλ,MΨλ〉〉 = (kBT )
3
∑

i∈S

(
5

2
+
δi
2
)
ni
mi
.

So, the expression of Q yields

Q = Πu− k2BT

λ

∑

i∈S

(
5

2
+
δi
2
)
ni
mi

∇T +
∑

i∈S

hiD
(i) − 1

3λ

∑

j∈S

〈〈ΨDj ,ΨλM〉〉 ∇pj.

But, as 〈〈ΨDj ,ΨλM〉〉 = 0, Q writes finally

Q = Πu− k2BT

λ

∑

i∈S

(
5

2
+
δi
2
)
ni
mi

∇T +
∑

i∈S

hiD
(i). (4.36)

So

κ =
k2BT

λ

∑

i∈S

(
5

2
+
δi
2
)
ni
mi
.

Hence, the heat conductivity coefficient can be obtained from λ. Moreover, the relation (4.36)
implies that the Duffour effect yields 0 which is consistent with the fact that the Soret effect is
equal to 0. This point comes from the fact that 〈〈ΨDj ,ΨλM〉〉 = 0.

4.3 Comparison with the Ellipsoidal Statistical Model

According to (3.18), λ satisfies the relation

λ =
λ1

(1− ν + θν)
=

nkBT

µ(1− ν + θν)
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and the relaxation operator reads

nkBT

µ(1− ν + θν)
(Gi − fi), i ∈ S.

Therefore, we obtain a generalisation of the Ellipsoidal Statistical Model for a mixture of any
monoatomic components and any polyatomic components.

Define the mixture enthalpy h by the relation ([26])

h =
∑

i∈S

ρi
ρ
hi =

1

ρ

∑

i∈S

nikB(
5

2
T +

δi
2
T ).

Hence, the constant pressure specific heat cp reads ([1])

cp =
∂

∂T
h =

∑

i∈S

ρi
ρ
hi =

1

ρ

∑

i∈S

nikB(
5

2
+
δi
2
). (4.37)

The Prandtl number can be defined by Pr =
cpµ
κ . So by using the definition of µ, the definition

(4.37) of cp and the definition of λ, we obtain

Pr =
n

ρ

λ

λ1

∑

i∈S

ni(
5

2
+
δi
2
)

∑

i∈S

ni
mi

(
5

2
+
δi
2
)

=
n

ρ

∑

i∈S

ni(
5

2
+
δi
2
)

∑

i∈S

ni
mi

(
5

2
+
δi
2
)

1

(1− ν + θν)
, (4.38)

where θ ∈ [0, 1] and ν ∈ [−1
2 , 1[ is chosen according to Theorem 3.2.

We remark that in case of indifferentiability, when all the molecular masses are equal, the formula
(4.38) reduces to

Pr =
1

(1− ν + θν)

as in ([3], [18]). For some comparisons with values of Prandtl number, we refer to ([22]).

5 Conclusion

We have built up an Ellipsoidal Statistical Model for a mixture of any component of monoatomic
and polyatomic gases, where the non-translational degrees of freedom are modeled by a continous
variable. The construction is based on the resolution of an entropy minimisation problem under
moments constraints and generalizes the papers ([18], [19], [17], [16]). The resulting model is made
of a unique attractor and reproduces the correct equilibrium states of ([6]). Moreover, it is consis-
tent with the correct conservation laws, recovers the H theorem and satisfies an indifferentiability
principle. We have next developped a Chapman-Enskog expansion in the spirit of ([6]) and a Navier-
Stokes system has been derived. The structure of the fluxes has been of course recovered. During
the procedure, the free parameters have been fixed in order to fit the shear viscosity, the volume
viscosity and the thermal heat conductivity.

As a perspective, we planned to design a BGK model for a mixture of any component of
monoatomic and polyatomic gases in the spirit of ([17]) with a continous non-translational en-
ergy variable. Moreover, we aim to generalise this work to discrete energies by proceeding like in
([38]). The case of fitting the Fick matrix in the context of a mixture of monoatomic and polyatomic
components for a continous energy variable is left in perspective.
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