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Abstract. The Ellipsoidal BGK model (ES-BGK) is a generalized version of the BGK

model where the local Maxwellian in the relaxation operator of the BGK model is ex-
tended to an ellipsoidal Gaussian with a parameter −1/2 ≤ ν < 1, so that the correct

Prandtl number can be computed in the Navier-Stokes limit. In this work, we consider

steady rarefied flows arising from the evaporation and condensation process between two
parallel condensed phases, which is formulated in this paper as the existence problem

of stationary solutions to the ES-BGK model in a bounded interval with the mixed

boundary conditions. One of the key difficulties arises in the uniform control of the
temperature tensor from below. In the non-critical case (−1/2 < ν < 1), we utilize the

property that the temperature tensor is equivalent to the temperature. In the critical
case, (ν = −1/2), where such equivalence relation breaks down, we observe that the size

of bulk velocity in x direction can be controlled by the discrepancy of boundary flux,

which enables one to bound the temperature tensor from below.

1. introduction

1.1. Ellipsoidal BGK model: The Boltzmann equation is a fundamental model that con-
nects the particle regime and the fluid regime of rarefied gases. However, the practical ap-
plication of the Boltzmann equation to various flow problems has been severely restricted
by the intricate structure of the collision operator that requires a considerable amount of
resources for numerical computations. The observation made by Bhatnaghar, Gross and
Krook [12] in their attempts to overcome this difficulty is that the local equilibration occurs
rather quickly so that the complicated process of collision can be successfully described by
the relaxation process after a short time scale. The equation that was introduced based
on this observation is now called the BGK model, and have enjoyed great popularity as a
numerically amenable equation that provides qualitatively satisfactory results. There are,
however, several shortcomings of the model. The most notable one is that the Prandtl num-
ber - the ratio between the thermal diffusivity and the viscosity, computed from the BGK
model does not match the correct value computed from the Boltzmann equation, which
means that the diffusivity and the viscosity in the Navier-Stokes limit cannot be correctly
derived. In this regard, Holway proposed so-called the ellipsoidal BGK model (ES-BGK
model), which generalizes the local Maxwellian of the BGK model to an ellipsoidal Gauss-
ian endowed with an additional degree of freedom in adjusting the transport coefficients.
ES-BGK model, however, was somewhat forgotten in the literature since it was not clear at
the time whether the H-theorem holds for this model. This was resolved by Andries et al
in [2] (and later in [16, 47]), which greatly popularized this model in the study of various
problems in the rarefied gas dynamics. The existence result of the ES-model in the critical
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case (ν = −1/2), however, was never resolved so far except for the case where the solution
lies close to equilibrium [68, 69], which is the main motivation of the current work.

In this paper, we are interested in the mathematical study of steady rarefied gas flows
generated by the evaporation and condensation process between two condensed phases [3,
4, 56]. Using the ES-BGK model, this can be formulated as the boundary value problem as
follows:

(1.1) v1
∂f

∂x
=

1

κ(1− ν)

(
Mν(f)− f

)
,

on a finite interval [0, 1] where the boundary condition is given by the linear combination of
the inflow boundary condition, the diffusive boundary condition, and the specular reflection
(δ1 + δ2 + δ3 = 1):

f(0, v) = δ1fL(v) + δ2

(∫
|v1|>0

f(0, v)|v1|dv

)
Mw(0, v) + δ3f(0, Rv), (v1 > 0)

f(1, v) = δ1fR(v) + δ2

(∫
|v1|<0

f(1, v)|v1|dv

)
Mw(1, v) + δ3f(1, Rv). (v1 < 0)

(1.2)

Here Mw denotes the wall Maxwellians which, for a given wall temperature Tw : {0, 1} →
R+, is defined by

Mw(i, v) =
1√

2πTw(i)
e−

|v|2
2Tw(i) . (i = 1, 2)

When there’s no risk of confusion we denote both Mw(0, v) and Mw(1, v) by Mw. Rv
denotes the reflection of v: R(v1, v2, v3) = (−v1, v2, v3). We note that δ1 term and δ2 term
corresponds to the condensation and the evaporation at the boundary [56].

The velocity distribution function f(x, v) represents the number density of the gas molecules
at the position x ∈ [0, 1] with the microscopic velocity v = (v1, v2, v3) ∈ R3. κ is the Knud-
sen number. The ellipsoidal Gaussian Mν(f) with the Prandtl parameter ν ∈ [−1/2, 1)
reads

Mν(f) =
ρ√

det(2πTν)
exp

(
−1

2
(v − U)⊤T −1

ν (v − U)

)
.

The local density ρ, momentum U , temperature T and the stress tensor Θ are given by the
following relations:

ρ(x) =

∫
R3

f(x, v)dv,

ρ(x)U(x) =

∫
R3

f(x, v)vdv,

3ρ(x)T (x) =

∫
R3

f(x, v)|v − U |2dv,

ρ(x)Θ(x) =

∫
R3

f(x, v)(v − U)⊗ (v − U)dv,

(1.3)
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and the temperature tensor Tν is defined as a linear combination of the temperature and
the stress tensor:

Tν = (1− ν)T I+ νΘ

=

 (1− ν)T + νΘ11 νΘ12 νΘ13

νΘ21 (1− ν)T + νΘ22 νΘ23

νΘ31 νΘ32 (1− ν)T + νΘ33


where I3 denotes the 3× 3 identity matrix.

Note that this is not a convex combination since ν can take negative values. In the case
ν = 0, the ES-BGK model reduces to the original BGK model. The end-point ν = −1/2
corresponds to ES-BGK model with the correct Prandtl number:

The Chapman Enskog expansion shows that the Prantl number of the Navier-Stokes
equation derived from the ES-BGK model is 1/(1− ν). Therefore, by choosing appropriate
ν, we can derive the correct Prantl number in the hydrodynamic limit, which is achieved
when ν = −1/2. (See [2] for further discussion on this.)

For simplicity, we set τ = κ(1− ν) throughout the paper and write (1.1) as

v1
∂f

∂x
=

1

τ

(
Mν(f)− f

)
.

1.2. Notations: We first set up notational conventions and define norms:

• C denote generic constants. The value can change each line of computations, but it
is explicitly computable in principle.

• A ⪯ B means that A ≤ CB for some constant C.
• I3 denotes the 3× 3 identity matrix.
• We define fLR and Mw by

fLR(v) = fL(v)1v1>0 + fR(v)1v1<0

and

Mw(v) = Mw(0, v)1v1>0 +Mw(1, v)1v1<0.

• We define supx ∥ · ∥L1
2
by

sup
x

∥f∥L1
2
= sup

x
∥f∥L1

2,+
+ sup

x
∥f∥L1

2,−
,

where

sup
x

∥f∥L1
2,+

= sup
x

{∫
v1>0

|f(x, v)|(1 + |v|2)dv
}
,

sup
x

∥f∥L1
2,−

= sup
x

{∫
v1<0

|f(x, v)|(1 + |v|2)dv
}
.

• We define the trace norm ∥ · ∥L1
γ,|v1|

by

∥f∥L1
γ,|v1|

= ∥f∥L1
γ,|v1|,+

+ ∥f∥L1
γ,|v1|,−

,

where the outward trace norm ∥f∥L1
γ,|v1|,+

and the inward trace norm ∥f∥L1
γ,|v1|,−

are given by

∥f∥L1
γ,|v1|,+

=

∫
v1<0

|f(0, v)||v1|dv +
∫
v1>0

|f(1, v)||v1|dv,

∥f∥L1
γ,|v1|,−

=

∫
v1>0

|f(0, v)||v1|dv +
∫
v1<0

|f(1, v)||v1|dv.
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• Throughout the paper, we normalize the wall Maxwellian as follows:

∥Mw∥L1
γ,|v1|,±

= 1.

• Similarly, we define another trace norm ∥ · ∥L1
γ,⟨v⟩

by

∥f∥L1
γ,⟨v⟩

= ∥f∥L1
γ,⟨v⟩,+

+ ∥f∥L1
γ,⟨v⟩,−

.

where the outward trace norm ∥ · ∥L1
γ,⟨v⟩,+

and the inward trace norm ∥ · ∥L1
γ,⟨v⟩,−

are given by

∥f∥L1
γ,⟨v⟩,+

=

∫
v1<0

|f(0, v)|(1 + |v|2)dv +
∫
v1>0

|f(1, v)|(1 + |v|2)dv,

∥f∥L1
γ,⟨v⟩,−

=

∫
v1>0

|f(0, v)|(1 + |v|2)dv +
∫
v1<0

|f(1, v)|(1 + |v|2)dv.

• Throughout the paper, CLR,1, CLR,2 denote

CLR,1 = ∥fLM∥L1
γ,⟨v⟩

∥Mw∥L1
γ,⟨v⟩

,

CLR,2 = ∥fLR∥L1
γ,|v1|

+ ∥Mw∥L1
γ,⟨v⟩

,
(1.4)

and aℓ,1 and aℓ,2 denote

aℓ,1 =

∫
R3

e
− 1

|v1| fLRdv, aℓ,2 =
1

2

∫
R3

e
− 1

|v1|Mwdv.(1.5)

(P) Properties of boundary data: To avoid repetition in the statement of the theorem,
we summarize here the assumptions to be imposed on fLR later:

(P1) The inflow boundary data fLR ≥ 0, not identically 0, has a finite trace norm:

∥fLR∥L1
γ,⟨v⟩

< ∞

(P2) The inflow data does not induce vertical flows: :∫
R2

fLvidv =

∫
R2

fRv3dv = 0 (i = 2, 3)

1.3. Main result 1: inflow dominant case. We now state our main results for the inflow
dominant case (δ1 ̸= 0). We first define the mild solution of (1.1) for the inflow dominant
case as follows:

Definition 1.1. f ∈ L∞ ([0, 1];L1
2(R3)

)
∩ L1

γ,⟨v⟩(R
3) is said to be a mild solution for (1.1)

if it satisfies

f(x, v) = e
− x

τ|v1| f(0, v) +
1

τ |v1|

∫ x

0

e
− x−y

τ|v1|Mν(f)dy if v1 > 0(1.6)

and

f(x, v) = e
− 1−x

τ|v1|
∫ 1
x
dy
f(1, v) +

1

τ |v1|

∫ 1

x

e
− y−x

τ|v1|Mν(f)dy if v1 < 0,(1.7)
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where f(0, v) and f(1, v) are defined in the trace sense as

f(0, v) = δ1fL(v) + δ2

(∫
|v1|<0

f(0, v)|v1|dv

)
Mw(0) + δ3f(0, Rv), (v1 > 0),

f(1, v) = δ1fR(v) + δ2

(∫
|v1|>0

f(1, v)|v1|dv

)
Mw(1) + δ3f(1, Rv), (v1 < 0).

We are now ready to state the main result of this paper:

Theorem 1.2. [Inflow dominant case: δ1 ̸= 0]
(1) Non-critical case (−1/2 < ν < 1) : Let −1/2 < ν < 1 and δ1 ̸= 0. Suppose fLR

satisfies (P1) and (P2). Then there exist ε > 0 depending on fLR and δi (i = 1, 2, 3) such
that, if τ > ε−1, then there exists a unique mild solution f ≥ 0 to the boundary value problem
(1.1), (1.2) satisfying∫

R3

f(x, v)dv ≥ aℓ,1,

∫
R3

f(x, v)(1 + |v|2)dv ≤ 2CLR,1,

and

C1
νδ

2
1

γℓ,1
3C2

LR,1

≤ κ⊤ {Tν}κ ≤ 2

3aℓ,1δ1
C2

νCLR,1,

for all κ ∈ R3 such that |κ| = 1, where γℓ,1 is defined by

γℓ,1 =

(∫
v1>0

e
− 1

|v1| fL(v)|v1|dv

)(∫
v1<0

e
− 1

|v1| fR(v)|v1|dv

)
> 0.(1.8)

(2) Critical case (ν = −1/2) : Let ν = −1/2 and δ1 ̸= 0. Suppose fLR satisfies (P1) and
(P2). Then there exist ε > 0 depending on fLR and δi (i = 1, 2, 3) such that, if τ > ε−1 and∣∣∣∣∣

∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣ ≤ ε,

then there exists a unique mild solution f ≥ 0 to the boundary value problem (1.1), (1.2)
satisfying ∫

R3

f(x, v)dv ≥ δ1aℓ,1,

∫
R3

f(x, v)|v|2dv ≤ 2CLR,1,

and

δ1
a−1/2,1

2CLR,1
≤ κ⊤

{
T−1/2

}
κ ≤ 3

2aℓ,1
CLR,1,

for all κ ∈ R3 such that |κ| = 1, where a−1/2,1 denote

a−1/2,1 = inf
|κ|=1

∫
R3

e
− 1

|v1| fLR

{
|v|2 − (v · κ)2

}
dv > 0.(1.9)

Remark 1.3. (1). Since τ = κ(1 − ν) in (1.1) is a parameter directly proportional to
the Knudsen number, taking sufficiently large τ corresponds to the case when the gas is
sufficiently rarefied.

(2). Our result states that the existence of the unique steady gas flow between two par-
allel condensed phases is guaranteed if the gas between the condensed phases is sufficiently
rarefied. This makes sense in that, if the gas between the two phases are not sufficiently
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rarefied compared to the condensed phases, the evaporation and condensation will not ac-
tively occur, and the gas flows between the two phases may not be generated. For example,
if the gas is as dense as the condensed phases, no gas will flow between the two phases.

(3). By scaling argument, the boundary value problem (1.1), (1.2) in a unit interval can
be reformulated as a boundary value problem of the ES-BGK model with the unit Knudsen
number in a small interval of length κ. Therefore, our results also say that the stationary
flow occurs between the condensed phases when the two condensed phases are sufficiently
close.

1.4. Main results 2: diffusive dominant case. In the diffusive dominant case (δ2 ̸= 0),
we impose the following flux control condition:∫

v1<0

f(0, v)|v1|dv +
∫
v1>0

f(1, v)|v1|dv = 1.(1.10)

which is adapted from the Maslova’s argument [37]. This is because, without such additional
assumptions, we generally don’t have uniqueness for the boundary problem with diffusive
boundary conditions (See the paragraphs following the Theorem 1.5.) Using (1.1), (1.2) and
(1.10), we reformulate the boundary condition into (1.13), and we consider the following
mild solution for the diffusive dominant case (Theorem 1.5). (See Section 7 for the detail of
the reformulation.)

Definition 1.4. f ∈ L∞ ([0, 1];L1
2(R3)

)
∩ L1

γ,⟨v⟩(R
3) is said to be a mild solution for (1.1)

if it satisfies

f(x, v) = e
− x

τ|v1| f(0, v) +
1

τ |v1|

∫ x

0

e
− x−y

τ|v1|Mν(f)dy if v1 > 0(1.11)

and

f(x, v) = e
− 1−x

τ|v1| f(1, v) +
1

τ |v1|

∫ 1

x

e
− y−x

τ|v1|Mν(f)dy if v1 < 0,(1.12)

where

f(0, v) = δ1fL(v) + δ2SL(f)Mw(0) + δ3f(0, Rv), (v1 > 0)

f(1, v) = δ1fR(v) + δ2SR(f)Mw(1) + δ3f(1, Rv), (v1 < 0)
(1.13)

and SL(f), SR(f) denote

SL(f) =
1− δ1
2− δ1

+
δ1

2− δ1

∫
v1<0

fR|v1|dv −
1

τ(2− δ1)

∫
v1>0

∫ 1

0

R(y, v)dydv,

SR(f) =
1− δ1
2− δ1

+
δ1

2− δ1

∫
v1>0

fL|v1|dv −
1

τ(2− δ1)

∫
v1<0

∫ 1

0

R(y, v)dydv,

with

R(f)(x, v) = Mν(f)(x, v)− f(x, v).

Theorem 1.5. [Diffusive dominant case: δ2 ̸= 0]
(1) Non-critical case (−1/2 < ν < 1): Let −1/2 < ν < 1 and δ2 ̸= 0. Suppose fLR

satisfies (P1). Then there exist ε > 0 depending on fLR and δi (i = 1, 2, 3) such that, if
τ > ε−1, then there exists a unique mild solution f ≥ 0 to the boundary value problem (1.1),
(1.2) and (1.10) satisfying∫

R3

f(x, v)dv ≥ aℓ,2,

∫
R3

f(x, v)(1 + |v|2)dv ≤ 2CLR,2,
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and

C1
νδ

2
2

γℓ,2
27C2

LR,2

≤ κ⊤ {Tν}κ ≤ 2

3aℓ,2
C2

νCLR,2,

for all κ ∈ R3 such that |κ| = 1, where γℓ,2 denotes

γℓ,2 =

(∫
v1>0

e
− 1

|v1|Mw(0)|v1|dv

)(∫
v1<0

e
− 1

|v1|Mw(1)|v1|dv

)
> 0.(1.14)

(2) Critical case (ν = −1/2): Let ν = −1/2 and δ2 ̸= 0. Suppose fLR satisfies (P1).
Then there exists ε > 0 depending on fLR and δi (i = 1, 2, 3) such that, if τ > ε−1 and
δ1 < ε, then there exists a unique mild solution f ≥ 0 to the boundary value problem (1.1),
(1.2) and (1.10) satisfying∫

R3

f(x, v)dv ≥ aℓ,2,

∫
R3

f(x, v)|v|2dv ≤ 2CLR,2,

and

δ2
a−1/2,2

4CLR,2
≤ κ⊤

{
T−1/2

}
κ ≤ 3

2aℓ,2
CLR,2,

for all κ ∈ R3 such that |κ| = 1, where a−1/2,2 denotes

a−1/2,2 = inf
|κ|=1

∫
R3

e
− 1

|v1|Mw

{
|v|2 − (v · κ)2

}
dv > 0.(1.15)

Remark 1.6. Note that we don’t impose any smallness restriction on the discrepancy of the
boundary flux for the critical case (ν = −1/2) in the diffusive dominant case.

The basic strategy to prove our theorem is to rewrite the boundary value problem (1.1)
- (1.2) in the mild form, set up an iteration scheme, and apply the contraction mapping
theorem. Therefore, the most important step is to define an appropriate solution space in
which the iteration map becomes a contraction. For this, we set up various estimates of
the velocity distribution function and the macroscopic fields that are uniformly preserved
through the iteration. Among others, the main difficulty lies in showing that the strict
positive lower bound of the temperature tensor Tν is preserved through the iteration scheme.

In the non-critical case −1/2 < ν < 1, the temperature tensor satisfies the following
equivalence relation:

(1.16) min{1− ν, 1 + 2ν}T I3 ≤ Tν ≤ max{1− ν, 1 + 2ν}T I3.

Therefore, it suffices to study the local temperature T , that can be shown to be bounded
below by a quantity constructed from the boundary data. In the critical case, ν = −1/2,
however, the first inequality of (1.16) becomes trivial, giving no information on the strict
positivity of the temperature tensor.

In the literature, the strict positivity of the temperature tensor is available only in the
near-equilibrium regime, where the non-diagonal elements of the temperature tensor can be
controlled arbitrarily small, enabling one to control the temperature tensor from below. In
the current work, we establish an argument to prove such strict positive definiteness of the
temperature tensor for general non-perturbative solutions.
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Our main observation for this is that the bulk velocity in x direction can be controlled
by the discrepancy of the boundary flux even without the smallness of δ1 in the inflow
dominance case:∣∣∣U1(x)

∣∣∣ ≤ δ1

∣∣∣∣∣
∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣+O
(
δ2, δ3, τ

−1
)
,(1.17)

which is physically relavent in that, if we don’t have enough flux from both ends of the slab,
we cannot expect fast flow inbetween. We then observe that the quadratic polynomial of
T−1/2 can be expressed using the local temperature and the directional temperature in the
critical case:

κ⊤
{
T−1/2

}
κ =

1

ρ

∫
R3

f |v − U |2dv − 1

ρ

∫
R3

f
{
(v − U) · κ

}2
dv.

We mention that the concept of ”directional temperature” was coined by Villani in [64], and
was crucially used in the proof of entropy production estimates of the Boltzmann equation.
This, with the use of (1.17), enables one to bound the temperature tensor in the critical
case from below by a quantity defined only through the inflow boundary data and the inflow
boundary flux:

1

2
inf

|κ|=1

∫
R3

e
−

2CLM,1
|v1| fLR

{
|v|2 − (v · κ)2

}
dv − 2

∣∣∣∣∣
∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣
2

,

up to small error. The first term can roughly be interpreted as the difference of total energy
minus the directional energy of the inflow boundary data away from zero, and the second
term is the discrepancy of the flux at both ends. This enables one to bound the temperature
tensor from below when δi (i = 2, 3) and τ−1 are sufficiently small.

In the diffusive dominant case, similar argument is working but there is an important
difference to be mentioned that, without additional assumption on the amount of flux given
in (1.10), we cannot expect the uniqueness of the solutions. Consider the following simple
boundary value problem with diffusive boundary condition:

v1∂xf = 0, f(i, v) =

(∫
(−1)i+1v1>0

f(i, v)|v1|dv

)
Mw(i), (i = 0, 1).

It can be easily checked that

f(x, v) = C1Mw(v, 0)1v1>0 + C2Mw(v, 1)1v1<0

solves the problem for any C1, C2 > 0. In this regards, we impose the flux control condition
(1.10) in this case.

Unlike the near-equilibrium problem, there is no diffusivity in our setting, therefore, the
usual restriction such as fixing the mass of the gas is not sufficient to guarantee uniqueness.
Some stronger restriction is required. We borrowed the flux control condition (1.10) from
the work of Maslova [37]. We also mention that this is the main reason why we divide the
proof into the inflow-dominant case and the diffusive-dominant case.

1.5. Literature review. We start with the results on the stationary problems of the BGK
model in a slab, which is most relevent to the current work. The first existence theory for
stationary BGK model can be found in [61], where Ukai applied the a version of Schauder
fixed point theorem to solve the slab problem with inflow boundary condition. In [44],
Nouri derived the existence of weak solutions for a quantum BGK model with a discretized
condensation ansatz in a bounded interval. In [11], classical Banach fixed point argument
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was developed to study the existence and uniqueness for slab problems for ES-BGK model.
In [11], however, the boundary condition was limited to inflow boundary condition, and
the case ν = −1/2 is not treated, which is the main motivation of the current work. The
argument of [11] was then applied to a relativistic BGK model [35] and to the quantum
BGK model [10]. For the related results on the stationary Boltzmann equation, we refer to
[6, 7, 8, 22, 23, 25, 26, 33] and references therein.

For the time dependent problems, it was Perthame who first obtained the existence of
weak solutions [49] under the assumption of finite mass, momentum, energy and entropy.
The unique mild solution was then found in [51] in a function space with sufficient decay
in the velocity domain. Mischler extended this to the whole space in [43]. Zhang et al
considered the Lp weak solution of the BGK model in [72]. For the asymptotic stability
near global equilibriums, we refer to [9, 66]. Various macroscopic limit for the BGK type
models, including the hydrodynamic limit at the Euler and Navier-Stokes limit, Diffusion
limit, and fractional limit can be found in [24, 38, 39, 54, 55]. For the development or
analysis of numerical schemes for BGK models, see [29, 30, 36, 40, 41, 52, 53] and rich
references therein.

As was mentioned in the introduction, after the verification of H-theorem of ES-BGK
model made in [2], the ES-BGK model got popularized a lot [1, 29, 31, 41, 73]. Brull et
al developed a systematical way to derive of ES-BGK model and provided another proof of
H-theorem in [16]. The entropy production estimate for ES-BGK model was obtained in
[70]. For existence results, we refer to [45] for weak solutions, [67] for unique mild solution
and [69] for the result in near-global-equilibrium regime. For related results for the ES-BGK
model for polyatomic molecules, see [46, 47, 48, 68].

This paper is organized as follows. In Section 2, we set up an approximation scheme
and the solution space for the inflow dominance case. In Section 3, we show that, under
appropriate assumptions, the approximate solution stays in the solution space in each iter-
ation. The lower bound estimate for the temperature tensor in the critical case (ν = −1/2)
is made. In Section 4, we prove the Cauchy estimate to complete the proof of Theorem 1.2.
Section 5 is devoted to the proof of Theorem 1.5. Since many parts overlap with proof of
Theorem 1.2, we focus on the difference of the argument.

2. Approximation scheme and solution space for inflow dominant case

In the following, we aim to construct the solution fn for (1.1). According to (1.3), ρn,
Un, Tn and Θn represent the hyrodynamic quantities associated to fn. The approximate
solution approximate scheme reads:

fn(x, v) = fn(x, v)1v1>0 + fn(x, v)1v1<0,

where fn and fn are determined iteratively by

fn+1(x, v) = e
− x

τ|v1| fn+1(0, v) +
1

τ |v1|

∫ x

0

e
− x−y

τ|v1|Mν(f
n)dy if v1 > 0(2.1)

and

fn+1(x, v) = e
− 1−x

τ|v1| fn+1(1, v) +
1

τ |v1|

∫ 1

x

e
− y−x

τ|v1|Mν(f
n)dy if v1 < 0(2.2)
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where fn+1(0, v) and fn+1(1, v) are defined by

fn+1(0, v) = δ1fL(v) + δ2

(∫
v1<0

fn(0, v)|v1|dv

)
Mw + δ3f

n(0, Rv), (v1 > 0),

fn+1(1, v) = δ1fR(v) + δ2

(∫
v1>0

fn(1, v)|v1|dv

)
Mw + δ3f

n(1, Rv), (v1 < 0).

(2.3)

We will show that {fn}n constructed from the above scheme satisfies several uniform-in-n
estimates. To do this in a more systematical way, we define two solution spaces. First we
define the following solution space for the non-critical case (−1/2 < ν < 1):

Ω1 =
{
f ∈ L∞

(
[0, 1];L1

2(R3
v)
)
∩ L1

γ,⟨v⟩(R
3
v) | f satisfies (A1), (B1), (C1), (D1)

}
where (A1), (B1), (C1) and (D1) denote

• (A1) f is non-negative:

f(x, v) ≥ 0 for x, v ∈ [0, 1]× R3.

• (B1) The macroscopic field is well-defined:∫
R3

f(x, v)dv ≥ δ1aℓ,1,

∫
R3

f(x, v)(1 + |v|2)dv ≤ 2CLR,1.

• (C1) The temperature tensor is well-defined:

C1
νδ

2
1

γℓ,1
3C2

LR,1

≤ κ⊤ {Tν}κ ≤ 2

3aℓ,1
C2

νCLR,1.

• (D1) The trace is well-defined:

∥f∥L1
γ,|v1|,±

≤ 2∥fLR∥L1
γ,|v1|

, ∥f∥L1
γ,⟨v⟩,±

≤ 2CLR,1.

For the critical case ν = −1/2, we define

Ω2 =
{
f ∈ L∞

(
[0, 1];L1

2(R3
v)
)
∩ L1

γ,⟨v⟩(R
3
v) | f satisfies (A2), (B2), (C2), (D2)

}
where (A2), (B2), (C2) and (D2) denote

• (A2) f is non-negative:

f(x, v) ≥ 0 for x, v ∈ [0, 1]× R3.

• (B2) The macroscopic field is well-defined:∫
R3

f(x, v)dv ≥ δ1aℓ,1,

∫
R3

f(x, v)(1 + |v|2)dv ≤ 2CLR.

• (C2) The temperature tensor is well-defined:

δ1
a−1/2

2CLR,1
≤ κ⊤

{
T−1/2

}
κ ≤ 3

2aℓ,1
CLR,1.

• (D2) The trace satisfies:

∥f∥L1
γ,|v1|,±

≤ 2∥fLR∥L1
γ,|v1|

, ∥f∥L1
γ,⟨v⟩,±

≤ 2CLR,1.

Before we move on to the proof of uniform estimates for fn, we record a few estimates
that will be fruitfully used throughout the paper.
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Lemma 2.1. (1) Let f ∈ Ω1. Then there exists positive constants C1, C2 depending only
on the quantities (1.4), (1.5) and γℓ,1 such that

Mν(f) ≤ C1e
−C2|v|2 .

(2) Let f ∈ Ω2. Then there exists positive constants C1, C2 depending only on the quantities
(1.4), (1.5) and a−1/2 such that

M−1/2(f) ≤ C1e
−C2|v|2 .

Proof. We only consider the proof of (2) to avoid repetition. We first note that the macro-
scopic velocity is well-defined in Ω2:

(2.4) |U | = |ρU |
ρ

=

∣∣∣ ∫R3 fvdv
∣∣∣∫

R3 fdv
≤ CLR

aℓ,1
.

On the other hand, (C2) implies that

(2.5) −(v − U)⊤{T }−1
−1/2(v − U) ≤ − 3

2aℓ,1
CLR,1|v − U |2,

and

(2.6) det T−1/2 = λ1λ2λ3 ≥

{
δ1

a−1/2,1

2CLR,1

}3

,

where λi (i = 1, 2, 3) to be the eigenvalues of Tν . Note that Tν is diagonalizable since it’s
symmetric. The desired then estimate follows immediately from (2.4), (2.5) and (2.6). □

The following lemma can be found in [11]. We present the detailed proof for the readers’
convenience.

Lemma 2.2. Let C be a fixed positive constants. Then we have∫ x

0

∫
v1>0

1

τ |v1|
e
− x−y

τ|v1| e−Cv2
1dv1dy ≤ C

(
ln τ + 1

τ

)
, x ∈ [0, 1]

where C > 0 depends only on quantities in (1.4) and (1.5).

First, we divide the domain of integration as follows:{∫ x

0

∫
|v1|< 1

τ

+

∫ x

0

∫
1
τ ≤|v1|<τ

+

∫ x

0

∫
|v1|≥τ

}
1

τ |v1|
e
− x−y

τ|v1| e−Cv2
1dv1dy ≡ I1 + I2 + I3.

(a) The estimate of I1: For I1, we integrate on y first to get

I1 =

∫
|v1|< 1

τ

{∫ x

0

1

τ |v1|
e
− x−y

τ|v1| dy

}
e−Cv2

1dv1

=

∫
|v1|< 1

τ

{
1− e

− x
τ|v1|

}
e−Cv2

1dv1

≤
∫
|v1|< 1

τ

dv1

≤ 1

τ
.
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(b) The estimate of I2: For this case, we find

I2 ≤ 1

aℓ,1

∫
1
τ ≤|v1|≤τ

1− e
−

aℓ,1x

τ|v1| dv1,

and apply the Taylor expansion to 1− e
− 1

τ|v1| to get

I2 ≤
∫

1
τ <|v1|<τ

{(
1

τ |v1|

)
− 1

2!

(
1

τ |v1|

)2

+
1

3!

(
1

τ |v1|

)3

+ · · ·

}
dv1

≤
∣∣∣ ∫ τ

1
τ

1

τr
dr
∣∣∣+ ∣∣∣ ∫ τ

1
τ

1

2!

(
1

τr

)2

dr
∣∣∣+ ∣∣∣ ∫ τ

1
τ

1

3!

(
1

τr

)3

dr
∣∣∣+ · · ·

=
1

τ
ln τ2 +

1

2!

1

τ

τ2 − 1

τ2
+

1

2 · 3!
1

τ

τ4 − 1

τ4
+

1

3 · 4!
1

τ

τ6 − 1

τ6
· · ·

≤ 1

τ
ln τ2 +

e

τ
.

(c) We compute the remaining I3 as

I3 ≤
∫ 1

0

∫
|v1|>τ

1

τ |v1|
e−Cv2

1dv1dy ≤ 1

τ2

∫
|v1|>τ

e−Cv2
1dv1 ≤ Cℓ,u

1

τ2
.

Finally, we combine the estimates (a), (b), (c) to obtain the desired result.

3. Uniform-in-n estimates of fn for inflow dominant case

The main result of this section is the following proposition

Proposition 3.1. (1) Let −1/2 < ν < 1. Assume fLR satisfies the conditions of Theorem
1.1 (1). Then fn ∈ Ω1 for all n.
(2) Let ν = −1/2. Assume fLR satisfies the conditions of Theorem 1.1 (2). Then, fn ∈ Ω2

for all n.

We divide the proof into Lemma 3.1, Lemma 3.3, and Lemma 3.5.

Lemma 3.1. Assume fn ∈ Ω1 or Ω2. Then we have

fn+1 ≥ 0 and

∫
R3

fn+1dv ≥ δ1aℓ,1.

Proof. From (2.1) and (2.2), we find

fn+1 ≥ δ1e
− x

τ|v1| fL(v)1v1>0 + δ1e
− x

τ|v1| fR(v)1v1<0 ≥ δ1e
− 1

|v1| fLR.

Here, we assumed τ > 1 without loss of generality. Integrating with respect to dv, we obtain
the desired lower bound:∫

R3

fn+1dv ≥ δ1

∫
R3

e
− 1

|v1| fLRdv = δ1aℓ,1.

□

Lemma 3.2. (1) Let fn ∈ Ω1 or Ω2. Then we have

∥fn+1∥L1
γ,|v1|,+

, ∥fn+1∥L1
γ,|v1|,−

≤ 2∥fLR∥L1
γ,|v1|

.

(2) Let fn ∈ Ω1 or Ω2. Then we have

∥fn+1∥L1
γ,⟨v⟩,+

, ∥fn+1∥L1
γ,⟨v⟩,−

≤ 2∥Mw∥L1
γ,⟨v⟩

∥fLR∥L1
γ,⟨v⟩

.
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Proof. (1) • Estimate for outflux ∥fn+1∥L1
γ,|v1|,+

: Using (2.2), we can write fn+1(0, v) for

v1 < 0 as

fn+1(0, v) = δ1fR + δ2

(∫
v1>0

f(1, v)|v1|dv

)
Mw(1) + δ3f

n(1, Rv)

+
1

τ |v1|

∫ 1

0

e
− y

τ|v1|Mν(f
n)dy

(3.1)

which, in view of Lemma 2.2, yields∫
v1<0

fn+1(0, v)|v1|dv

≤ δ1

∫
v1<0

fR|v1|dv + δ2

∫
v1>0

fn(1, v)|v1|dv + δ3

∫
v1>0

fn(1, v)|v1|dv

+ Cℓ,u

(
ln τ + 1

τ

)
.

(3.2)

Similarly, ∫
v1>0

fn+1(1, v)|v1|dv

≤ δ1

∫
v1>0

fL|v1|dv + δ2

∫
v1<0

fn(0, v)|v1|dv + δ3

∫
v1<0

fn(0, v)|v1|dv

+ Cℓ,u

(
ln τ + 1

τ

)
.

(3.3)

From (3.2) and (3.3), we obtain

∥fn+1∥L1
γ,|v1|,+

=

∫
v1<0

fn+1(0, v)|v1|dv +
∫
v1>0

fn+1(1, v)|v1|dv

≤ δ1∥fLR∥L1
γ,|v1|

+ (δ2 + δ3)∥fn∥L1
γ,|v1|,+

+ Cℓ,u

(
ln τ + 1

τ

)
.

(3.4)

Therefore, in view of Di of Ωi (i = 1, 2), we see that

∥fn+1∥L1
γ,|v1|,+

≤ δ1∥fLR∥L1
γ,|v1|

+ 2(δ2 + δ3)∥fLR∥L1
γ,|v1|

+ Cℓ,u

(
ln τ + 1

τ

)
= 2(δ1 + δ2 + δ3)∥fLR∥L1

γ,|v1|
− δ1∥fLR∥L1

γ,|v1|
+ Cℓ,u

(
ln τ + 1

τ

)
≤ 2∥fLR∥L1

γ,|v1|

(3.5)

for sufficiently large τ .

• Estimate for influx: ∥fn+1∥L1
γ,|v1|,−

: When v1 > 0, we have from the boundary condition

(2.1) that

fn+1(0, v) = δ1fL + δ2

(∫
v1<0

fn(0, v)|v1|dv

)
Mw(0) + δ3f

n(0, Rv).(3.6)
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Integrate both sides with respect to |v1|dv on v1 > 0 to get∫
v1>0

fn+1(0, v)|v1|dv

= δ1

∫
v1>0

fL|v1|dv + δ2

(∫
v1>0

Mw(0)|v1|dv

)(∫
v1<0

fn(0, v)|v1|dv

)

+ δ3

∫
v1>0

fn(0, Rv)|v1|dv

≤ δ1

∫
v1>0

fL|v1|dv + (δ2 + δ3)

∫
v1<0

fn(0, v)|v1|dv,

(3.7)

where we used
∫
v1>0

Mw(0)|v1|dv ≤ 1. Similarly, we estimate∫
v1<0

fn+1(1, v)|v1|dv

= δ1

∫
v1<0

fR|v1|dv + δ2

(∫
v1<0

Mw(1)|v1|dv

)(∫
v1>0

fn(1, v)|v1|dv

)

+ δ3

∫
v1>0

fn(1, Rv)|v1|dv

≤ δ1

∫
v1<0

fR|v1|dv + (δ2 + δ3)

∫
v1>0

fn(1, v)|v1|dv,

(3.8)

Combining (3.7) and (3.8) gives

∥fn+1∥L1
γ,|v1|,−

=

∫
v1>0

fn+1(0, v)|v1|dv +
∫
v1<0

fn+1(1, v)|v1|dv

≤ δ1∥fLR∥L1
γ,|v1|

+ (δ2 + δ3)∥fn∥L1
γ,|v1|,+

.
(3.9)

Thanks to (3.5), we have

∥fn+1∥L1
γ,|v1|,−

≤ δ1∥fLR∥L1
γ,|v1|

+ 2(δ2 + δ3)∥fLR∥L1
γ,|v1|

≤ 2∥fLR∥L1
γ,|v1|

.

This completes the proof of (1). The proof of (2) is identical. We omit the proof. □

Lemma 3.3. Let fn ∈ Ω1 or Ω2. Then we have∫
R3

fn+1(1 + |v|2)dv ≤ 2∥fLR∥L1
γ,⟨v⟩

∥Mw∥L1
γ,⟨v⟩

.

Proof. We integrate (2.1) w.r.t (1 + |v|2)dv on v1 > 0 to get∫
v1>0

fn+1(x, v)(1 + |v|2)dv =

∫
v1>0

e
− x

τ|v1| fn+1(0, v)(1 + |v|2)dv

+

∫
v1>0

∫ x

0

1

τ |v1|
e
− x−y

τ|v1| ρn(y)Mν(fn)(1 + |v|2)dydv.
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We compute the boundary terms in
∫
R3 f

n+1(1 + |v|2)dv as∫
v1>0

e
− x

τ|v1| fn+1(0, v)(1 + |v|2)dv

≤
∫
v1>0

fn+1(0, v)(1 + |v|2)dv

≤ δ1

∫
v1>0

fL(v)(1 + |v|2)dv + δ2

(∫
v1<0

fn(0, v)|v1|dv

)
∥Mw∥L1

γ,⟨v⟩,−

+ δ3

∫
v1<0

fn(0, v)(1 + |v|2)dv.

Thanks to Lemma 2.1, we can compute the source term as∫
v1>0

∫ x

0

1

τ |v1|
e
− x−y

τ|v1|Mν(f)(1 + |v|2)dydv

≤ CLM,1

∫ x

0

∫
v1>0

1

τ |v1|
e
− x−y

τ|v1| e−Cv2
1dv1dy

≡ CLM,1

(
ln τ + 1

τ

)
.

Therefore,∫
v1>0

fn+1(x, v)(1 + |v|2)dv

= δ1

∫
v1>0

fL(v)(1 + |v|2)dv + δ2

(∫
v1<0

fn(0, v)|v1|dv

)
∥Mw∥L1

γ,⟨v⟩,−

+ δ3

∫
v1<0

fn(0, v)(1 + |v|2)dv + Cℓ,u

(
ln τ + 1

τ

)
.

We can have similar result for the case v1 < 0:∫
v1<0

fn+1(x, v)(1 + |v|2)dv

= δ1

∫
v1<0

fR(v)(1 + |v|2)dv + δ2

(∫
v1>0

fn(1, v)|v1|dv

)
∥Mw∥L1

γ,⟨v⟩,+

+ δ3

∫
v1>0

fn(1, v)(1 + |v|2)dv + Cℓ,u

(
ln τ + 1

τ

)
.

Summing up and using Di of Ωi (i = 1, 2), we get∫
R3

fn+1(x, v)(1 + |v|2)dv

≤ δ1∥fLR∥L1
γ,⟨v⟩

+ δ2∥Mw∥L1
γ,⟨v⟩

∥fn∥L1
γ,|v1|,+

+ δ3∥fn∥L1
γ,⟨v⟩,+

+ Cℓ,u

(
ln τ + 1

τ

)
≤ δ1∥fLR∥L1

γ,⟨v⟩
+ δ2∥Mw∥L1

γ,⟨v⟩
∥fn∥L1

γ,⟨v1⟩
+ 2δ3∥fLR∥L1

γ,⟨v⟩
∥Mw∥L1

γ,⟨v⟩

+ Cℓ,u

(
ln τ + 1

τ

)
.
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Since
1 = ∥Mw∥L1

γ,|v1|
≤ ∥Mw∥L1

γ,⟨v⟩
,

we have∫
R3

fn+1(x, v)(1 + |v|2)dv

≤ δ1∥fLR∥L1
γ,⟨v⟩

∥Mw∥L1
γ,⟨v⟩

+ δ2∥fn∥L1
γ,⟨v1⟩

∥Mw∥L1
γ,⟨v⟩

+ 2δ3∥fLR∥L1
γ,⟨v⟩

∥Mw∥L1
γ,⟨v⟩

+ Cℓ,u

(
ln τ + 1

τ

)
≤ 2(δ1 + δ2 + δ3)∥fn∥L1

γ,⟨v1⟩
∥Mw∥L1

γ,⟨v⟩
− (δ1 + δ3)∥fLR∥L1

γ,⟨v⟩
∥Mw∥L1

γ,⟨v⟩

+ Cℓ,u

(
ln τ + 1

τ

)
≤ 2∥fLR∥L1

γ,⟨v⟩
∥Mw∥L1

γ,⟨v⟩
.

□

In the following lemma, we show that (1) the bulk velocity in x direction is controlled by
the discrepancy of the boundary flux, and (2) the bulk velocities in other directions can be
taken arbitrarily small.

Lemma 3.4. Let fn ∈ Ω1 or Ω2.
(1) For i = 1, we have∣∣∣ ∫

R3

fn+1v1dv
∣∣∣ ≤ δ1

∣∣∣∣∣
∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣+ 2

(
δ2 + δ3 +

2

τ

)
CLR,1

where CLR,1 denotes
CLR,1 = ∥fLR∥L1

γ,⟨v⟩
∥Mw∥L1

γ,⟨v⟩
.

(2) For i = 2, 3, we have∣∣∣ ∫
R3

fn+1vidv
∣∣∣ ≤ 2δ3∥fLR∥L1

γ,|v1|
∥Mw∥L1

γ,|v1|
+ Cℓ,u

(
ln τ + 1

τ

)
.

Proof. (1) For v1 > 0, (2.1) has the equivalent mild form:

fn+1(x, v) = fn+1(0, v) +
1

τ |v1|

∫ x

0

(
Mν(f

n)− fn+1
)
dy

= fn+1(0, v) +
1

τv1

∫ x

0

(
Mν(f

n)− fn+1
)
dy.

We multiply v1 and integrate on v1 > 0 to get

∫
v1>0

fn+1(x, v)v1dv =

∫
v1>0

fn+1(0, v)|v1|dv +
1

τ

∫ x

0

∫
v1>0

(
Mν(f

n)− fn+1
)
dydv.

(3.10)

In the case v1 < 0, we have from (2.2) that

fn+1(x, v) = fn+1(1, v) +
1

τ |v1|

∫ x

1

(
Mν(f

n)− fn+1
)
dy

= fn+1(1, v)− 1

τv1

∫ x

1

(
Mν(f

n)− fn+1
)
dy.
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Integrating with respect to v1dv on v1 < 0:∫
v1<0

fn+1(x, v)v1dv =

∫
v1<0

fn+1(1, v)v1dv −
1

τ

∫ x

1

∫
v1<0

(
Mν(f

n)− fn+1
)
dydv

= −
∫
v1<0

fn+1(1, v)|v1|dv +
1

τ

∫ 1

x

∫
v1<0

(
Mν(f

n)− fn+1
)
dydv.

(3.11)

From (3.10) and (3.11), we have∫
R3

fn+1(x, v)v1dv = I + II,

where

I =

∫
v1>0

fn+1(0, v)|v1|dv −
∫
v1<0

fn+1(1, v)|v1|dv

and

II =
1

τ

∫ x

0

∫
v1>0

(
Mν(f

n)− fn+1
)
dvdy +

1

τ

∫ 1

x

∫
v1<0

(
Mν(f

n)− fn+1
)
dydv.

(a) The estimate of I: We observe from the boundary condition that∫
v1>0

fn+1(0, v)|v1|dv

= δ1

∫
v1>0

fL|v1|dv + δ2

(∫
v1<0

fn(0, v)|v1|dv

)(∫
v1>0

Mw|v1|dv

)

+ δ3

∫
v1>0

fn(0, Rv)|v1|dv

(3.12)

and ∫
v1<0

fn+1(1, v)|v1|dv

= δ1

∫
v1<0

fR|v1|dv + δ2

(∫
v1>0

fn(1, v)|v1|dv

)(∫
v1<0

Mw|v1|dv

)

+ δ3

∫
v1>0

fn(1, v)|v1|dv.

(3.13)

Taking the difference of (3.12) and (3.13), we estimate I as

|I| =

∣∣∣∣∣
∫
v1>0

fn+1(0, v)|v1|dv −
∫
v1<0

fn+1(1, v)|v1|dv

∣∣∣∣∣
≤ δ1

∣∣∣∣∣
∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣+ δ2∥fn∥L1
γ,⟨v⟩

∥Mw∥L1
γ,|v1|

+ δ3∥fn∥L1
γ,⟨v⟩

≤ δ1

∣∣∣∣∣
∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣+ 2(δ2 + δ3)∥fLR∥L1
γ,⟨v⟩

∥Mw∥L1
γ,⟨v⟩

.
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In the last line, we used Lemma 5.4.
(b) The estimate for II: For II, we compute

|II| ≤ 1

τ

∫ x

0

∫
v1>0

∣∣∣Mν(f
n)− fn+1

∣∣∣ dvdy + 1

τ

∫ 1

x

∫
v1<0

∣∣∣Mν(f
n)− fn+1

∣∣∣ dydv
≤ 1

τ

∫ 1

0

∫
v1>0

{
Mν(f

n) + fn+1
}
dvdy +

1

τ

∫ 1

0

∫
v1<0

{
Mν(f

n) + fn+1
}
dydv

=
1

τ

∫ 1

0

∫
R3

{Mν(f
n) + fn+1}dvdy

=
1

τ

∫ 1

0

{
ρn + ρn+1

}
dy

≤ 4

τ
∥fLR∥L1

γ,⟨v⟩
∥Mw∥L1

γ,⟨v⟩
.

In the last line, we used (Bi) (i = 1, 2) :

ρn ≤ 2∥fLR∥L1
γ,⟨v⟩

∥Mw∥L1
γ,⟨v⟩

and Lemma 3.3:

ρn+1 ≤ 2∥fLR∥L1
γ,⟨v⟩

∥Mw∥L1
γ,⟨v⟩

.

Now, we combine (a) and (b) to obtain the desired result.

(2) We only prove the case i=2. For v1 > 0, we integrate (2.1) with respect to v2dv2dv3 to
get ∫

R2

fn+1(x, v)v2dv2dv3 = e
− x

τ|v1|

∫
R2

fn+1(0, v)v2dv2dv3

+
1

τ |v1|

∫ x

0

e
− x−y

τ|v1|

∫
R2

Mν(f
n)v2dv2dv3dy

From (P2) of fL that no vertical flow is induced from fLR, and the fact that Mwv2 is odd
in v2, we have ∫

R2

fn+1(0, v)v2dv2dv3 = δ3

∫
v1<0

fn(0, v)dv

which, together with Property (B1) or (B2) and Lemma 2.1 gives∫
R2

fn+1(x, v)v2dv2dv3 ≤ δ3

∫
R2

fn(0, v)v2dv2dv3

+ Cℓ,u
1

τ |v1|

∫
R6

∫ x

0

e
− x−y

τ|v1| e−C|v|2dydv2dv3.

Now, integrating on v1 > 0 and recalling Lemma 2.2, we get∣∣∣∣∣
∫
v1>0

fn+1(x, v)v2dv

∣∣∣∣∣ ≤ δ3

∣∣∣∣∣
∫
v1<0

fn(0, v)v2dv

∣∣∣∣∣+ Cℓ,u

(
ln τ + 1

τ

)
.

Applying the same type of argument to (2.2), we can derive∣∣∣ ∫
v1<0

fn+1(x, v)v2dv
∣∣∣ ≤ δ3

∣∣∣∣∣
∫
v1>0

fn(1, v)v2dv

∣∣∣∣∣+ Cℓ,u

(
ln τ + 1

τ

)
.
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We sum these up them to obtain∣∣∣ ∫
v1<0

fn+1(x, v)v2dv
∣∣∣ ≤ 2δ3∥fLR∥L1

γ,⟨v1⟩
∥Mw∥L1

γ,⟨v1⟩
+ Cℓ,u

(
ln τ + 1

τ

)
.

Here, we used Lemma 5.4 (2). □

In the following lemma, we show that the quadratic polynomial of the temperature tensor
can be controlled from below and above. We mention that the critical case (ν = −1/2) has
never been treated in the literature so far, except for the near-global-equilibrium regime
[68, 69].

Lemma 3.5. (1) Let −1/2 < ν < 1. Assume fn ∈ Ω1. Then, for sufficiently large τ , we
have

C1
νδ

2
1

γℓ,1
3C2

LR,1

≤ κ⊤
{
T n+1
ν

}
κ ≤ 2

3aℓ,1δ1
C2

νCLR,1

for any κ ∈ R and |κ| = 1.
(2) Let ν = −1/2 and f ∈ Ω2. Then, for sufficiently large τ , we have

δ1
a−1/2,1

2CLR,1
≤ κ⊤

{
T n+1
−1/2

}
κ ≤ 3

2aℓ,1δ1
CLR,1

for any κ ∈ R and |κ| = 1.

Remark 3.6. We recall that where γℓ,1 and a−1/2,1 are defined in (1.8) and (1.9) respectively.

Proof. (1) We recall the following equivalence estimate [11, 69] which holds for −1/2 < ν <
1:

C1
νT

n+1I3 ≤ T n+1
ν ≤ C2

νT
n+1I3,(3.14)

where C1
ν = min{1 − ν, 1 + 2ν} and C2

ν = max{1 − ν, 1 + 2ν}. Therefore, it is enough to
derive the lower and upper bound of Tn+1. The upper bound follows easily from Lemma
3.1 and Lemma 3.3:

Tn+1 ≤ 1

3ρn+1

∫
R3

fn+1|v|2dv ≤ 2

3δ1aℓ,1
∥fLR∥L1

γ,⟨v⟩
∥Mw∥L1

γ,⟨v⟩
.(3.15)

Now we turn to the lower bound of Tn+1. Since fn+1 ≥ 0 and |v| ≥ |v1|, we have from the
Cauchy-Schwarz inequality that

3{ρn+1}2Tn+1 =

(∫
R3

fn+1dv

)(∫
R3

fn+1|v|2dv
)
−
∣∣∣∣∫

R3

fn+1vdv

∣∣∣∣2
≥
(∫

R3

fn+1|v1|dv
)2

−
∣∣∣∣∫

R3

fn+1vdv

∣∣∣∣2 .
Then we decompose according to whether they contain vertical flow or not:

3{ρn+1}2Tn+1 ≥
(∫

R3

fn+1|v1|dv
)2

−
{ ∑

1≤i≤3

∣∣∣ ∫
R3

fn+1vidv
∣∣∣}2

=

(∫
R3

fn+1|v1|dv
)2

−
(∫

R3

fn+1v1dv
)2

−R

≡ I −R,

(3.16)
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where

R =
∑

(i,j) ̸=(1,1)

∣∣∣ ∫
R3

fn+1vidv
∣∣∣∣∣∣ ∫

R3

fn+1vjdv
∣∣∣.

Since fn ∈ Ω1, we see from Lemma 3.4 that R can be taken to be arbitrarily small by taking
τ sufficiently large:

R = O
(
δ3, (ln τ + 1)τ−1

)
.

For I, we use a2 − b2 = (a− b)(a+ b) to compute

I ≥
{∫

R3

fn+1(|v1|+ v1)dv

}{∫
R3

fn+1(|v1| − v1)dv

}
= 4

{∫
v1>0

fn+1|v1|dv

}{∫
v1<0

fn+1|v1|dv

}

≥ 4δ21

(∫
v1>0

e
− 1

|v1| fL|v1|dv

)(∫
v1<0

e
− 1

|v1| fR|v1|dv

)
= 4δ21γℓ,1.

In the last line, we used (2.1) as

fn+1 ≥ δ1e
− x

τ|v1| fL1v1>0 + δ1e
− 1−x

τ|v1| fR1v1<0

≥ δ1e
− 1

|v1| fL1v1>0 + δ1e
− 1

|v1| fR1v1<0

and τ > 1. Therefore, for sufficiently large τ , we get

Tn+1 ≥ 1

3{ρn+1}2

{
4δ21γℓ,1 − C

(
ln τ + 1

τ

)}
≥ δ21

γℓ,1
3C2

LR,1

.(3.17)

Thanks to Lemma 3.3. Finally, we put (3.15) and (3.17) into (3.14) to get the desired result.

(2) In this critical case, the l.h.s of the equivalence type estimate (3.14) become trivial,
and does not give any meaningful information about the positivity of the temperature ten-
sor. Therefore, we need to take a more careful look in the structure of the temperature
tensor directly. For this, we observe that the quadratic polynomial of the temperature ten-
sor can be written in terms of the local energy and the directional local energy in the critical
case ν = −1/2: [

κ⊤
{
T n+1
−1/2

}
κ

]
=

1

ρn+1

∫
R3

fn+1
{
|v|2 − (v · κ)2

}
dv

− 1

ρn+1

{
ρn+1|Un+1|2 − ρn+1(Un+1 · κ)2

}
≡ I − II,

(3.18)

for |κ| = 1

(i) Upper bound of I + II: Since,

|v|2 − (v · κ)2 ≤ |v|2 and ρn+1|Un+1|2 − ρn+1(Un+1 · κ)2 ≥ 0,
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We can ignore II and employ Lemma 3.1 and Lemma 3.3 for I to get

κ⊤
{
T n+1
−1/2

}
κ ≤ 1

ρn+1

∫
R3

fn+1|v|2dv ≤ 2

aℓ,1δ1
∥fLR∥L1

γ,⟨v⟩
∥Mw∥L1

γ,⟨v⟩
.

(ii) Lower bound of I+II: For this, we derive the lower bound for the quadratic polynomial
of T−1/2 by combining the lower bound of I and smallness of II:

(ii-a) Lower bound of I: Since |v|2 − (v · κ)2 ≥ 0, we observe from (2.1), (2.2) and Lemma
3.3 that

ρn+1I =

∫
R3

fn+1
{
|v|2 − (v · κ)2dv

}
≥ δ1

∫
R3

{
e
− x

τ|v1| fL1v1>0 + e
− 1−x

τ|v1| fR1v1<0

}{
|v|2 − (v · κ)2

}
dv

≥ δ1 inf
|κ|=1

∫
R3

e
− 1

τ|v1| fLR

{
|v|2 − (v · κ)2

}
dv.

Since we are assuming τ is sufficiently large, we assume without loss of generality that τ > 1,
so that

ρn+1I ≥ δ1 inf
|κ|=1

∫
R3

e
− 1

|v1| fLR

{
|v|2 − (v · κ)2

}
dv = δ1a−1/2.

(ii-b) Smallness of II: Thanks to Lemma 3.4, we see that II can be controlled, up to small
error, by the discrepancy of the boundary flux:

II ≤ |ρn+1Un+1|2

ρn+1
≤ 1

δ1aℓ,1

∣∣∣∣∫
R3

fn+1vdv

∣∣∣∣2 ≤ 1

δ1aℓ,1

3∑
i=1

∣∣∣∣∫
R3

fn+1vidv

∣∣∣∣2

≤ 2δ1
aℓ,1

∣∣∣∣∣
∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣
2

+
8

δ1aℓ,1

(
δ2 + δ3 +

1

τ

)2

C2
LR,1 + Cℓ,u

(
ln τ + 1

τ

)2

.

From the estimates in (ii-a), (ii-b), we have

κ⊤
{
T n+1
−1/2

}
κ ≥ 1

ρn+1
{I − |II|}

≥ 1

aℓ,1

a−1/2,1 − 2

∣∣∣∣∣
∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣
2

−O
(
δ2, δ3, τ

−1
) .

Therefore, if δ2, δ3, τ
−1 and the flux discrepency:∣∣∣∣∣

∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣
are sufficiently small, we get the desired lower bound. □
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4. Cauchy estimate for fn

The goal of this section is to show that {fn} forms a Cauchy sequence in an appropriate
norm. First, we consider the continuity property of the ellipsoidal Gaussian:

Proposition 4.1. Let f , g be elements of Ω1 (−1/2 < ν < 1) or Ω2 (ν = −1/2). Then the
non-isotropic Gaussian Mν satisfies

|Mν(f)−Mν(g)| ≤ C sup
x

∥f − g∥L1
2
e−C|v|2 .

Proof. The case of −1/2 < ν < 1 is covered in [11]. Here we only consider the case ν = −1/2.
Throughout this proof, ν is fixed to be −1/2. We apply Taylor expansion to Mν(f)−Mν(g)
as

Mν(f)−Mν(g)

= (ρf − ρg)

∫ 1

0

∂Mν(θ)

∂ρ
dθ + (Uf − Ug)

∫ 1

0

∂Mν(θ)

∂U
dθ + (Tf − Tg)

∫ 1

0

∂Mν(θ)

∂Tν
dθ

≡ (ρf − ρg)I1 + (Uf − Ug)I2 + (Tf − Tg)I3,

(4.1)

where we used abbreviated notation:

∂Mν(θ)

∂X
=

∂Mν

∂X
(ρθ, Uθ, Tθ)

and (ρθ, Uθ, Tθ) = (1−θ)
(
ρf , Uf , Tf

)
+θ
(
ρg, Ug, Tg

)
. Since the transitional macroscopic fields

(ρθ, Uθ, Tθ) are all linear combinations of macroscopic fields of f and g, all the estimates
for the macroscopic fiels given in (A2), (B2), (C2) and (D2) (i = 1, 2) hold the same for the
transitional macroscopic fields too. Therefore, we will refer to the corresponding properties
of Ωi (i = 1, 2) for ρ, U , Tν , whenever such estimates are needed for (ρθ, Uθ, Tθ).
(a) Estimate for I1: Since

∂Mν(θ)

∂ρ
=

1

ρθ
Mν(θ),

we see from (B2) of Ω2 and Lemma 2.1 that

I1 ≤ 1

δ1
Cℓ,ue

−Cℓ,u|v|2 .(4.2)

(b) Estimate for I2: An explicit computation gives

∂Mν(θ)

∂U
= −1

2

{
(v − Uθ)

⊤T −1
θ + T −1

θ (v − Uθ)
}
Mν(θ).

Put X = v − Uθ and recall the property (C2) of Ω2 to compute

|X⊤T −1
θ | = sup

|Y |=1

X⊤{Tθ}−1Y

=
1

2
sup
|Y |=1

{
(X + Y )⊤{Tθ}−1(X + Y )−X⊤{Tθ}−1X − Y ⊤{Tθ}−1Y

}
≤ 2aℓ,1

δ1a−1/2,1
sup
|Y |=1

(
|X + Y |2 + |X|2 + |Y |2

)
≤ 8aℓ,1

δ1a−1/2,1
(1 + |X|2),

(4.3)
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so that

|{Tθ}−1(v − Uθ)| ≤ C
8aℓ,1

δ1a−1/2,1
(1 + |v|2).(4.4)

Therefore, in view of Lemma 2.1, we have∣∣∣∂Mν(θ)

∂U

∣∣∣ ≤ Cℓ,ue
−Cℓ,u|v|2 .

(c) Estimate for I3: We compute

∂Mν(θ)

∂Tij
=

1

2

− 1

det Tθ
∂ det Tθ
∂Tθij

+ (v − Uθ)
⊤T −1

θ

(
∂Tθ
∂Tij

)
T −1
θ (v − Uθ)

Mν(θ)(4.5)

and observe that, for each pair of (i, j), ∂Tθ

∂Tθij
is either 1 or 0, so that∣∣∣∣∣∣(v − Uθ)

⊤T −1
θ

(
∂Tθ
∂Tθij

)
T −1
θ (v − Uθ)

∣∣∣∣∣∣ ≤
∣∣∣(v − Uθ)

⊤T −1
θ

∣∣∣ ∣∣∣T −1
θ (v − Uθ)

∣∣∣
≤ C2

ℓ,u(1 + |v|2).

(4.6)

Here, we used (4.4). On the other hand, to estimate the derivatives of the determinant, we

write ∂ det Tθ

∂Tθij
as follows: ∑

i,j,m,n

CijmnTθijTθmn

for some constants Cijmn. We then note that Lemma 3.5 (2) implies

Tθij ≤
8

2aℓ,1δ1
CLR,1.

Indeed, as in (4.3), we see that

|Tθij | = |e⊤i Tθej |

=
1

2
sup
|Y |=1

∣∣∣{(ei + ej)
⊤Tθ(ei + ej)− e⊤i Tθei − e⊤j Tθej

}∣∣∣
≤ 2aℓ,1

δ1a−1/2,1

(
|ei + ej |2 + |ei|2 + |ej |2

)
=

8aℓ,1
δ1a−1/2,1

.

Therefore, we can estimate ∣∣∣∣∣∂ det Tθ
∂Tθij

∣∣∣∣∣ ≤
(

3

2aℓ,1δ1
CLR,1

)2

.

Finally, we recall (B2) of Ω2 and Lemma 3.5 (2) to find

det Tθ ≥

(
δ1

a−1/2

2CLR,1

)3

, (ν = −1/2)(4.7)

We plug (4.6), (4.8) and (4.7) into (4.5), and employ Lemma 2.1 to get∣∣∣∂Mν(θ)

∂Tθij

∣∣∣ ≤ Cδ−8
1 (1 + |v|2)Mν(θ) ≤ Ce−C|v|2 .(4.8)
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(Note that δ1 is not small in the inflow dominant case.) We now turn back to (4.1) with
these estimates to derive

|Mν(f)−Mν(g)| ≤ C
{
|ρf − ρg|+ |Uf − Ug|+ |Tf − Tg|

}
e−C|v|2 .(4.9)

For the difference of macroscopic fields, we treat as

|ρf − ρg| =
∫
R3

|f − g|dv ≤ C sup
x

∥f − g∥L1
2
,

|Uf − Ug| ≤
1

ρf
|ρfUf − ρgUg|+

1

ρf
|ρf − ρg||Ug| ≤ Cℓ,uδ

−1
1 sup

x
∥f − g∥L1

2
,

and

|Tf − Tg| ≤
1

ρf
|ρfTf − ρgTg|+

1

ρf
|ρf − ρg||Tg| = Cℓ,uδ

−1
1 sup

x
∥f − g∥L1

2
.

This completes the proof. □

Proposition 4.2. Suppose fn, fn+1 ∈ Ωi. (i = 1, 2) Then, under the assumption of
Theorem 1.2, we have

sup
x

∥fn+1 − fn∥L1
2
+ ∥fn+1 − fn∥L1

γ,|v1|
+ ∥fn+1 − fn∥L1

γ,⟨v⟩

⪯
(
ln τ + 1

τ

)
sup
x

∥fn − fn−1∥L1
2
+ (δ2 + δ3)∥fn − fn−1∥L1

γ,|v1|
+ δ3∥fn − fn−1∥L1

γ,⟨v⟩

Proof. (1) Estimates in the trace norm ∥·∥L1
γ,|v1|

: First, we note from our boundary condition

that, for v1 > 0

fn+1(0, v)− fn(0, v) = δ2

(∫
v1<0

{
fn(0, v)− fn−1(0, v)

}
|v1|dv

)
Mw(0)

+ δ3

{
fn(0, Rv)− fn−1(0, Rv)

}
.

Taking integration w.r.t |v1|dv,∫
v1>0

|fn+1(0, v)− fn(0, v)||v1|dv

≤ δ2

(∫
v1<0

|fn(0, v)− fn−1(0, v)||v1|dv

)∫
v1>0

Mw(0)|v1|dv

+ δ3

∫
v1>0

|fn(0, Rv)− fn−1(0, Rv)||v1|dv

≤ (δ2 + δ3)

∫
v1<0

|fn(0, v)− fn−1(0, v)||v1|dv.

(4.10)

On the other hand, for v1 < 0, we have from (2.2)

fn+1(0, v) = I(fn) + II(fn),

where

I(f) = e
− 1

τ|v1| f(1, v), II(f) =
1

τ |v1|

∫ 1

0

e
− y

τ|v1|Mν(f)dy.
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(1 - i) The estimate for I(fn)− I(fn−1): Since

I(fn)− I(fn−1) = δ2e
− 1

τ|v1|Mw(1)

(∫
v1>0

{
fn(1, v)− fn−1(1, v)

}
|v1|dv

)
+ δ3e

− 1
τ|v1|

{
fn(1, Rv)− fn−1(1, Rv)

}
,

we have ∫
v1<0

|I(fn)− I(fn−1)|v1|dv

≤ δ2

{∫
v1<0

e
− 1

τ|v1|Mw(v)|v1|dv

}{∫
v1>0

|fn(1, v)− fn−1(1, v)||v1|dv

}

+ δ3

{∫
v1>0

|fn(1, v)− fn−1(1, v)||v1|dv

}

≤ (δ2 + δ3)

{∫
v1>0

|fn(1, v)− fn−1(1, v)||v1|dv

}
(4.11)

• The estimate for II(f)− II(g):
We recall Lemma 2.2 and Proposition 4.1 to estimate∫

v1>0

|II(fn)− II(fn−1)|v1|dv

≤
∫
v1>0

1

τ |v1|

∫ x

0

e
− y

τ|v1| |Mν(f
n)−Mν(f

n−1)||v1|dydv

≤ C

{∫ x

0

∫
v1>0

1

τ |v1|
e
− y

τ|v1| e−Cℓ,u|v|2dv1dy

}
sup
x

∥fn − fn−1∥L1
2

≤ C

(
ln τ + 1

τ

)
sup
x

∥fn − fn−1∥L1
2
.

(4.12)

We sum up (4.10), (4.11) and (4.12) to obtain

∥fn+1 − fn∥L1
γ,|v1|,−

⪯
(
ln τ + 1

τ

)
sup
x

∥fn − fn−1∥L1
2
+ (δ2 + δ3)∥fn − fn−1∥L1

γ,|v1|,+
.

In an almost identical manner, we can derive

∥fn+1 − fn∥L1
γ,|v1|,+

⪯
(
ln τ + 1

τ

)
sup
x

∥fn − fn−1∥L1
2
+ (δ2 + δ3)∥fn − fn−1∥L1

γ,|v1|,−
.

Therefore,

∥fn+1 − fn∥L1
γ,|v1|

⪯
(
ln τ + 1

τ

)
sup
x

∥fn − fn−1∥L1
2
+ (δ2 + δ3)∥fn − fn−1∥L1

γ,|v1|
.(4.13)
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(2) Estimates in the trace norm ∥ · ∥L1
γ,⟨v1⟩

: We only estimate the boundary term I, since

the estimates for II are almost identical. By an almost identical calculation, we arrive at∫
v1<0

|I(fn)− I(fn−1)|⟨v⟩dv

≤ δ2

{∫
v1<0

e
−

aℓ,1
τ|v1|Mw(1)⟨v⟩dv

}{∫
v1>0

|fn(1, v)− fn−1(1, v)||v1|dv

}

+ δ3

{∫
v1>0

|fn(1, v)− fn−1(1, v)||v1|dv

}

⪯ (δ2 + δ3)

∫
v1>0

|fn(1, v)− fn−1(1, v)|⟨v⟩dv.

where we used ∥Mw∥L1
γ,⟨v⟩

≤ C(Tw). Then, through similar computaitons for II terms, (we

omit the proof to avoid repetitions.) we can obtain the estimates in ∥ · ∥L1
γ,⟨v⟩

:

∥fn+1 − fn∥L1
γ,⟨v⟩

⪯
(
ln t+ 1

τ

)
sup
x

∥fn − fn−1∥L1
2

+ δ2∥fn − fn−1∥L1
γ,|v1|

+ δ3∥fn − fn−1∥L1
γ,⟨v⟩

.

(4.14)

The estimates in supx ∥ · ∥L1
2
can be derived similarly:

∥fn+1 − fn∥L1
2
⪯
(
ln t+ 1

τ

)
sup
x

∥fn − fn−1∥L1
2

+ δ2∥fn − fn−1∥L1
γ,|v1|

+ δ3∥fn − fn−1∥L1
γ,⟨v⟩

.

(4.15)

The estimates (4.13), (4.14) and (4.15) give the desired result. □

5. Proof of Theorem 1.5: The diffusive boundary condition

We now turn to the proof of Theorem 1.5. Since many parts overlap with the proof of
Theorem 1.2, we focus on the difference of the proof. We start with the reformulation of
the problem.

5.1. Reformulation of the problem. Consider the following mild formulation of (1.1):

f(x, v) = δ1fL + δ2

(∫
v1<0

f(0, v)|v1|dv

)
Mw(0) + δ3f(0, Rv)

+
1

τ |v1|

∫ x

0

R(y, v)dy, (v1 > 0)

f(x, v) = δ1fR + δ2

(∫
v1>0

f(1, v)|v1|dv

)
Mw(1) + δ3f(1, Rv)

+
1

τ |v1|

∫ 1

x

R(y, v)dy, (v1 < 0)
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so that

f(1, v) = δ1fL + δ2

(∫
v1<0

f(0, v)|v1|dv

)
Mw(0) + δ3f(0, Rv)

+
1

τ |v1|

∫ 1

0

R(y, v)dy, (v1 > 0)

f(0, v) = δ1fR + δ2

(∫
v1>0

f(1, v)|v1|dv

)
Mw(1) + δ3f(1, Rv)

+
1

τ |v1|

∫ 1

0

R(y, v)dy, (v1 < 0).

Integrating with respect to |v1|dv:∫
v1>0

f(1, v)|v1|dv = δ1

∫
v1>0

fL|v1|dv + (δ2 + δ3)

∫
v1<0

f(0, v)|v1|dv

+
1

τ

∫
v1>0

∫ 1

0

R(y, v)dydv,∫
v1<0

f(0, v)|v1|dv = δ1

∫
v1<0

fR|v1|dv + (δ2 + δ3)

∫
v1>0

f(1, v)|v1|dv

+
1

τ

∫
v1<0

∫ 1

0

R(y, v)dydv,

(5.1)

where

R(f)(x, v) = Mν(f)(x, v)− f(x, v),

throughout this section. Inserting (1.10) into (5.1)1, we get∫
v1<0

f(0, v)|v1|dv =
1− δ1
2− δ1

+
δ1

2− δ1

∫
v1<0

fR|v1|dv −
1

τ(2− δ1)

∫
v1>0

∫ 1

0

R(y, v)dydv.

Similarly, from (1.10) and (5.1)2, we get∫
v1>0

f(1, v)|v1|dv =
1− δ1
2− δ1

+
δ1

2− δ1

∫
v1>0

fL|v1|dv −
1

τ(2− δ1)

∫
v1<0

∫ 1

0

R(y, v)dydv.

From this, we derive the new formulation of the problem given in Definition 1.3.

5.2. Approximation scheme and solution spaces. We construct the solution for (1.1)
from the following approximate scheme:

fn+1(x, v) = e
− x

τ|v1| fn(0, v) +
1

τ |v1|

∫ x

0

e
− x−y

τ|v1|Mν(f
n)dy, if v1 > 0(5.2)

and

fn+1(x, v) = e
− x

τ|v1| fn(1, v) +
1

τ |v1|

∫ 1

x

e
− x−y

τ|v1|Mν(f
n)dy, if v1 < 0(5.3)

where

fn+1(0, v) = δ1fL(v) + δ2SL(f
n)Mw(0) + δ3f

n(0, Rv), (v1 > 0)

fn+1(1, v) = δ1fR(v) + δ2SR(f
n)Mw(1) + δ3f

n(1, Rv), (v1 < 0)
(5.4)
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and

SL(f
n) =

1− δ1
2− δ1

+
δ1

2− δ1

∫
v1<0

fR|v1|dv −
1

τ(2− δ1)

∫
v1>0

∫ 1

0

Rn(y, v)dydv

SR(f
n) =

1− δ1
2− δ1

+
δ1

2− δ1

∫
v1>0

fL|v1|dv −
1

τ(2− δ1)

∫
v1<0

∫ 1

0

Rn(y, v)dydv

with

Rn(y, v) = ρn
{
Mν(f

n)− fn
}
.

As in the inflow dominant case, we define two function spaces. First we define the function
space for the non-critical case −1/2 < ν < 1:

Ω3 =
{
f ∈ L∞

(
[0, 1];L1

2(R3)
)
∩ L1

γ,⟨v⟩(R
3) | f satisfies (A3), (B3), (C3), (D3)

}
where (A3), (B3), (C3) and (D3) denote

• (A3) f is non-negative:

f(x, v) ≥ 0 for x, v ∈ [0, 1]× R3.

• (B3) The macroscopic field is well-defined:∫
R3

f(x, v)dv ≥ aℓ,2,

∫
R3

f(x, v)(1 + |v|2)dv ≤ 2CLR,2.

• (C3) The temperature tensor is well-defined:

C1
νδ

2
1

γℓ,2
3C2

LR,2

≤ κ⊤ {Tν}κ ≤ 2

3aℓ,2
C2

νCLR,2.

• (D3) The inflow data satisfies:

∥f∥L1
γ,|v1|,±

≤ 2
(
1 + ∥fLR∥L1

γ,|v1|

)
, ∥f∥L1

γ,⟨v⟩
≤ 2CLR,2.

For the critical case ν = −1/2, we define

Ω4 =
{
f ∈ L∞

(
[0, 1];L1

2(R3)
)
∩ L1

γ,⟨v⟩(R
3) | f satisfies (A4), (B4), (C4), (D4)

}
where (A4), (B4), (C4) and (D4) denote

• (A4) f is non-negative:

f(x, v) ≥ 0 for x, v ∈ [0, 1]× R3.

• (B4) The macroscopic field is well-defined:∫
R3

f(x, v)dv ≥ aℓ,2,

∫
R3

f(x, v)(1 + |v|2)dv ≤ 2CLR,2.

• (C4) The temperature tensor is well-defined:

δ2
a−1/2

2CLR,2
≤ κ⊤

{
T−1/2

}
κ ≤ 3

2aℓ,2
CLR,2.

• (D4) The inflow data satisfies:

∥f∥L1
γ,|v1|,±

≤ 2
(
1 + ∥fLR∥L1

γ,|v1|

)
, ∥f∥L1

γ,⟨v⟩,±
≤ 2CLR,2.

Before we move on to the proof of uniform estimates for fn, we recored a few estimates
that will be fruitfully used throughout the paper. The proof for the Lemma 5.1 is almost
identical to the corresponding estimates in Lemma 2.1, and we omit the proof.
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Lemma 5.1. (1) Let f ∈ Ω3. Then there exist positive constants C depending only on the
quantities (1.5) and γℓ,2 such that

Mν(f) ≤ Ce−C|v|2 .

(2) Let f ∈ Ω4. Then there exists positive constants C depending only on the quantities
(1.5) and a−1/2,2 such that

Mν(f) ≤ Ce−C|v|2 .

5.3. fn ∈ Ωi (i = 3, 4) for all n. The main result of this section is the following proposition

Proposition 5.1. (1) Let −1/2 < ν < 1. Assume fLR satisfies the conditions of Theorem
1.5 (1). Then fn ∈ Ω3 for all n.
(2) Let ν = −1/2. Assume fLR satisfies the conditions of Theorem 1.5 (2). Then, fn ∈ Ω4

for all n.

We divide the proof into Lemma 5.2, 5.3, 5.5, and Lemma 5.7.

Lemma 5.2. Let fn ∈ Ω3 or Ω4. Then, for sufficiently small δ1 and sufficiently large τ ,
we have

fn+1 ≥ 0.

Proof. Since fn ∈ Ω3, we have from Lemma 2.2

SL(f
n) =

1− δ1
2− δ1

+
δ1

2− δ1

∫
v1>0

fL|v1|dv −
1

τ(2− δ1)

∫
v1>0

∫ 1

0

Rn(y, v)dydv

≥ 1− δ1
2− δ1

+ δ1

∫
v1>0

fL|v1|dv −
1

τ

∫
R

∫ 1

0

(
Mν(f

n) + fn
)
(1 + |v|2)dydv

≥ 1

3

for sufficiently small δ1 and τ−1. Similarly, SR(f
n) ≥ 1/3. Therefore,

fn+1 ≥ 1

3
δ2e

− x
τ|v1|Mw(0)1v1>0 +

1

3
δ2e

− 1−x
τ|v1|Mw(1)1v1<0

≥ 1

3
δ2e

− 1
|v1|Mw ≥ 0

for v1 > 0. The case for v1 < 0 is the same. □

Lemma 5.3. Assume f ∈ Ω3 or Ω4. Then we have∫
R3

fn+1dv ≥ δ2aℓ,2.

Proof. We only prove the second one. Recall from the previous proof that

fn+1 ≥ 1

3
δ2e

− 1
|v1|Mw.

Integrating with respect to v, we obtain the desired lower bound. □

Lemma 5.4. (1) Let fn ∈ Ω1 or Ω2. Then we have

∥fn+1∥L1
γ,|v1|,+

, ∥fn+1∥L1
γ,|v1|,−

≤ 2
(
1 + ∥fLR∥L1

γ,|v1|

)
.

(2) Let fn ∈ Ω1 or Ω2. Then we have

∥fn+1∥L1
γ,⟨v⟩,+

, ∥fn+1∥L1
γ,⟨v⟩,−

≤ 2
(
∥fLR∥L1

γ,⟨v⟩
+ ∥Mw∥L1

γ,⟨v⟩

)
.
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Proof. (1) • Estimate for outflux ∥fn+1∥L1
γ,|v1|,+

: Using (5.2), we can write fn+1(0, v) for

v1 < 0 as

fn+1(0, v) = δ1fR + δ2SRMw(1) + δ3f
n(1, Rv) +

1

τ |v1|

∫ 1

0

e
− y

τ|v1|Mν(f
n)dy(5.5)

which, in view of Lemma 2.2, yields∫
v1<0

fn+1(0, v)|v1|dv

≤ δ1

∫
v1<0

fR|v1|dv + δ2

∫
v1>0

Mw(1)|v1|dv + δ3

∫
v1>0

fn(1, v)|v1|dv

+ Cℓ,u

(
ln τ + 1

τ

)
.

(5.6)

Here, we used SL ≤ 1, which follows directly from the smallness of δ1 and Lemma 2.2.
Similarly, ∫

v1>0

fn+1(1, v)|v1|dv

≤ δ1

∫
v1>0

fL|v1|dv + δ2

∫
v1<0

Mw(0)|v1|dv + δ3

∫
v1<0

fn(0, v)|v1|dv

+ Cℓ,u

(
ln τ + 1

τ

)
.

(5.7)

From (5.6) and (5.7), we obtain

∥fn+1∥L1
γ,|v1|,+

=

∫
v1<0

fn+1(0, v)|v1|dv +
∫
v1>0

fn+1(1, v)|v1|dv

≤ δ1∥fLR∥L1
γ,|v1|

+ δ2∥Mw∥L1
γ,|v1|,+

+ δ3∥fn∥L1
γ,|v1|,+

+ Cℓ,u

(
ln τ + 1

τ

)
≤ δ1∥fLR∥L1

γ,|v1|
+ δ2 + δ3∥fn∥L1

γ,|v1|,+

+ Cℓ,u

(
ln τ + 1

τ

)
.

(5.8)

Therefore, in view of Di of Ωi (i = 1, 2), we see that

∥fn+1∥L1
γ,|v1|,+

≤ δ1∥fLR∥L1
γ,|v1|

+ δ2 + 2δ3
(
1 + ∥fLR∥L1

γ,|v1|

)
+ Cℓ,u

(
ln τ + 1

τ

)
= 2(δ1 + δ2 + δ3)

(
1 + ∥fLR∥L1

γ,|v1|

)
− (δ1 + δ2)

(
1 + ∥fLR∥L1

γ,|v1|

)
+ Cℓ,u

(
ln τ + 1

τ

)
≤ 2
(
1 + ∥fLR∥L1

γ,|v1|

)
(5.9)

for sufficiently large τ .
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• Estimate for influx: ∥fn+1∥L1
γ,|v1|,−

: When v1 > 0, we have from the boundary condition

(5.4) that

fn+1(0, v) = δ1fL + δ2SLMw(0) + δ3f
n(0, Rv).

Integrate both sides with respect to |v1|dv on v1 > 0 to get∫
v1>0

fn+1(0, v)|v1|dv = δ1

∫
v1>0

fL|v1|dv + δ2 + δ3

∫
v1>0

fn(0, Rv)|v1|dv.(5.10)

where we used SL < 1 and
∫
v1>0

Mw(0)|v1|dv = 1. Similarly, we estimate∫
v1<0

fn+1(1, v)|v1|dv = δ1

∫
v1<0

fR|v1|dv + δ2 + δ3

∫
v1>0

fn(1, Rv)|v1|dv.(5.11)

Combining (5.10) and (5.11) gives

∥fn+1∥L1
γ,|v1|,−

≤ δ1∥fLR∥L1
γ,|v1|

+ δ2 + δ3∥fn∥L1
γ,|v1|,+

,(5.12)

which, thanks to (5.9), gives

∥fn+1∥L1
γ,|v1|,−

≤ 2
(
1 + ∥fLR∥L1

γ,|v1|

)
.

This completes the proof of (1). The proof of (2) is identical. We omit the proof. □

Lemma 5.5. (1) Let fn ∈ Ω3 or Ω4. For sufficiently large τ > 0, we have∫
R3

fn+1(1 + |v|2)dv ≤ 2
(
∥fLR∥L1

γ,|v1|
+ ∥Mw∥L1

γ,⟨v⟩

)
.

Proof. The proof is almost identical to Lemma 3.3. We omit it. □

Lemma 5.6. Let fn ∈ Ω3 or Ω4.
(1) For i = 1, we have

∣∣∣ ∫
R3

fn+1v1dv
∣∣∣ ≤ δ1

∣∣∣∣∣
∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣+ 2

τ
CLM,2

where CLR,2 denotes
CLM,2 = ∥fLR∥L1

γ,⟨v⟩
+ ∥Mw∥L1

γ,⟨v⟩
.

(2) For i = 2, 3, we have∣∣∣ ∫
R3

fn+1vidv
∣∣∣ ≤ 2δ3CLR,2 + C

(
ln τ + 1

τ

)
.

Proof. (1) Recall from the proof of Lemma 3.4 that∫
R3

fn+1(x, v)v1dv = I + II,

where

I =

∫
v1>0

fn+1(0, v)|v1|dv −
∫
v1<0

fn+1(1, v)|v1|dv

and

II =

∫ x

0

∫
v1>0

ρn

τ

(
Mν(f

n)− fn+1
)
dvdy +

1

τ

∫ 1

x

∫
v1<0

(
Mν(f

n)− fn+1
)
dydv.
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(a) The estimate of I: We observe from our boundary condition that

|I| ≤
(
δ1 +

δ1δ2
2− δ1

) ∣∣∣∣∣
∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣
+

1

τ(2− δ2)

∫
R3

∫ 1

0

{
Mν(f

n) + fn
}
(1 + |v|2)dydv

≤ 2δ1

∣∣∣∣∣
∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣+ 2

τ
CLM,2.

In the last line, we used Lemma 5.4.

(b) The estimate for II: The argument for this part is identical except that we use Lemma
5.5 instead of Lemma 3.3. Now, we combine (a) and (b) to obtain the desired result.

(2) The proof is identical to the inflow dominant case, since the δ2 contribution vanishes:∫
R2

S(fn)Mwv2dv2dv3 = 0.

We omit the proof. □

Lemma 5.7. (1) Let −1/2 < ν < 1. Assume fn ∈ Ω3. Then, for sufficiently large τ , we
have

C1
νδ

2
2

γℓ,2
27C2

LR,2

≤ κ⊤
{
T n+1
ν

}
κ ≤ 2

3aℓ,2
C2

νCLM,2

(2) Let ν = −1/2 and f ∈ Ω4. Then, for sufficiently large τ , we have

δ1
a−1/2

4CLR,2
≤ κ⊤

{
T n+1
−1/2

}
κ ≤ 3

2aℓ,2
CLR,2

for any κ ∈ R and |κ| = 1. We recall that

CLM,2 = ∥fLR∥L1
γ,⟨v⟩

+ ∥Mw∥L1
γ,⟨v⟩

.

Proof. (1) The proof is identical to the inflow dominant case, except for the computation of
I, where we bound it from below using δ2 and γℓ,2, instead of using δ1 and γℓ,1.

I = 4

{∫
v1>0

fn+1|v1|dv

}{∫
v1<0

fn+1|v1|dv

}

≥ δ22

(∫
v1>0

e
− 1

|v1|Mw(0)|v1|dv

)(∫
v1<0

e
− 1

|v1|Mw(1)|v1|dv

)
= δ22γℓ,2.

In the last line, we used

fn+1 ≥ 1

3
δ2e

− 1
τ|v1|Mw(0)1v1>0 +

1

3
δ2e

− 1
τ|v1|Mw(1)1v1<0
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and τ > 1.
(2) We recall from the inflow dominant case that

ρn+1κ⊤
{
T n+1
−1/2

}
κ

=

∫
R3

fn+1
{
|v|2 − (v · κ)2

}
dv −

{
ρn+1|Un+1|2 − ρn+1(Un+1 · κ)2

}
≡ I + II,

(5.13)

for |κ| = 1

(i) Upper bound: We have from Lemma 5.5 that

κ⊤
{
T n+1
−1/2

}
κ ≤ 1

ρn+1

∫
R3

fn+1|v|2dv ≤ 1

aℓ,2δ2

(
1 + ∥fLR∥L1

γ,⟨v⟩

)
∥Mw∥L1

γ,⟨v⟩
.

(ii) Lower bound: For this, we estimate the lower bound of I and the smallness of II:
(ii-a) Lower bound of I: The proof is the same, except that we bound it using a−1/2,2 this
time:

I ≥ 1

3
δ2 inf

|κ|=1

∫
R3

e
− 1

|v1|Mw

{
|v|2 − (v · κ)2

}
dv =

1

3
δ2a−1/2,2.

(ii-b) Smallness of of II: The estimate for this case is the same either, except that we use
Lemma 5.6, instead of Lemma 3.4:

II ≤ |ρn+1Un+1|2

ρn+1
≤ 1

aℓ,1

∣∣∣∣∫
R3

fn+1vdv

∣∣∣∣2 ≤ 1

aℓ,1

3∑
i=1

∣∣∣∣∫
R3

fn+1vidv

∣∣∣∣2

≤ 4δ21

∣∣∣∣∣
∫
v1>0

fL|v1|dv −
∫
v1<0

fR|v1|dv

∣∣∣∣∣
2

+O
(
δ3, τ

−1
)
.

The by exactly the same argument, we get the desired result. Note that, since we can take
δ1 arbitrariliy small in this case, we don’t need to assume that the discrepancy of the flux
from the inflow data is small. □

5.4. Cauchy estimate for fn.

Proposition 5.2. Let f , g be elements of Ω3 (−1/2 < ν < 1) or Ω4 (ν = −1/2). Then the
non-isotropic Gaussian Mν satisfies

|Mν(f)−Mν(g)| ≤ C sup
x

∥f − g∥L1
2
e−C|v|2 .

Proof. The proof is almost identical with the one given for Proposition 4.1. We omit it. □

Proposition 5.3. Suppose fn, fn+1 ∈ Ωi (i = 3, 4). Then, under the assumption of
Theorem 1.5, we have

sup
x

∥fn+1 − fn∥L1
2
+ ∥fn+1 − fn∥L1

γ,|v1|
+ ∥fn+1 − fn∥L1

γ,⟨v⟩

⪯
(
ln τ + 1 + δ2

τ

)
sup
x

∥fn − fn−1∥L1
2
+ δ3∥fn − fn−1∥L1

γ,|v1|
+ δ3∥fn − fn−1∥L1

γ,⟨v⟩
.

Remark 5.8. We note that, unlike in Proposition 4.2, K does not have ∥fLR|v|−1∥L1
γ,⟨v⟩

term

in this case. This is why we don’t need the no-concentration assumption (P2) in Theorem
1.5.
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Proof. We only consider the boundary terms in ∥ · ∥L1
γ,|v1|

estimate. We note from our

boundary condition that, for v1 > 0∫
v1>0

|fn+1(0, v)− fn(0, v)||v1|dv

≤ δ2|S+(fn)− S(fn−1)|
∫
v1>0

Mw(0)|v1|dv

+ δ3

∫
v1>0

|fn(0, Rv)− fn−1(0, Rv)||v1|dv

≤ C
δ2
τ

sup
x

∥fn − fn−1∥L1
2
+ δ3

∫
v1<0

|fn(0, v)− fn−1(0, v)||v1|dv,

(5.14)

where we used Proposition 5.2 as

|S+(fn)− S(fn)| = 1

τ(2− δ1)

∫
v1>0

∫ 1

0

∣∣∣Rn(y, v)−Rn−1(y, v)
∣∣∣ dydv

≤ C

τ
sup
x

∥fn − fn−1∥L1
2
.

On the other hand, for v1 < 0, we have from (5.3)

fn+1(0, v) = I(fn) + II(fn),

where

I(f) = e
− 1

τ|v1|
∫ x
0

ρf (y)dyf(1, v), II(f) =
1

τ |v1|

∫ x

0

e
− x−y

τ|v1|Mν(h)dy.

Since

I(fn)− I(fn−1) + δ2e
− x

τ|v1|
{
S−(fn)− S−(fn−1)

}
Mw(1)

+ δ3e
− x

τ|v1|
{
fn(1, Rv)− fn−1(1, Rv)

}
,

we have ∫
v1<0

|I(fn)− I(fn−1)|v1|dv

≤ C
δ2
τ

sup
x

∥fn − fn−1∥L1
2
+ δ3

{∫
v1>0

|fn(1, v)− fn−1(1, v)||v1|dv

}
.

(5.15)

Now, through an almost identical computations as in the inflow dominant case, we get the
following estimates:

∥fn+1 − fn∥L1
γ,|v1|

⪯
(
ln τ + 1 + δ2

τ

)
sup
x

∥fn − fn− 1∥L1
2
+ δ3∥fn − fn−1∥L1

γ,|v1|
.(5.16)

Estimates in ∥ · ∥L1
γ,⟨v⟩

and ∥ · ∥L1
2
can be obtained similarly:

∥fn+1 − fn∥L1
γ,⟨v⟩

⪯
(
ln τ + 1 + δ2

τ

)
sup
x

∥fn − fn−1∥L1
2
+ δ3C∥fn − fn−1∥L1

γ,⟨v⟩
(5.17)

and

∥fn+1 − fn∥L1
2
⪯
(
ln τ + 1 + δ2

τ

)
sup
x

∥fn − fn−1∥L1
2
+ δ3∥fn − fn−1∥L1

γ,⟨v⟩
.(5.18)

The estimates (5.16), (5.17) and (5.18) give the desired result. □



STATIONARY FLOWS OF THE ES-BGK MODEL IN A SLAB 35

Data availability: No data was used for the research described in the article.

Conflict of interest: The authors declare that they have no conflict of interest.

Acknowledgement
Part of the this work is done while S.-B. Yun was visiting the institute of Mathematics at
University of Bordeaux. S.-B. Yun would like to acknowledge the hospitality of the insti-
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