STATIONARY FLOWS OF THE ES-BGK MODEL WITH THE
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ABSTRACT. The Ellipsoidal BGK model (ES-BGK) is a generalized version of the BGK
model where the local Maxwellian in the relaxation operator of the BGK model is ex-
tended to an ellipsoidal Gaussian with a parameter —1/2 < v < 1, so that the correct
Prandtl number can be computed in the Navier-Stokes limit. In this work, we consider
steady rarefied flows arising from the evaporation and condensation process between two
parallel condensed phases, which is formulated in this paper as the existence problem
of stationary solutions to the ES-BGK model in a bounded interval with the mixed
boundary conditions. One of the key difficulties arises in the uniform control of the
temperature tensor from below. In the non-critical case (—1/2 < v < 1), we utilize the
property that the temperature tensor is equivalent to the temperature. In the critical
case, (v = —1/2), where such equivalence relation breaks down, we observe that the size
of bulk velocity in z direction can be controlled by the discrepancy of boundary flux,
which enables one to bound the temperature tensor from below.

1. INTRODUCTION

1.1. Ellipsoidal BGK model: The Boltzmann equation is a fundamental model that con-
nects the particle regime and the fluid regime of rarefied gases. However, the practical ap-
plication of the Boltzmann equation to various flow problems has been severely restricted
by the intricate structure of the collision operator that requires a considerable amount of
resources for numerical computations. The observation made by Bhatnaghar, Gross and
Krook [12] in their attempts to overcome this difficulty is that the local equilibration occurs
rather quickly so that the complicated process of collision can be successfully described by
the relaxation process after a short time scale. The equation that was introduced based
on this observation is now called the BGK model, and have enjoyed great popularity as a
numerically amenable equation that provides qualitatively satisfactory results. There are,
however, several shortcomings of the model. The most notable one is that the Prandtl num-
ber - the ratio between the thermal diffusivity and the viscosity, computed from the BGK
model does not match the correct value computed from the Boltzmann equation, which
means that the diffusivity and the viscosity in the Navier-Stokes limit cannot be correctly
derived. In this regard, Holway proposed so-called the ellipsoidal BGK model (ES-BGK
model), which generalizes the local Maxwellian of the BGK model to an ellipsoidal Gauss-
ian endowed with an additional degree of freedom in adjusting the transport coefficients.
ES-BGK model, however, was somewhat forgotten in the literature since it was not clear at
the time whether the H-theorem holds for this model. This was resolved by Andries et al
in [2] (and later in [16, 47]), which greatly popularized this model in the study of various
problems in the rarefied gas dynamics. The existence result of the ES-model in the critical
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case (v = —1/2), however, was never resolved so far except for the case where the solution
lies close to equilibrium [68, 69], which is the main motivation of the current work.

In this paper, we are interested in the mathematical study of steady rarefied gas flows
generated by the evaporation and condensation process between two condensed phases [3,
4, 56]. Using the ES-BGK model, this can be formulated as the boundary value problem as
follows:

of 1

(1.1) vl%:m(/\/{y(f)_f)’

on a finite interval [0, 1] where the boundary condition is given by the linear combination of
the inflow boundary condition, the diffusive boundary condition, and the specular reflection
(61 + 02 + 63 =1):

f(0,v) = 01 fr(v) + 62 (/I

v1]>0

f(O,v)v1|dv> M, (0,v) + d3f(0, Rv), (v1 >0)
(1.2)

F(1,0) = 61 fr(v) + 6 </|

f(l,v)|v1|dv> My, (1,v) +63f(1, Rv). (v1 <0)
'U1|<0

Here M, denotes the wall Maxwellians which, for a given wall temperature T, : {0,1} —
R, is defined by

. 1 _ b2 )
My(i,v) = ———=e€ Tw®, (i=1,2)

27Ty, (1)

When there’s no risk of confusion we denote both M, (0,v) and M, (1,v) by M,. Rwv
denotes the reflection of v: R(v1,v2,v3) = (—v1,v2,v3). We note that §; term and d2 term
corresponds to the condensation and the evaporation at the boundary [56].

The velocity distribution function f(z,v) represents the number density of the gas molecules
at the position o € [0, 1] with the microscopic velocity v = (v1,v2,v3) € R®. & is the Knud-
sen number. The ellipsoidal Gaussian M, (f) with the Prandtl parameter v € [—1/2,1)
reads

M(f) = LI ST U)) |

. _
Jaeter) Y ( 2

The local density p, momentum U, temperature T" and the stress tensor © are given by the
following relations:

plx) = [ flz,v)dv,
RS

@)U = [ f(zv)do,
(1.3) R
3T (@) = [ fao)lo—UPdo,

p@)0() = | fla,0)(v—-U)® (v—U)do,

R3
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and the temperature tensor 7, is defined as a linear combination of the temperature and
the stress tensor:

T, =(1-v)TT+vO

(1-=v)T+vOy, 1012 vO13
= 09 (1 - V)T + 1Ogs vOa3
1/631 1/932 (1 - V)T + V@33

where I3 denotes the 3 x 3 identity matrix.

Note that this is not a convex combination since v can take negative values. In the case
v = 0, the ES-BGK model reduces to the original BGK model. The end-point v = —1/2
corresponds to ES-BGK model with the correct Prandtl number:

The Chapman Enskog expansion shows that the Prantl number of the Navier-Stokes
equation derived from the ES-BGK model is 1/(1 — v). Therefore, by choosing appropriate
v, we can derive the correct Prantl number in the hydrodynamic limit, which is achieved

when v = —1/2. (See [2] for further discussion on this.)
For simplicity, we set 7 = k(1 — v) throughout the paper and write (1.1) as
of 1
Ulafx = ;(Mu(f) - f)

1.2. Notations: We first set up notational conventions and define norms:

e (' denote generic constants. The value can change each line of computations, but it
is explicitly computable in principle.

e A < B means that A < CB for some constant C.

e [[5 denotes the 3 x 3 identity matrix.

o We define frr and M,, by

frr(v) = fL(v)1ly,>0 + frR(V)14, <0
and
My (v) = My (0,v)1y,50 + My (1,0)1,, <0-
e We define sup, || - [|z1 by

sup [ fllry =sup [ fllry, +suplfllcy
x x ’ x ’

where
sup [ flley, =sup{ [ 1F(e o)l + oo}
x ’ x v1>0
sup Iy :sup{/ P )|(1+ o) ).
T ’ T 1}1<0
e We define the trace norm || - || 1 . by
REILY
£l Wi £l e T £l oyl
REILSY Yslv1ls REIES R

where the outward trace norm || f|| 1 ‘ and the inward trace norm || f|| 1 ‘
~, v, lv

vyl + 1=

are given by

£l

vlvil+

1l =/NU&MMM+/ (L, 0o

vilvil— v1<0

— [ 1wlaldo+ [ il
v1 <0

v1>0
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e Throughout the paper, we normalize the wall Maxwellian as follows:

[ Mo 21

¥, lvil, £

e Similarly, we define another trace norm || - || 1 . by
¥,{v

Az =Wl + 0l

where the outward trace norm || - ||z oy and the inward trace norm || - || -
v (v)’ v (v)’

are given by

s, = [ PO+ R0+ [ e+ e,

v1>0

Hﬂqm’=/wﬁﬁwﬂ+WWw+/ FALDI( A+ o)dv.

v1<0

e Throughout the paper, Cpr 1, Crg,2 denote

CrLra = ||fLMHL§,<u> ”M“’”Li«w ’

1.4
(14) Cinz = Iferls +Mulls .
v, lvy | ¥, {v)
and a¢; and ag 2 denote
1 1 1
(1.5) a1 :/ e Tl f1 rdv, Qg2 = 7/ e il M, dv.
RS 2 Jps

(P) Properties of boundary data: To avoid repetition in the statement of the theorem,
we summarize here the assumptions to be imposed on frp later:

(P1) The inflow boundary data fr,r > 0, not identically 0, has a finite trace norm:
|frrllr  <oo
¥, (v)

(P2) The inflow data does not induce vertical flows: :
/ fL’UZ‘dU = / fRU3d’U =0 (’L = 2,3)
R2 R2

1.3. Main result 1: inflow dominant case. We now state our main results for the inflow
dominant case (6; # 0). We first define the mild solution of (1.1) for the inflow dominant
case as follows:

Definition 1.1. f € L™ ([0,1]; L3(R?)) N L

3y (R?) is said to be a mild solution for (1.1)

if it satisfies

= 1 Ty
(1.6) f(z,v) =e 7l f(0,v) + —/ e I M, (f)dy ifv; >0
Tloil Jo
and
1—a 1 1 Y-z
(A7) fle) = TR+ [ My it <o
T|U1 T
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where f(0,v) and f(1,v) are defined in the trace sense as

F(0,v) = 01 fr(v) + d2 </|

f(0,v)|v1|dv> My (0) +05£(0, Rv),  (v1 > 0),
v1]<0

F(1,0) = 61 fr(v) + 6 (/

v1|>0

f(l,v)|v1|dv> M,(1) + 05f(1, Rv), (v <O0).

We are now ready to state the main result of this paper:

Theorem 1.2. [Inflow dominant case: ; # 0]

(1) Non-critical case (—-1/2 < v < 1) : Let —=1/2 < v < 1 and 01 # 0. Suppose fLr
satisfies (Py) and (Ps). Then there exist € > 0 depending on frr and ¢; (i = 1,2,3) such
that, if T > 71, then there exists a unique mild solution f > 0 to the boundary value problem
(1.1), (1.2) satisfying

. flz,v)dv > a1, /3 fla,v)(1+ |v\2)dv <2CLR1,
R R

and
2
3aé,151

Clo3 2ol < kT {T,}n <

2
1302 C,CLR 1,
LR,1

for all k € R? such that || = 1, where ;1 is defined by

(1.8) Yeq = </ e“llfL(’u)|v1|dv> (/ e“lllfR(’u)|v1|dv> > 0.
v1>0 v1 <0

(2) Critical case (v = —1/2) : Let v = —1/2 and §; # 0. Suppose frr satisfies (Py) and
(Py). Then there exist ¢ > 0 depending on frr and &; (i = 1,2,3) such that, if T > e~ ' and

<,

fulorldv — / Frlon|dv
v1>0 v1<0

then there exists a unique mild solution f > 0 to the boundary value problem (1.1), (1.2)
satisfying

f(z,v)dv > d1a41, / f(a:,v)|v|2dv <2CLra,
R3 R3

and

a—1/2,1 T{ } 3
0 ———< _ < —0C
T K yT-12 ¢k < Bag, LR

for all k € R® such that |k| = 1, where a_y/2,1 denote

S 2 (2
nfl/RSe fLR{|v| (v-K) }dv>0.

i
=

(1~9) a_1/21 =

Remark 1.3. (1). Since 7 = k(1 — v) in (1.1) is a parameter directly proportional to
the Knudsen number, taking sufficiently large 7 corresponds to the case when the gas is
sufficiently rarefied.

(2). Our result states that the existence of the unique steady gas flow between two par-
allel condensed phases is guaranteed if the gas between the condensed phases is sufficiently
rarefied. This makes sense in that, if the gas between the two phases are not sufficiently
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rarefied compared to the condensed phases, the evaporation and condensation will not ac-
tively occur, and the gas flows between the two phases may not be generated. For example,
if the gas is as dense as the condensed phases, no gas will flow between the two phases.

(3). By scaling argument, the boundary value problem (1.1), (1.2) in a unit interval can
be reformulated as a boundary value problem of the ES-BGK model with the unit Knudsen
number in a small interval of length k. Therefore, our results also say that the stationary
flow occurs between the condensed phases when the two condensed phases are sufficiently
close.

1.4. Main results 2: diffusive dominant case. In the diffusive dominant case (d2 # 0),
we impose the following flux control condition:

(1.10) £(0,v)|vy|dv + f(1,v)|vr|dv = 1.
v1<0 v1>0

which is adapted from the Maslova’s argument [37]. This is because, without such additional
assumptions, we generally don’t have uniqueness for the boundary problem with diffusive
boundary conditions (See the paragraphs following the Theorem 1.5.) Using (1.1), (1.2) and
(1.10), we reformulate the boundary condition into (1.13), and we consider the following
mild solution for the diffusive dominant case (Theorem 1.5). (See Section 7 for the detail of
the reformulation.)

Definition 1.4. f € L> ([0,1]; L3(R*)) N L, (vy (R?) is said to be a mild solution for (1.1)
if it satisfies

(1.11) Fla,v) = e 7T £(0,0) + T|7111|/0 e TIM,(f)dy if v >0
and

- 1 L e '
(1.12) flz,v) =€ =il f(1,0) + Ton] /t e I M, (f)dy ifv <O,
where
(1.13) f(0,v) = 01fL(v) + 6281 (f)Mw(0) + 5 (0, Rv),  (v1 > 0)

f(1,v) = 61fr(v) + 628k (f)Mw(1) + 03 f(1, Rv), (v1 <0)
and Si.(f), Sr(f) denote

1—-101 01

1 1
Su(f) = 54, + 53, /v1<0 frlvildv — 7—(2_61)/711>0/0 R(y,v)dydv,

; - 5 —61 / —1 / /1
d dyd
r(f) 2-0, + 2= 01 Ju 0 frlvi|dv 7(2=01) Ju, <0 Jo (y, v)dydv,

R(f)(fﬂ, 1}) = Mu(f)(xv 1}) - f(l’,’U).

Theorem 1.5. [Diffusive dominant case: d; # 0]

(1) Non-critical case (—1/2 < v < 1): Let —1/2 < v < 1 and d3 # 0. Suppose fLr
satisfies (P1). Then there exist € > 0 depending on frr and §; (i = 1,2,3) such that, if
T > e~ 1, then there exists a unique mild solution f > 0 to the boundary value problem (1.1),
(1.2) and (1.10) satisfying

/ flz,v)dv > ag 2, / flx,v)(1+ |v\2)dv <2CLR,2,
R3 R3

with
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and

2
C152 e,2 < T ’ < 20
vY2 270%1%’2 SR {T } R > 3@4’2 vYLR,2,

for all k € R® such that || = 1, where 7o denotes

(1.14) Vo2 = (/ e_“}le(O)|vldv> (/ e_vlle(l)|v1|dv> > 0.
v1>0 v1<0

(2) Critical case (v = —1/2): Let v = —1/2 and 02 # 0. Suppose fLr satisfies (P1).
Then there exists € > 0 depending on frr and §; (i = 1,2,3) such that, if T > =% and
01 < €, then there exists a unique mild solution f > 0 to the boundary value problem (1.1),
(1.2) and (1.10) satisfying

flz,v)dv > a2, / f(z,v)|v]*dv < 2CLR 2,
R3 R3
and

5 a_1/22
2
4CrR2

3
<w' {7:1/2} k< TCLR,%
ag.2

2]

for all k € R? such that |k| = 1, where a_1/2,2 denotes

(1.15) a_ip2 = inf / eiﬁMw{sz(wn)z}dv > 0.
’ |k|=1 JR3

Remark 1.6. Note that we don’t impose any smallness restriction on the discrepancy of the

boundary flux for the critical case (¥ = —1/2) in the diffusive dominant case.

The basic strategy to prove our theorem is to rewrite the boundary value problem (1.1)
- (1.2) in the mild form, set up an iteration scheme, and apply the contraction mapping
theorem. Therefore, the most important step is to define an appropriate solution space in
which the iteration map becomes a contraction. For this, we set up various estimates of
the velocity distribution function and the macroscopic fields that are uniformly preserved
through the iteration. Among others, the main difficulty lies in showing that the strict
positive lower bound of the temperature tensor 7, is preserved through the iteration scheme.

In the non-critical case —1/2 < v < 1, the temperature tensor satisfies the following
equivalence relation:

(1.16) min{l —v,1 4+ 2v}TI3 < T, < max{l — v, 1+ 2v}TT;.

Therefore, it suffices to study the local temperature T', that can be shown to be bounded
below by a quantity constructed from the boundary data. In the critical case, v = —1/2,
however, the first inequality of (1.16) becomes trivial, giving no information on the strict
positivity of the temperature tensor.

In the literature, the strict positivity of the temperature tensor is available only in the
near-equilibrium regime, where the non-diagonal elements of the temperature tensor can be
controlled arbitrarily small, enabling one to control the temperature tensor from below. In
the current work, we establish an argument to prove such strict positive definiteness of the
temperature tensor for general non-perturbative solutions.
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Our main observation for this is that the bulk velocity in z direction can be controlled
by the discrepancy of the boundary flux even without the smallness of d; in the inflow
dominance case:

(1.17) ‘Ul(x)‘ <& + O<52753,T_1) ;

fr|vi|dv —/ frlv1|dv
v1>0 v1 <0

which is physically relavent in that, if we don’t have enough flux from both ends of the slab,
we cannot expect fast flow inbetween. We then observe that the quadratic polynomial of
T_1/2 can be expressed using the local temperature and the directional temperature in the
critical case:

K {7'_1/2}/{: %/ﬂ@ f|v—U|2dv—%/]R3 f{(v—U)~ff}2dv.

We mention that the concept of ”directional temperature” was coined by Villani in [64], and
was crucially used in the proof of entropy production estimates of the Boltzmann equation.
This, with the use of (1.17), enables one to bound the temperature tensor in the critical
case from below by a quantity defined only through the inflow boundary data and the inflow
boundary flux:

2
1 _2CLma
— inf e ‘ﬁv\“fLR{\vF—(v~/<;)2}dv—2

2 |k|=1 Jgs ’

/ frlvi|dv — frlv1|dv
v1>0 v1<0

up to small error. The first term can roughly be interpreted as the difference of total energy
minus the directional energy of the inflow boundary data away from zero, and the second
term is the discrepancy of the flux at both ends. This enables one to bound the temperature
tensor from below when §; (i = 2,3) and 7! are sufficiently small.

In the diffusive dominant case, similar argument is working but there is an important
difference to be mentioned that, without additional assumption on the amount of flux given
in (1.10), we cannot expect the uniqueness of the solutions. Consider the following simple
boundary value problem with diffusive boundary condition:

v f =0,  f(i,v) = (/( b Of(i,v)v1|dv> My(i), (i =0,1).
—1)it+ly >

It can be easily checked that
f(xv U) = Cle (U, 0)]—v1>0 + CZMw(vv 1)1v1<0

solves the problem for any C7,Cy > 0. In this regards, we impose the flux control condition
(1.10) in this case.

Unlike the near-equilibrium problem, there is no diffusivity in our setting, therefore, the
usual restriction such as fixing the mass of the gas is not sufficient to guarantee uniqueness.
Some stronger restriction is required. We borrowed the flux control condition (1.10) from
the work of Maslova [37]. We also mention that this is the main reason why we divide the
proof into the inflow-dominant case and the diffusive-dominant case.

1.5. Literature review. We start with the results on the stationary problems of the BGK
model in a slab, which is most relevent to the current work. The first existence theory for
stationary BGK model can be found in [61], where Ukai applied the a version of Schauder
fixed point theorem to solve the slab problem with inflow boundary condition. In [44],
Nouri derived the existence of weak solutions for a quantum BGK model with a discretized
condensation ansatz in a bounded interval. In [11], classical Banach fixed point argument
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was developed to study the existence and uniqueness for slab problems for ES-BGK model.
In [11], however, the boundary condition was limited to inflow boundary condition, and
the case v = —1/2 is not treated, which is the main motivation of the current work. The
argument of [11] was then applied to a relativistic BGK model [35] and to the quantum
BGK model [10]. For the related results on the stationary Boltzmann equation, we refer to
[6, 7, 8, 22, 23, 25, 26, 33] and references therein.

For the time dependent problems, it was Perthame who first obtained the existence of
weak solutions [49] under the assumption of finite mass, momentum, energy and entropy.
The unique mild solution was then found in [51] in a function space with sufficient decay
in the velocity domain. Mischler extended this to the whole space in [43]. Zhang et al
considered the LP weak solution of the BGK model in [72]. For the asymptotic stability
near global equilibriums, we refer to [9, 66]. Various macroscopic limit for the BGK type
models, including the hydrodynamic limit at the Euler and Navier-Stokes limit, Diffusion
limit, and fractional limit can be found in [24, 38, 39, 54, 55]. For the development or
analysis of numerical schemes for BGK models, see [29, 30, 36, 40, 41, 52, 53] and rich
references therein.

As was mentioned in the introduction, after the verification of H-theorem of ES-BGK
model made in [2], the ES-BGK model got popularized a lot [1, 29, 31, 41, 73]. Brull et
al developed a systematical way to derive of ES-BGK model and provided another proof of
H-theorem in [16]. The entropy production estimate for ES-BGK model was obtained in
[70]. For existence results, we refer to [45] for weak solutions, [67] for unique mild solution
and [69] for the result in near-global-equilibrium regime. For related results for the ES-BGK
model for polyatomic molecules, see [46, 47, 48, 68].

This paper is organized as follows. In Section 2, we set up an approximation scheme
and the solution space for the inflow dominance case. In Section 3, we show that, under
appropriate assumptions, the approximate solution stays in the solution space in each iter-
ation. The lower bound estimate for the temperature tensor in the critical case (v = —1/2)
is made. In Section 4, we prove the Cauchy estimate to complete the proof of Theorem 1.2.
Section 5 is devoted to the proof of Theorem 1.5. Since many parts overlap with proof of
Theorem 1.2, we focus on the difference of the argument.

2. APPROXIMATION SCHEME AND SOLUTION SPACE FOR INFLOW DOMINANT CASE

In the following, we aim to construct the solution f™ for (1.1). According to (1.3), p",
U™, T™ and O™ represent the hyrodynamic quantities associated to f™. The approximate
solution approximate scheme reads:

f”(gj,v) = fn(x’ U)1v1>0 + f’L(x7v)1v1<0,

where f™ and f™ are determined iteratively by

(2.1) FrH (@, v) = e Tl frHL0, 0) 4 |1 | / efﬁMy(f")dy ifvg >0
T|VU1 0
and
1—x 1 1 y—=m
(2.2) [z, v) = e 7l frT (1 v) + ol / e TP M, (fMdy  if v <0
T|V1 T
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where f7*1(0,v) and f**1(1,v) are defined by

fH0,v) = 61f1(v) + 02 (/ f"(O,v)|v1|dv> My, + 03f™(0, Rv), (v > 0),

1<0
(2.3)

(1, 0) = 61 fr(v) + 62 ( f"(l,v)|vl|dv> My, + 63f™(1, Rv), (v1 <0).

v1>0

We will show that {f"}, constructed from the above scheme satisfies several uniform-in-n
estimates. To do this in a more systematical way, we define two solution spaces. First we
define the following solution space for the non-critical case (—1/2 < v < 1):

Q= {1 e 17 ([0.1; L3(R3)) N L1 ) (R3) | [ satisfies (Ay), (By), (C1), (D1) }
where (A1), (B1), (C1) and (D;) denote
e (A;) f is non-negative:
f(z,v) >0 for z,v € [0,1] x R3.
e (B;1) The macroscopic field is well-defined:

f(z,v)dv > d1ae1, / flz,v)(A + |v[*)dv < 2CLRa-
R3 R3

e (C1) The temperature tensor is well-defined:

2
cle2_ bl TUT A k< ——C2CLp1.
3ag,1 ’

1
3CERa
e (D) The trace is well-defined:
||f||L;,m‘_’i < 2||fLR||L;‘v1Ia Ifllzy . <2CLRa
For the critical case v = —1/2, we define

O = {1 e 17 (0.1 L(RY)) N L1 ) (RE) | f satisfies (As), (Ba), (Ca), (D2) }
where (Az), (Bz), (C2) and (Ds) denote
e (As) f is non-negative:
f(z,v) >0 for 2,v € [0,1] x R3.
e (B2) The macroscopic field is well-defined:

. flz,v)dv > drae 1, /3 flz,v)(1+ |v|2)dv < 2CrLg.
R? R?

e (C3) The temperature tensor is well-defined:

_ 3
L <K' {7-—1/2}’€<7CLR,1-

'2C1R, T 2ap,
e (Dy) The trace satisfies:
1Ay oy <20 el s Il L < 2C0Ra

Before we move on to the proof of uniform estimates for f”, we record a few estimates
that will be fruitfully used throughout the paper.
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Lemma 2.1. (1) Let f € Q. Then there exists positive constants Cy, Cy depending only
on the quantities (1.4), (1.5) and 1 such that

M, (f) < Cre=C=IF,

(2) Let f € Qo. Then there exists positive constants Cy, Co depending only on the quantities
(1.4), (1.5) and a_y /5 such that

M_l/g(f) < 016702‘1)'2.

Proof. We only consider the proof of (2) to avoid repetition. We first note that the macro-
scopic velocity is well-defined in Q:

lpU| ’fRS fvdv‘ < Crr

2.4 Ul = _ .
24 = = Tt =
On the other hand, (Cs) implies that
_ 3

(2.5) —(0=U)T}  h(0 = U) < —5—Crralv - U2,

ag,1
and

3

a_1/2,1
2.6 det T_1/2 = AMA2A3 > (6 )
(2.6) 1/2 142 3_{ 12CLR,1}

where \; (i = 1,2,3) to be the eigenvalues of T,. Note that 7, is diagonalizable since it’s
symmetric. The desired then estimate follows immediately from (2.4), (2.5) and (2.6). O

The following lemma can be found in [11]. We present the detailed proof for the readers’
convenience.

Lemma 2.2. Let C be a fized positive constants. Then we have

x 1 —_x—y 1 1
/ / e TTor] e*C”%dvldy <C ( DTt > , z €10,1]
0 v1>0 T|U1| T

where C > 0 depends only on quantities in (1.4) and (1.5).

First, we divide the domain of integration as follows:

x x T 1 _ -y 2
/ / _|_/ / +/ / e Tlvl\e_cvldvldyzh+IQ+I3~
0 \v1|<% 0 %S\U1|<T 0 [v1|>T T‘IU1|

(a) The estimate of I;: For I, we integrate on y first to get

T
1 _z—y 2
11:/ {/ e Tldy p e “Vido
<t Lo Tluil
= 2
/ {l—e *‘vl'}e VT doy
‘U1|<%

/ dUl
\U1|<%

IN I

IA
S
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(b) The estimate of I: For this case, we find

1 _Sear
IQS* 1—e Il d”Ul,
ar,1 Lo |<r

and apply the Taylor expansion to 1 — e~ T to get

1 1/ 1\ 1/ 1)\
o ) S )
1o |<r T|v1| 2! \ 7]vy | 31\ 7]vy|

1 T1/1)\? T1/1\°

S‘/ —err’/f — dr’Jr‘/f — ) dr|+---

17T 1 20\ rr 1 3! \7r

1., 1172-1 1 174-1 1 176-1
=—InT —— — —

T 20 12 2.3l 14 3-417 76

1 5 €
<-Int°+ —.

T T

(¢) We compute the remaining I3 as

1

1 2 1 2 1

I3 < / / e~ Vidudy < - e~ “Vidy, < Cru—-
0 Jjvi|>7 7-l’Ul| T Jvi|>7 T

Finally, we combine the estimates (a), (b), (¢) to obtain the desired result.
3. UNIFORM-IN-nn ESTIMATES OF f” FOR INFLOW DOMINANT CASE
The main result of this section is the following proposition

Proposition 3.1. (1) Let —1/2 < v < 1. Assume frr satisfies the conditions of Theorem
1.1 (1). Then f™ € Qy for all n.

(2) Let v = —1/2. Assume frLr satisfies the conditions of Theorem 1.1 (2). Then, f™* € Qq
for all n.

We divide the proof into Lemma 3.1, Lemma 3.3, and Lemma 3.5.

Lemma 3.1. Assume f™ € Q1 or Qs. Then we have
>0 and / fride > 01ae,1.
RS
Proof. From (2.1) and (2.2), we find

.z T _ 1
> Gre” Tl fr(v)1y,50 + 01€” 11T fRr(V) Ly, <0 > S1e” 1T frR.

Here, we assumed 7 > 1 without loss of generality. Integrating with respect to dv, we obtain
the desired lower bound:

/ e > 6y / ¢ T frpdv = S1ag,1.
R3 R3

Lemma 3.2. (1) Let f™ € Q1 or Q. Then we have

1 e e <20 ferllee
vlvil+ vlvil, vslvtl
(2) Let f* € Q1 or Qqo. Then we have
n+1 n+1
17 e s 1 e < 20 Ml ferlic -
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Proof. (1) e Estimate for outflux ||f"*1| ‘
v1 <0 as 7

L Using (2.2), we can write f"*1(0,v) for
vil,

v1>0

fnJrl(O?v) = 51fR + 62 < f(la 'U)|U1|d’l)> Mw(l) + 53fn(1, Rv)
(3.1)
1

7|v1]

+

1
/ T M, (™) dy
0

which, in view of Lemma 2.2, yields

f”“(O7 v)|vy|dv

v1<0
32) <4 / frloildo+6 [ o) oldo+6; [ 0L 0) e do
v1<0

v1>0 v1>0
InT+ 1)

+ Cl,u <

Similarly,
[ ol
v1>0

(3.3) §51/ fL|U1|dv+52/ f"((),v)|vl\dv+§3/ £7(0,v)|vy|dv
v1>0 v1<0

v1<0
1 1
+ Cz,u < nrt ) .
From (3.2) and (3.3), we obtain
Kk [V3 = / FrHH0,0) oy [dv + FrH L, ) o |do
wolval+ v1 <0 v1>0
(3.4) <0iffrrllzy |+ (02 +d3)[ /"]l
sl vilvil+
1 1
+ O&u < nrt > .
Therefore, in view of D; of Q; (i =1,2), we see that
" InT+1
(K F5! <l ferlley 42002+ 03)lfLrlly  + Cou < )
LTI vl Tlonl
3.5 InT+1
(3:5) =2(01 402+ )l frrller | —lferlle +Ce,u< )
<2|frrll: |
for sufficiently large 7.
e Estimate for influx: || f"Y 1 - When v; > 0, we have from the boundary condition
Vilvyl—

(2.1) that

(3.6) Y0, v) = 61fL + 2 ( (o, v)|vldv> M,,(0) + 63f™(0, Rv).

v1<0
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Integrate both sides with respect to |vi|dv on v1 > 0 to get

/ FrH0, v) o] dv
v1>0

= 61/ frlvi|dv + 02 < Mw(O)v1|dv> ( f”(O,v)|v1|dv>
v1>0 v1>0 v1<0

+ 03 f7(0, Rv)|vy|dv

v1>0

< 5 / florldo + (5 +65) [ F7(0,0)|ur|dv,
v1 >0

v1<0

(3.7)

where we used [, _, My (0)[vi]|dv < 1. Similarly, we estimate

[ ol
v1 <0
=4 frlvildv + 62 ( Mw(1)|v1|dv> ( f”(l,v)|vldv>
v1<0 v1<0 v1>0

+ 53/ (1, Rolos]do
v1>0

<& Jrlvi|dv + (62 + 33) (1, 0)[v1]dv,

v1<0 v1>0

Combining (3.7) and (3.8) gives

T / PO+ / P (L) o dv
vl v1>

v1<0
<oillferliey |+ (02 +33) [ f*] s

v lvil+

(3.9)

Thanks to (3.5), we have

1™ e < alferlln 4202+ 8) I el

<2[|frrllL:

A

1=

This completes the proof of (1). The proof of (2) is identical. We omit the proof.

Lemma 3.3. Let f™ € Qy or Qs. Then we have

[t Py < 2 el Ml

Proof. We integrate (2.1) w.r.t (1 + |v]|?)dv on v; > 0 to get

/ P (o) (1 + o) do = / T R0, 0)(1 + [uf2)do
v1>0

v1>0

1 ey
+/ / Tl p"(y) My (fn) (1 + [0]*)dydv.
01>0J0

e
Tl
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We compute the boundary terms in [o; f" (1 + |[v]*)dv as
/ e T L0, 0)(1 + [v]2)dv
v1>0

< / F0,0) (1 + [v]2)dv
v1>0

v1>0 v1<0

< fL(U)(l + |’U|2)d1} + 02 ( f”(O,v)|v1|dv> ||MUJHL1MU>1,

+ 03 F(0,v)(1 + |v]*)dv.

v1<0

Thanks to Lemma 2.1, we can compute the source term as

Tl -y
|| e M o)y
v1>0J0

7|v1]

x 1 z—y 2
< CLM,1/ / e *‘vlle_cvldvldy
0 Jui>0 T|v1]

InT+1
ECLM,I ( )

Therefore,

/ S @, o) (1 + [o]?)do
v1>0

vi{v),—

:51 fL(’U)(].+ |’U|2)d’0+52 <

v1>0

f”(Oyv)Ivlldv> [ M| 2

v1<0

1n7'—|—1)

+ 03 F0,0)(1+ |v|2)dv+C’g,u (

v1<0

We can have similar result for the case v; < 0:

/ £ (@, 0) (1 + [o]?)dv
v1<0

=6 [ Fa()(1+ foP)dv+ 6 ( f”(l,v>|v1|dv> IMallzs

v1<0 v1>0 +
InT+1
o[ 0P o (R,
v1>0
Summing up and using D; of ; (i =1,2), we get
/ FrH o) (1 o)
R3
" n InT+1
<aullfunles , + 8l Ml 1yl O (BT

v {v) ~,{v) v lvil+ ¥, {v),+ T

<allferlley  +0lMolley MM+ 2080 ekl Ml

1 1
+C’z,u(n7—+ )

15
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Since
= 1 < 1
L= Ml < Ml
we have
/f”“@,v)(lﬂv\?)dv
R3

<0ullferllpr | NMullzr  +0llf Ml 4 20s] forll | (1Mol
. (v) v {v) v, (v v, (v) v {v) (v

(v 1) : )
L <1n7’ + 1)
<2u+ 82+ B s Ml — O+ 00) I femlee | IMullss
L <1n7 + 1)
T

<2l fenlle  IMallis -

v {v)

]

In the following lemma, we show that (1) the bulk velocity in = direction is controlled by
the discrepancy of the boundary flux, and (2) the bulk velocities in other directions can be
taken arbitrarily small.

Lemma 3.4. Let f™ € Q1 or Qs.
(1) Fori=1, we have

‘/ f"+1v1d11’ <6
R3

where Cp g1 denotes

2
fL|U1|dU—/ frlvi|dv +2<52+53+> Crra
v1>0 v1<0 T

Crry=|ferley Mol -
¥ () v5(v)
(2) Fori=2,3, we have

| [ £ tvde] < 26l el
R3 ¥,lv

InT+1
| Moy|| 11 +Cyu ( ) .
i lvl T

Proof. (1) For v; > 0, (2.1) has the equivalent mild form:

n _ n 1 ’ ny __ n
P ) = 00+ e [ (M) = ) a

=100 + o [ (M) = ) do

TU1

1l

We multiply v; and integrate on v; > 0 to get
(3.10)

/U1>0 P (z,v)vdo = /v1>0 0, v) vy |do + % /07«' /Ul>0 (M,,(f") — f"“) dydv.

In the case v; < 0, we have from (2.2) that
1 x
P ) = )+ e (M) = ) dy
Tloi| Sy
1 x

=) = o [ (MU - £ dy.

TU1 1
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Integrating with respect to vidv on v < O:

/v1<0 (2, v)vdo = /vl<0 (1, v)vdo — 71_/130 /U1<0 (./\/ll,(f") — f”+1) dydv

(3.11)
- _/ P 0) oy |do + = / / f”“) dydv.
v1<0 v1<0

From (3.10) and (3.11), we have

/ Y (@, v)vdv = T + 11,
R3

where

I:/ f"+1(0,v)|v1|dv—/ f"+1(1,v)\v1|dv
v1>0 v1<0

LTy g e

(a) The estimate of I: We observe from the boundary condition that

/ f"+1(0,v)|vl|dv
v1>0

(3.12) = 51/ frlvi|dv + 02 </ fn(O,v)v1|dv> < Mw|v1|dv>
v1>0 v1<0 v1>0

+ (53/ f(0, Rv)|vy|dv
v1>0

and

and

/ f"+1(1,v)|v1|dv
v1<0

(3.13) = 61/ frlvi|dv + 62 (/ fn(l,v)|v1|dv> ( Mw|v1|dv>
v1<0 v1>0 v1<0

+ 95 F (1, 0)|vr|do.
v1>0

Taking the difference of (3.12) and (3.13), we estimate I as

1] = / F7H0, ) v |dv —/ P, 0) vy |do
v1>0 v1<0
<4 / OfL|v1|d'U f/ frlvi|dv| + 52||f”HL1 ||M ||L . JHS?’”JM«LHLi .
v > s
<0 / frlvi|dv — frlvildv| +2(82 + 83) | frrlln: 1Ml o
v1>0 v1<0 ~,{v) v, (v)
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In the last line, we used Lemma 5.4.
(b) The estimate for II: For II, we compute

1 [* L
111 < 7/ / O‘M”(fn) 7f"+1‘dvdy+—/ / 0 ’My(f")ffmrl’dydv
V1> s
/ / fn +fn+1}dqjdy—|— / / fn)+fn+1}dyd’()
v1>0 <0
== / / {Mu (") + f+ Ydudy
T Jo R3
1 1
_ 1 n n+1
_7'/0 {p +p }d?/
4
< ;HfLR”L;M> 1Mollzr

In the last line, we used (B;) (i1 =1,2) :
o <2 feall | IMuls
and Lemma 3.3:

P <2 ferl

Now, we combine (a) and (b) to obtain the desired result.

1Ml

(2) We only prove the case i=2. For v; > 0, we integrate (2.1) with respect to vadvadvs to
get

/ fn+1(56',’l})1)2d1}2d1)3 :e_%él‘/ fn+1(0’u)v2dvgd’l}3
R2

]R2
1 T a—y
n /e T [ My (f")vadvadusdy
o1 Jo R2

From (P,) of f1, that no vertical flow is induced from fr g, and the fact that M,,vs is odd
in v, we have

/ FH0, v)vadvadug = b3 7(0,v)dv
R2 v1<0
which, together with Property (B1) or (B2) and Lemma 2.1 gives

M (z, v)vadvadus < 53/ 170, v)vadvadus
RQ

1 T ey
+ CE’UW /6 / e Toxl e_clv‘zdydvzdvg,.
R 0

Now, integrating on v; > 0 and recalling Lemma 2.2, we get

1 1
/ F™(0,v)vedv| + Cyy ( nT ) .
v1<0 T

Applying the same type of argument to (2.2), we can derive

R2

< d3

/ P (z, v)vadv
v1>0

f(1,v)vadv

v1>0

f"*l(ﬂf,v)vzdv‘ < 83

| 1
+Ce,u(nT+ )

v1<0




STATIONARY FLOWS OF THE ES-BGK MODEL IN A SLAB 19

We sum these up them to obtain

n InT+1
’/ f +1(I7v)1)2d’0 < 253||fLR||L1 < >||Mw||Ll oy + C&u ( > .
01 <0 3 (vy Y vy

Here, we used Lemma 5.4 (2). O

In the following lemma, we show that the quadratic polynomial of the temperature tensor
can be controlled from below and above. We mention that the critical case (v = —1/2) has

never been treated in the literature so far, except for the near-global-equilibrium regime
[68, 69].

Lemma 3.5. (1) Let —1/2 < v < 1. Assume f™ € Qq. Then, for sufficiently large T, we
have

0352 Ye1 <7 {7-yn+1} K<

2
1302 CyCrLr1
LR.1

3ag71(51

for any k € R and |k| = 1.
(2) Let v =—1/2 and f € Qa. Then, for sufficiently large T, we have

a-1/21 T{ n+1}
< <
Y2CLR SRV L 2ay,101 Crra
for any k € R and |k| = 1.
Remark 3.6. We recall that where v, 1 and a_; 2,1 are defined in (1.8) and (1.9) respectively.

Proof. (1) We recall the following equivalence estimate [11, 69] which holds for —1/2 < v <
1:
(3.14) ClTH i, < 77 < C27m g,

where C! = min{l — v,1 + 2v} and C? = max{1 — v, 1 + 2v}. Therefore, it is enough to
derive the lower and upper bound of T7*!. The upper bound follows easily from Lemma
3.1 and Lemma 3.3:

1
(3.15) ™ < / L o2de <
R3

- 3pn+1 = 3610/5’1 HfLR”L}Y’(“)HMWHLl

v ()

Now we turn to the lower bound of T"*!. Since f"*! > 0 and |v| > |v1]|, we have from the
Cauchy-Schwarz inequality that
/ fr rodo
R3

n+1127n+1 _ n+1 n+1 2 o
3{p" T </Rsf dv)(/Rsf |U|d’U)
2
n+1 _ n+1
> (/Rsf |vl|dv> ‘/R?f vdv

Then we decompose according to whether they contain vertical flow or not:

st Pz ([ i) —{ $ | [ )
R3 R3

1<i<3

_ (/R f”’+1|v1|dv>2 - (/R f"+1v1dv)2 R
T —

= R,

2

2

(3.16)
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where

rR= Y} /f”+1vduH/ o).

(4,9)#(1,1)

Since f™ € Q;, we see from Lemma 3.4 that R can be taken to be arbitrarily small by taking
7 sufficiently large:

R=0 (53, (InT + 1)771) .

For I, we use a? — b? = (a — b)(a + b) to compute

{/ (o —|—v1)dv} {/ (| —vl)dv}
R3
— { f"+1U1|dU} {/ f"+1|v1|dv}
v1>0 v1<0
> 462 (/ Oe_vlllfL|v1|dv> </ Oe_lvllfR|v1|dv>
v1> v1<

= 40774,1.

\ \/

In the last line, we used (2.1) as

__=z A==
o> Gre Tl fr 1y 0 + S1e” T frly <o
1 1

> 01e il frly >0 +d1e 1l frly <o

and 7 > 1. Therefore, for sufficiently large 7, we get

1 InT+1 Ye1
17 Tl > S sty - O 52 .
(3.17) “ 30 M}Q{ a0 (7 )} '3C2,,

Thanks to Lemma 3.3. Finally, we put (3.15) and (3.17) into (3.14) to get the desired result.

(2) In this critical case, the Lh.s of the equivalence type estimate (3.14) become trivial,
and does not give any meaningful information about the positivity of the temperature ten-
sor. Therefore, we need to take a more careful look in the structure of the temperature
tensor directly. For this, we observe that the quadratic polynomial of the temperature ten-
sor can be written in terms of the local energy and the directional local energy in the critical

case v = —1/2:
1 n
[ (] = [ (vt oot
(318) . n+1 n+112 _ n+l n+1 2
S AT =
=111,
for |k =1

(7) Upper bound of I + IT: Since,

"U‘Q _ (’U . I{)Q S |’U|2 and pn+1|Un+1|2 _ pn+1(Un+1 . IQ)Z Z 0’
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We can ignore 11 and employ Lemma 3.1 and Lemma 3.3 for [ to get

1 2
T n+1 < n+1 2 <
KT R < i [ R € Sl Il

(#i) Lower bound of I+ ITI: For this, we derive the lower bound for the quadratic polynomial
of T_1/2 by combining the lower bound of I and smallness of I1:

(ii-a) Lower bound of I: Since |v|> — (v - k)2 > 0, we observe from (2.1), (2.2) and Lemma
3.3 that

pn+1]—:/ fn+1 {|’U‘2 _ (U'I{)de}
R3
251/ {6_’:1'fL1u1>0+6_71’“1'fR1v1<0}{|U|2_(U"‘$)2}dU
R3
> 6p inf / eiﬁﬂfLR{MQ—(v-ﬁ:)Q}dv.

[k]=1 JR

Since we are assuming 7 is sufficiently large, we assume without loss of generality that 7 > 1,
so that

p"t > 6y inf €_ﬁfLR{|U|2_ (”‘“)2}6@:51@_1/2'

lk|=1JRrs

(#3-b) Smallness of IT: Thanks to Lemma 3.4, we see that I can be controlled, up to small
error, by the discrepancy of the boundary flux:
/ f udv
R3

/ frlod
R3

/ fr|vi|dv 7/ frlv1|dv
v1>0 v1<0

1 2
<62 + 05 + T> Ciri+ Cou <

From the estimates in (ii-a), (ii-b), we have

1
T +1
AT 2 S )

3

1
= d1a0,1 Z

=1

2 2

II < |pn+1Un+1‘2 1
- prtl T drap,

25 ?
)

ap 1

ln7+1)2
+ .

0101

L

ag 1

>

2
a-1/21 — 2 frlvi|dv — / frlvi|dv
v1>0 v1<0

) (52,53,7*1)

Therefore, if §2, 63, 7~! and the flux discrepency:

frlvi|dv —/ frlv1|dv
v1>0 v1 <0

are sufficiently small, we get the desired lower bound. |
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4. CAUCHY ESTIMATE FOR f"

The goal of this section is to show that { ™} forms a Cauchy sequence in an appropriate
norm. First, we consider the continuity property of the ellipsoidal Gaussian:

Proposition 4.1. Let f, g be elements of Q1 (—1/2 <v < 1) or Qy (v = —1/2). Then the
non-isotropic Gaussian M, satisfies

My (f) = Mu(9)] < Csup||f = gllpye "

‘ 2

Proof. The case of —1/2 < v < 11is covered in [11]. Here we only consider the case v = —1/2.
Throughout this proof, v is fixed to be —1/2. We apply Taylor expansion to M, (f)—M.,(g)
as

B YoM, (6) YoM, (6) YoM, (6)
= (Pf‘ﬂg)/o Tpde"'(Uf_Ug)/O Td9+(7}_7—g)/o Wd@

= (pr — pg) i + (Up = Ug) Lo + (Ty — Tg) I,
where we used abbreviated notation:

oM, (6) M,

9X X (p93U977—9)

and (pg, Uy, Tp) = (1-0) (pf, Uy, 7}) +9(pg, Uy, 7;) Since the transitional macroscopic fields
(po, Uy, Tp) are all linear combinations of macroscopic fields of f and g, all the estimates
for the macroscopic fiels given in (As), (Bz2), (C2) and (D2) (i = 1,2) hold the same for the
transitional macroscopic fields too. Therefore, we will refer to the corresponding properties
of Q; (i =1,2) for p, U, T,, whenever such estimates are needed for (pg, Uy, Tp).
(a) Estimate for I1: Since

OM,(0) 1

= —M,(0),
dp Po (6)

we see from (Bs) of Q3 and Lemma 2.1 that

1
(4.2) L < (TCz,ue_CZ*“‘UIZ.
1

(b) Estimate for I5: An explicit computation gives

%{}9) = f%{(v —Up) Ty 4+ T v — Ue)}My(g),

Put X = v — Uy and recall the property (Cz) of Qs to compute
IXTT5 ! = sup X {Tp} 'Y
Y|=1

1

=5 g { XY - X Ty X YT
Y|=1

2a4,1 2 2 2

< ——— su X+Y|"+| X"+ |Y

510—1/2,1 |Y\£1 (| | X1 Y] )

8ag1
(1+X]%),

g G e
d1a_1/2,1
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so that
(4.4) {Te} 1w = Up)| < C

8&@ 1 2

’ 14 |v|9).
51@_1/271( [v]%)
Therefore, in view of Lemma 2.1, we have

(c) Estimate for I3: We Compute

45) —L ==
(4.5) 0T

OM,(6) 1| 1 0detTs o (0T
o, 2| AT Ty TV T

) Ty (v —Up) | M,(6)

and observe that, for each pair of (i, j), 66779—?, is either 1 or 0, so that
ij

1 OTs _
(v—Ug)T%1<a7;_>7;1(U—U9) S‘(’U—Ue HT (v —Up)
i

(4.6)
< CLu(1+ o).
Here, we used (4.4). On the other hand, to estimate the derivatives of the determinant, we
write Bad;—iﬁ as follows:
ij
Z Cijmnlreij%mn
%,7,m,n

for some constants Cjjm,. We then note that Lemma 3.5 (2) implies
8
Tpii < ——C .
i > 2(1(7151 LR,1

Indeed, as in (4.3), we see that
| Tois| = lei Toe,|

1
— sup H(ei + ej)T’ﬁ;(ei +ej) — eiT’ﬁ)elv — e;-rTgej}’

2 y|=1

2a
< (e e +Jeil” +|es[?)
d1a_1/21
- 8a[71
51a_1/271'

Therefore, we can estimate

2
Odet Ty 3
< C .
A <2ae,151 LRJ)

Finally, we recall (Bz) of 22 and Lemma 3.5 (2) to find

3
(4.7) det Ty > (6212 ) (w=—1/2)
2CLR1
We plug (4.6), (4.8) and (4.7) into (4.5), and employ Lemma 2.1 to get
(4.8) ’aM ‘ < COT8(1 + [u]P) M, (6) < Ce=CIP*,

ey
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(Note that 071 is not small in the inflow dominant case.) We now turn back to (4.1) with
these estimates to derive

(4.9) Mo () = Mu(9)| < C{log = pgl + U = Uyl +[T7 = Tyl e,

For the difference of macroscopic fields, we treat as

105 = ol :/ I = gldv < Csup [If — gl
R3 T

U = Ul < = logUs = Ul + ~-los = pollUy] < Coudy suplf = gl
and
5 = Tl < - logTs = Tl + - lpg = 31T = ot sup 1 =l
This completes the proof. O

Proposition 4.2. Suppose f", f"*1 € Q,. (i = 1,2) Then, under the assumption of
Theorem 1.2, we have

sup [/ = "y + 1 = £l
x

< <ln7+1

+ I =

sl v (V)

v {v)

) sup |f" = £ Moy + G+ S = 1M Bl

Proof. (1) Estimates in the trace norm ||-|| ;1 o First, we note from our boundary condition
Yslvg
that, for v; >0

0, v) — f7(0,v) = dy (/v1<0 {f"(O,q}) — f”*l(O,v)} |vldv> M, (0)

+ 63 {f"(O,Rv) — L, Rv)} .

Taking integration w.r.t |vi|dv,

[ 10 = 0o

< by (/ 1£"(0,v) — f"_1(070)|01|dv> My, (0)[vr|dv
(410) v1 <0 v1>0

s / F7(0, Rv) — £7(0, Ro)fundv
v1>0
< (62 + 03) / £7(0,0) — F71(0, 0) o] do.
v1<0

On the other hand, for v; < 0, we have from (2.2)
FrH00) = I(f™) + TI(f),

where

) = T L), T0) = 7 / e~ M, ()dy
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(1 - i) The estimate for I(f™) — I(f"~1!): Since

1>0

1) = T(f1) = G 751 My (1) ( | Arao-roa) |v1|dv>
T {f"(l,Rv) - fnfl(l,Rv)},

we have

/ (™) — I(F") o] do
v1<0

<5, {/ <Oe—ﬂth<v)|uldv} {/ e —f"‘l(l,v)||v1|dv}

+ 03 {/ . I/ (1,v) — f"_l(l,v)||v1|dv}

< (02 +ds) {/ o (1 0) = f"‘l(l,v)lvlldv}

(4.11)

e The estimate for II(f) — II(g):
We recall Lemma 2.2 and Proposition 4.1 to estimate

/ TI(f™) — TT(f™ ) oy |dv
v1>0

1 Ty
S/ / ¢TI M, (1) — My, (F7 )| [vr | dydv
v1>0 T|vl‘ 0

<[ [

InT+1 n n—
( )supf e
xT

(4.12)

1 __v
T\v1|e o] e—Cz,ulvlzdvldy} sup || f™" — f"_lHLé
x

<C

We sum up (4.10), (4.11) and (4.12) to obtain

17 = "

Tlvil,—

InT+1 n e n e
< (BT sup = 5y + Gt 807 =

vlvil+

In an almost identical manner, we can derive

L = e =

Yilvil+ Y lvpl—

( )supnf U Ga 4 B —

Therefore,

(413) If" ™ =l =

Yilval T

1IIT+1 n n— n n—
(B2 sup = 17y + Bt Sl = 57y

v lval
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(2) Estimates in the trace norm || - || 1 oy We only estimate the boundary term I, since
v, (v

the estimates for II are almost identical. By an almost identical calculation, we arrive at

/ I =1l e

< {/ B era{illle(l)@)dv} {/ . [f™(1,v) — f"l(l,v)Hvldv}

+ 93 {/ » [f" (1) = f”_l(l,v)lvlldv}

< (65 + 63) / F7(L, ) — L (1, 0) (v do.

v1>0

where we used || M| 11 - S C(Ty). Then, through similar computaitons for IT terms, (we
¥, (v

omit the proof to avoid repetitions.) we can obtain the estimates in || - || o
v, (v
n n Int + 1 n n—
177 s = (R ) sl
(4.14) e @
R PR A VPN S 1 AR Al PR
s lvtl Vs (v)
The estimates in sup, || - [z can be derived similarly:
. Int+1 _
177 = £y = (2 ) sl -
(4.15) z
+ 0l = e sl = T e
v lvil Vs (v)
The estimates (4.13), (4.14) and (4.15) give the desired result. O

5. PROOF OF THEOREM 1.5: THE DIFFUSIVE BOUNDARY CONDITION

We now turn to the proof of Theorem 1.5. Since many parts overlap with the proof of
Theorem 1.2, we focus on the difference of the proof. We start with the reformulation of
the problem.

5.1. Reformulation of the problem. Consider the following mild formulation of (1.1):

f(z,v) =61 fL + 02 (/ . f(O,v)|v1|dv> M,,(0) + 55 (0, Rv)
1<

1

+
7|1

/Ox R(y,v)dy, (v1>0)

f(z,v) =01fr+ 62 </ . f(lvv)|v1|dv> My (1) + 03 f(1, Rv)
v1>

1

_|_
7l

/R(y,v)dy, (v1 <0)
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so that

v1<0

f(Lv) =01fr+ 62 ( f(07v)vlldv> M.,(0) + 63 (0, Rv)
1 1
+ T|U1|/0 R(y,’l))dy, (1)1 > 0)
f(0,v) = d1fr + 62 </ f(, U)Ivlldv> M,,(1) + 65 f(1, Rv)
v1>0

+

1 1
/ Riy,v)dy, (v1 <0).
vi| Jo

Integrating with respect to |v1|dv:

7|

F(1,v)|vy|dv = 6, / frlvildv + (82 + d3) £(0,v)|vy|dv

v1>0 v1>0 v1<0
1 1
+ */ / R(y,v)dydv,
(5 1) T Jvi>0Jo
/ F(0,0)|vr|dv = 51/ Falvr|dv + (65 +53)/ F(1,0)[or|do
v1<0 v1<0 v1>0
1 1
+ = / / R(ya 'U)dyd’l),
T Jui<0Jo
where

R(f)(l’, U) = Mu(f)(xa U) - f(ﬂ?,’U),
throughout this section. Inserting (1.10) into (5.1)1, we get

1—6 51 1 / /1
0,v)|vy|dv = + vi|dy — — R(y,v)dydv.
/v1<0f( >| 1‘ 2_51 2_51 ’U1<0fR| 1‘ 7(2_51) v1>0J0 (y ) Y

Similarly, from (1.10) and (5.1)2, we get

1-—6; 01
1,v)|vi|dv =
y1>of( )‘ 1| 2-0 2-4 v1>0

1 1
frlv dv—if R(y,v)dydv.
zfonl 7(2—61) v1<0J0 w:v)

From this, we derive the new formulation of the problem given in Definition 1.3.

5.2. Approximation scheme and solution spaces. We construct the solution for (1.1)
from the following approximate scheme:

__= 1 T ey
(5.2) [ (@) =e f‘“1‘f”(070)+m/ e T M, (fM)dy, if vy >0
1l Jo

and
11 _ @ 1 L ey .
(5.3) (@, v) = e Tl f(1,v0) + o] /$ e TmIM,(fM)dy, v <0
where
(5 4) fn+1(0,’l)> = 61fL(’U) + 528L(fn)Mw(O) + 63fn(0a RU), (Ul > 0)

FrH (1, 0) = 01 fr(v) + 628R(f")Muw(1) + 83" (1, Rv),  (v1 < 0)
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and
N 5 1 v
SN = 5+ vl<0me|dv—T(2_51)/m>o/o R™ (y, v)dydv
1—-6; 5 1 / /1
SR(f ) 2_51 + 2_51 ’U1>0fL|Ul‘ v 7(2_51) <00 R (y,'U) yav
with

R™(y,v) = p" {M.(f") = f"}.
As in the inflow dominant case, we define two function spaces. First we define the function
space for the non-critical case —1/2 < v < 1:

Qg = {f € 2 (10,1 LA(R*)) N L2 ) (R?) | [ satisfies (As), (Bs), (Cs), (Ds) }
where (As), (Bs), (Cs3) and (D3) denote
e (A3) f is non-negative:
f(z,v) >0 for 2,v € [0,1] x R3.
e (Bs) The macroscopic field is well-defined:

. flz,v)dv > ag 2, /3 flz,v)(1+ |v\2)dv < 2CLR2-
R R

e (C3) The temperature tensor is well-defined:

2
0152 Ve,2 < T y < 7020 .
v 130%&2 <tk {T}r < 3ags ¥ LR,2

e (D3) The inflow data satisfies:
s <200+ el )s Il <2C0Re.

For the critical case v = —1/2, we define

Qi = {f e 2= (10,1 LA®R?)) N LL ) (R?) | [ satisfies (A1), (Ba), (Ca), (i) }
where (Ay), (By), (C4) and (D4) denote

e (A,) f is non-negative:

f(z,v) >0 for 2,v € [0,1] x R3.
e (B4) The macroscopic field is well-defined:

flz,v)dv > ag 2, / fz,0)(1+ |v\2)dv <2CLRa.
R3 R3

e (C4) The temperature tensor is well-defined:

a_1/2 T{ } 3
bo—1— < _ <—0C .
220LR,2 <k T 12 (K> 2042 LR,2
e (Dy4) The inflow data satisfies:
s <200+ 1feeller  )s Il <2CLRa.

Before we move on to the proof of uniform estimates for f™, we recored a few estimates
that will be fruitfully used throughout the paper. The proof for the Lemma 5.1 is almost
identical to the corresponding estimates in Lemma 2.1, and we omit the proof.
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Lemma 5.1. (1) Let f € Q3. Then there exist positive constants C' depending only on the
quantities (1.5) and o2 such that

M, (f) < Ce I,

(2) Let f € Q4. Then there exists positive constants C depending only on the quantities
(1.5) and a_q /55 such that

M, (f) < Ce I,
5.3. f* € Q; (i =3,4) for all n. The main result of this section is the following proposition

Proposition 5.1. (1) Let —1/2 < v < 1. Assume frr satisfies the conditions of Theorem
1.5 (1). Then f™ € Qg for all n.

(2) Let v = —1/2. Assume frg satisfies the conditions of Theorem 1.5 (2). Then, f™ € Q4
for all n.

We divide the proof into Lemma 5.2, 5.3, 5.5, and Lemma 5.7.

Lemma 5.2. Let f* € Q3 or Q4. Then, for sufficiently small 61 and sufficiently large T,
we have
fn+1 > 0.

Proof. Since f™ € Q3, we have from Lemma 2.2

N 51 1 .
SUM =y by [ sl s // R (y, v)dydv

1-6 1 !

Lea [ oo = 2 [ [+ 7 (P )y
2-0 v1>0 T JrJo
1

v

>
-3

for sufficiently small §; and 7—!. Similarly, Sg(f") > 1/3. Therefore,
n+1 1 __z 1 _l—=
= 5526 Tt My (0) 14,50 + 5526 1T Moy (1) 10, <0

1. _ 1
Z 5526 ‘Ul‘Mw Z 0

for v1 > 0. The case for v; < 0 is the same. O
Lemma 5.3. Assume f € Q3 or Q4. Then we have

/ fnJrld’U 2 62@()2.

R3

Proof. We only prove the second one. Recall from the previous proof that

fn+1 > %626_T11|Mw~
Integrating with respect to v, we obtain the desired lower bound. O
Lemma 5.4. (1) Let f™ € Q or Q. Then we have

L e e <20+ ferll
Yol volvtl, vt

(2) Let f™ € Q1 or Q2. Then we have

n+1 n+1
1 1 e

).

<2kl + Ml )-
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Proof. (1) e Estimate for outflux ||f"*1| ‘
v1 <0 as 7

L Using (5.2), we can write f"*1(0,v) for
vil,

1

7|1

(55) fn—H(O, v) =6 fr+ 628RMM(1) + (53fn(1, R’U) +

1
/ €T M, (")dy
0

which, in view of Lemma 2.2, yields

f"+1(0, v)|vy|dv

v1<0
(5.6) < 51/ frlvi|dv + &9 Mw(1)|vl\dv+(53/ (1, 0) vy |do
v1<0 v1>0 v1>0
1 1
+ CZ,u ( nT > .

Here, we used S§; < 1, which follows directly from the smallness of §; and Lemma 2.2.
Similarly,

/ £ (L, 0) o do
v1>0

(5.7) < frlvi|dv + 09 M, (0)|vy|dv + 63 / £7(0,v)|vy|dv
v1>0 v1<0 v1 <0
| 1
+ Ce,u ( nrt > .
From (5.6) and (5.7), we obtain
140 s = [ O+ [l
wlvil+ v1 <0 v1>0
<Ol ferlley | A0l Mullpy 0
REICT RELCSR R Yslvls
1 1
(5.8) 4 Cra < nTt )
<ollferlles A0+l
1 1
+ Cg’u ( nT ) .

Therefore, in view of D; of Q; (i = 1,2), we see that

£z <oillferlley 402 +205(1+ [ frrller | )+ Cru (

v lvil+
=200+ 03 +03) (1 + | frrllzr ) — (Ov+0) (1 + Iferler )
InT+ 1)

lnT—l—l)

T

+Cé,u<
<2(1+|lferler |, )

for sufficiently large 7.
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e Estimate for influx: || f"Y 1 .
(5.4) that '

= When v; > 0, we have from the boundary condition
.

FrH0,0) = 61 fr + 6281 My (0) + 637 (0, Ro).
Integrate both sides with respect to |vi|dv on v1 > 0 to get

(5.10) / . 70, 0) vy |dv = (51/

v1>0

Fulorldv + 65 + 53/ £7(0, Ro)|vs]do.

v1>0

where we used S;, <1 and [, _ M, (0)|vi|dv = 1. Similarly, we estimate

(5.11) / f"“(l,v)|v1|dv =0 / frlvi|dv + 62 + 03 f™(1, Rv)|v|dv.
v1 <0

v1<0 v1>0

Combining (5.10) and (5.11) gives
(5.12) ”fnJrl”L}le‘y_ <oullferlies |+ 02+ 00 ey

+

which, thanks to (5.9), gives
I < ).
1F™ s <200+ ferle |, )
This completes the proof of (1). The proof of (2) is identical. We omit the proof. O
Lemma 5.5. (1) Let f™ € Q3 or Q4. For sufficiently large 7 > 0, we have

[ iy <2 (Ifealey , + 1Ml ).
R3 Vo lvgl

v (v)
Proof. The proof is almost identical to Lemma 3.3. We omit it. (]

Lemma 5.6. Let f™* € Qg or §y.
(1) Fori=1, we have

fL|’Ul|d1} — fR‘UlldU

v1>0 v1<0

2
‘/ fn-H'Uld'U‘ <& + —Crme
R3 T

where Cpr2 denotes
Crima = |lferller , 4+ [[Myllzr -
v.(v) 72 (w)
(2) Fori=2,3, we have

‘ /RB f"“vidv‘ <203Crp2+C <

T

InT+1 )
Proof. (1) Recall from the proof of Lemma 3.4 that

P (z, v)vpdy = T+ 11,
R3

where
I:/ f"+1(0,v)|v1|dv—/ f"“(l,v)\vﬂdv
v1>0 v1<0

and

O R ey e
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(a) The estimate of I: We observe from our boundary condition that

016
|| < (51+ 1= ) / fL|U1|dU—/ frlvi|dv
2751 v1>0 v1<0

1
g L] e ey o oayan

< 25 fr|vildv — frlv1|dv

2
+—Crum2.
v1>0 v1<0 T

In the last line, we used Lemma 5.4.

(b) The estimate for I1: The argument for this part is identical except that we use Lemma
5.5 instead of Lemma 3.3. Now, we combine (a) and (b) to obtain the desired result.

(2) The proof is identical to the inflow dominant case, since the d2 contribution vanishes:

S(fn)Mw’UgdUQd'Ug =0.
R2

We omit the proof. O

Lemma 5.7. (1) Let —1/2 < v < 1. Assume f™ € Q3. Then, for sufficiently large T, we
have

’YZ,Q T n+1 2 2
clgz b2 o {T + } < 2 2
V29702 ,, " U ST B, M

(2) Let v=—1/2 and f € Q4. Then, for sufficiently large T, we have

a—1/2 T{ n+1} 3
0 —— < <—07"
14CLR,2 =R T_1/2 = QCLLQ L2

for any k € R and |k| = 1. We recall that
Cramz =l frgller  + 1Mol -

Proof. (1) The proof is identical to the inflow dominant case, except for the computation of
I, where we bound it from below using 2 and 7, 2, instead of using d; and 1.

[ ) (] rvin)
v1>0 v1<0

= 5%%,2-

In the last line, we used

n+l s 250 e 7T M, (0)1 L5 e, (1)1
[T > Shge T w()v1>0+32€ 1 My (1)1, <0

w| =
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and 7 > 1.
(2) We recall from the inflow dominant case that

T {7—_7114;12} o
(5.13) _ /R3 Frtt {MQ (v K)Q} dv — {pn+1|Un+1|2 e (Vi /@)2}

=71+1I,

for |k =1
(1) Upper bound: We have from Lemma 5.5 that

1 1
T +1 n+1y,,2
Tm } < 7/ dv < (1 + ) M, .
k { 71/2 k= 9n-‘—l R3 f |U| V> (1&252 ||fLR||L'1y,(v> H HL}Y’<U>

(i) Lower bound: For this, we estimate the lower bound of I and the smallness of I1:
(#i-a) Lower bound of I: The proof is the same, except that we bound it using a_; /5 o this
/2,

time:

1. . S 9 9 1

I> -6y inf e |v1‘Mw{|v| — (v k) }dv:féga_l/QQ.

3 7 sl=1 Jgs 3 ’
(73-b) Smallness of of IT: The estimate for this case is the same either, except that we use
Lemma 5.6, instead of Lemma 3.4:

n+lrrn+1)2 2 3 2
II< w < L f"“vdv < i Z f”“vidv
prtl ag1 | Jrs ag1 “ RS
’ =1
2
<462 frlvildv — / frlv1|dv] +0O (53,7'71> .
v1>0 v1 <0

The by exactly the same argument, we get the desired result. Note that, since we can take
01 arbitrariliy small in this case, we don’t need to assume that the discrepancy of the flux
from the inflow data is small. O

5.4. Cauchy estimate for f”.

Proposition 5.2. Let f, g be elements of Q3 (=1/2 <v < 1) or Q4 (v =—1/2). Then the
non-isotropic Gaussian M, satisfies

My (f) = Mu(9)] < Csupl|f - gllpye” "

2

Proof. The proof is almost identical with the one given for Proposition 4.1. We omit it. O

Proposition 5.3. Suppose f*, f"*1 € Q; (i = 3,4). Then, under the assumption of
Theorem 1.5, we have

sup | = g + I = e AU
; |

volvil

InT+ 144 n n— n n— n n—
< (BTEER sl - g = £ al =

v (v)

Remark 5.8. We note that, unlike in Proposition 4.2, K does not have || fLr[v|™!|| .1 o, ferm
v, (v

in this case. This is why we don’t need the no-concentration assumption (P) in Theorem
1.5.
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Proof. We only consider the boundary terms in || - ||z - estimate. We note from our
v, lvy

boundary condition that, for v; > 0
[ 15t = 0.0l
v1>0

< 8lST(f") = ST My (0)vr |dv

v1>0

(5.14)
+53/ F7(0, Ro) — F=1(0, Rv)|[vr|do
v1>0

5 — n n—
<CZswp "~ gyt 0 [ £~ 00 o,

v1<0
where we used Proposition 5.2 as

SHUm = SUNI = g [ R R ) g

O n n—
< Csup 7~ 1y,
On the other hand, for v; < 0, we have from (5.3)
FrH0,0) = I(f") + TI(f"),

where
I(f) = e T 5 Ps @ (1 ) r(f) = — /ze—%%(h)dy
T|U1| 0
Since
L) = 1(f"71) + o™ 1 {S7(f") = §7(F71) } Mu (1)
+ bge 7o {f”(l,Rv) - fnfl(l,Rv)},
we have
[ =1 Hjuas
v1<0
(5.15)

1>0

1
< 0?2 sup || f" — fn—1||L% + I3 {/ | (1,0) — fn_l(l,v)Hvldv} .

Now, through an almost identical computations as in the inflow dominant case, we get the
following estimates:

n " InT+144 n n e
610) 1 = oy = (B Ysup - o g+ sl -

v, lvg | v, lvy |

Estimates in || - || . and [ - ||z can be obtained similarly:
i

v {v) 75 {v)

I T e L Ay e MR e Vs Y
and

n+1 n lnT + 1 + 52 n n—1 n n—1
618) 17 oy < (BT s sl

The estimates (5.16), (5.17) and (5.18) give the desired result. O
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