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Summary of the talk
Boltzmann description for gas mixtures

BGK–type model for inert mixtures of monatomic gases mimicking
the structure of the Boltzmann collision operator for gas mixtures
[Bobylev, Bisi, Groppi, Spiga, Potapenko (KRM 2018)]

Mixed Boltzmann–BGK model for gas mixtures, where each kind of
binary interactions may be modelled by a Boltzmann or by a BGK
operator

Motivation
We aim at preserving wherever possible the detailed description of
interactions provided by Boltzmann operators, and at the same time we
would like an analytically and numerically manageable kinetic model for
gas mixtures
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Particular option (that will be mainly investigated)

Boltzmann operators for intra–species collisions and BGK operators
for inter–species collisions

Hydrodynamic limits
collision dominated regime;
dominant intra–species collisions.
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BGK models for inert or reactive gas mixtures
Inert mixtures

McCormack, Phys. Fluids (1973)
Andries, Aoki, Perthame, J. Stat. Phys. (2002)
Klingenberg, Pirner, Puppo, Kinet. Relat. Models (2017)
Haack, Hauck, Murillo, J. Stat. Phys. (2017)
Todorova, Steijl, Europ. J. Mech.-B/Fluids (2019)
Haack, Hauck, Klingenberg, Pirner, Warnecke, J. Stat. Phys. (2021)

Reactive mixtures

Groppi, Spiga, Phys. Fluids (2004)
Kremer, Pandolfi Bianchi, Soares, Phys. Fluids (2006)
Bisi, Groppi, Spiga, Phys. Rev. E (2010)
Brull, Schneider, Commun. Math. Sci. (2014)

Polyatomic gases

Andries, Le Tallec, Perlat, Perthame, Eur. J. Mech. B (2000)
Brull, Schneider, Contin. Mech. Thermodyn. (2009)
Bisi, Cáceres, Commun. Math. Sci. (2016)
Pirner, J. Stat. Phys. (2018)
Bisi, Travaglini, Physica A (2020)
Brull, Commun. Math. Sci. (2021)
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Boltzmann description for inert gas mixtures

We consider an inert mixture of N species (s = 1, . . . , N)

Boltzmann equations

∂fs
∂t + v · ∇xfs =

N∑
r=1

Qsr (fs , fr )

with Qsr (fs , fr ) =
∫
R3

∫
S2

gsr (|y|, ŷ·ω)
[
fs(v′) fr (v′

∗)−fs(v) fr (v∗)
]
dv∗ dω

v′, v′
∗ are post–collision velocities

y = v − v∗ is the relative velocity
Cross sections gsr (|y|, µ), µ ∈ [−1, 1] depend on reduced masses and
on the intermolecular potential
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BBGSP model for inert gas mixtures
(Bobylev, Bisi, Groppi, Spiga, Potapenko (KRM 2018))

We want to preserve the structure of Boltzmann collision operator (sum
of binary interaction operators)

∂fs
∂t + v · ∇xfs =

N∑
r=1

Q̃sr

with Q̃sr = νsr
(
ns Msr − fs

)

Maxwellian attractors

Msr = M
(

v; usr ,
Tsr
ms

)
=
(

ms
2πTsr

)3/2
exp

[
− ms |v − usr |2

2Tsr

]
⇒ 5 N2 free parameters

{
νsr , usr , Tsr ; s, r = 1, . . . , N

}
to be

combined with only (N+4) conservation laws

[For this reason many consistent BGK models are available for gas mixtures]
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Construction of auxiliary parameters of BBGSP model

Collisions of identical particles are described by the usual BGK
model: uss = us , Tss = Ts , s = 1, . . . , N

We impose that each bi-species BGK operator Q̃sr prescribes the
same exchange rates (of momentum and energy) of the
corresponding binary Boltzmann operator Qsr

⟨ Qsr − Q̃sr , v⟩ = 0 , ⟨ Qsr − Q̃sr , |v|2⟩ = 0(
where ⟨g , h⟩ =

∫
R3

g(v)h(v) dv
)

• Moments of BGK operators may be easily computed, leading to

νsr ns
(

usr −us
)

= ⟨Qsr , v⟩, νsr ns

(
3

Tsr − Ts

ms
+ |usr |2 − |us |2

)
= ⟨Qsr , |v|2⟩
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• Moments of Boltzmann operators Qsr involve∫
R3

∫
R3

fs(v) fr (v∗) ĝsr (|v − v∗|)ψ(v, v∗) dv dv∗

where ĝsr (|y|) = 2π
∫ 1

−1
(1 − µ) gsr (|y|, µ) dµ

For Maxwell molecules the collision kernel gsr is independent of |y|
⇒ ĝsr = λsr = const

For general intermolecular potentials we approximate ĝsr (|v − v∗|) by its
value in some typical point

zsr =
(

|v − v∗|2
) 1

2 =

(
1

ns nr

∫
R3×R3

fs (v) fr (v∗) |v − v∗|2 dv dv∗

) 1
2

=
[
3
(

Ts

ms
+

Tr

mr

)
+ |us − ur |2

] 1
2

and consequently ĝsr (|y|) ≃ ĝsr (zsr ) := λsr

⇒ We get explicit expressions for the exchange rates of the bi-species
Boltzmann integrals even for general interaction potentials
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⇒ We get explicit expressions for the exchange rates of the bi-species
Boltzmann integrals even for general interaction potentials

M. Bisi, Parma Boltzmann–BGK model for gas mixtures 8 / 33



From these explicit expressions it is possible to define uniquely the
parameters usr , Tsr as

usr = (1 − asr ) us + asr ur

Tsr = (1 − bsr ) Ts + bsr Tr + γsr |us − ur |2

where

asr =
λsr nr mr

νsr (mr + mr )
, bsr =

2 asr ms

ms + mr
, γsr =

ms asr

3

( 2 mr

ms + mr
− asr

)

The effects of the intermolecular potentials are included in
coefficients λsr , and possibly in collision frequencies νsr (free parameters)
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Main properties

Theorem
The BBGSP model preserves positivity of solutions fs and of
corresponding temperatures Ts , s = 1, . . . , N, provided that collision
frequencies satisfy the conditions

νsr ≥ 1
2λsr nr

The BGK model satisfies all the main properties of Boltzmann equations:
conservation laws (for mass, momentum and energy);
H–theorem;

uniqueness of equilibrium solution f eq
s = ns M

(
v; u,

T
ms

)
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Collision frequencies
Various strategies are available in order to fix collision frequencies νsr of a
BGK model for mixtures:

imposing preservation even of Boltzmann exchange rates of viscous stress;
imposing that average loss terms of Boltzmann equations equal the BGK
ones;
...

Hydrodynamic limits
The structure of BBGSP model allows to investigate its hydrodynamic
limit not only in the classical collision dominated regime:

∂fs
∂t + v · ∇xfs = 1

ε

N∑
r=1

νsr
(
ns Msr − fs)

but also in situations where only intra–species collisions are dominant

⇒ In both regimes, Navier–Stokes equations have been derived owing
to a Chapman–Enskog asymptotic procedure
(Bisi, Groppi, Martalò, J. Phys. A 2021)
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Numerical comparison with other BGK models
(Cho, Boscarino, Groppi, Russo, KRM 2021)

Numerical approximation: conservative semi-Lagrangian methods with
high order Diagonally Implicit Runge Kutta or Backward Difference
Formula methods for time discretization (asymptotic preserving (AP)
schemes)
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Figure: Comparison of species velocities us from three BGK models: Andries, Aoki, Perthame
2002 (solid line), Bisi, Groppi, Spiga 2010 (’· · ·’), BBGSP (’− − −’)
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Comparison between BBGSP model and Navier–Stokes equations
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Figure: Comparison of global velocity u from BBGSP and NS equations
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Mixed Boltzmann–BGK model

• Boltzmann model
- integro-differential Boltzmann equations for distribution functions
- collision operators as sum of binary terms
- detailed description of the interactions between any pair of

components
- high computational cost for integral operators

• BGK models
- simpler linear relaxation operators
- more manageable numerics and hydrodynamic limits
- not unique model for mixtures
- no detail at microscopic level

• Aim of the mixed model:
to combine the positive features of the two descriptions
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General form of the Boltzmann–BGK model
∂fs
∂t + v · ∇xfs =

N∑
r=1

[
χsr Qsr (fs , fr ) + (1 − χsr ) Q̃sr (fs)

]
, s = 1, . . . , N

where
- Qsr (fs , fr ) is the usual bi–species Boltzmann operator;
- Q̃sr (fs) is the BGK operator constructed above (BBGSP model, 2018);
- χsr ∈ {0, 1} are such that χsr = χrs , ∀s, r = 1, . . . , N

Interactions between any pair of species (s, r) may be modelled by a
Boltzmann or by a BGK operator
The option χsr = 1, ∀(s, r) provides the full Boltzmann model
The option χsr = 0, ∀(s, r) provides the BBGSP relaxation model

Particular option (that will be mainly shown)

χss = 1, ∀s and χsr = 0, ∀r , s

⇒ Boltzmann operators for intra–species collisions and BGK operators
for inter–species interactions
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Boltzmann/BGK model for intra–species / inter–species interactions
Intra–species collisions between molecules of the same component
are modelled by Boltzmann operators
Inter–species collisions between molecules of different constituents
are described by BGK operators

∂fs
∂t + v · ∇xfs = Q̂s = Qss︸︷︷︸

Boltzmann

+
N∑

r=1
r,s

Q̃sr︸︷︷︸
BGK

, s = 1, . . . , N

with BGK operators of the BBGSP model

Q̃sr = νsr (nsMsr − fs), where Msr = Msr (v; usr ,
Tsr
ms

) with
usr = (1 − asr )us + asr ur

Tsr = (1 − bsr )Ts + bsr Tr + γsr |us − ur |2

where s , r and

asr = λsr nr mr
νsr (ms + mr )

, bsr = 2asr ms
ms + mr

, γsr = msasr
3

(
2mr

ms + mr
− asr

)
with λsr related to the interaction potential
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Consistency of the mixed kinetic model
We have to prove

1 Conservation of mass, momentum and energy

< Q̂s , 1 >= 0 , s = 1, . . . , N
N∑

s=1
ms < Q̂s , v >= 0 ,

N∑
s=1

ms < Q̂s , |v|2 >= 0

2 H–theorem (space homogeneous case)

H =
N∑

s=1
< fs , log fs > is a Lyapunov functional

3 Equilibrium distributions

Q̂s = 0 , s = 1, . . . , N ⇐⇒ fs = ns

( ms
2πT

) 3
2 exp

[
− ms

2T |v − u|2
]
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Conservation of mass, momentum and energy

Mass conservation easily follows from

< Qss , 1 >=< Q̃sr , 1 >= 0

For momentum and energy conservation

N∑
s=1

< Qss ,

(
msv

ms |v|2
)

> +
N∑

s=1

N∑
r=1
r,s

< Q̃sr ,

(
msv

ms |v|2
)

>=
(

0
0

)

we observe that
- msv and ms |v|2 are collision invariants for single–species Boltzmann

operators;
- it holds

< Q̃sr ,

(
msv

ms |v|2

)
>= − < Q̃rs ,

(
mr v

mr |v|2

)
>
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H-theorem

H =
N∑

s=1
< fs , log fs > ⇒ ∂H

∂t =
N∑

s=1
< Q̂s , log fs > ≤ 0

Proof.
N∑

s=1

< Q̂s , log fs > =
N∑

s=1

< Qss , log fs >︸               ︷︷               ︸
≤0

+
N∑

s=1

N∑
r=1
r,s

< Q̃sr , log fs >

where
N∑

s=1

N∑
r=1
r,s

< Q̃sr , log fs > =
N∑

s=1

N∑
r=1
r,s

νsr < nsMsr − fs , log fs >

by using (y − x) log x ≤ y(log y − 1) − x(log x − 1)

≤
N∑

s=1

N∑
r=1
r,s

νsr

[
< nsMsr , log(nsMsr ) > − < fs , log fs > − < nsMsr − fs , 1 >︸                     ︷︷                     ︸

=ns −ns =0

]
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by recalling that < fs , log fs > takes its minimum at fs = ns Ms

where Ms is the Maxwellian having the same moments of fs

≤
N∑

s=1

N∑
r=1
r,s

νsr [< nsMsr , log(nsMsr ) > − < nsMs , log(nsMs) >]

by computing the logarithm of Maxwellian distributions

= −3
2

N∑
s=1

N∑
r=1
r,s

nsνsr (log Tsr − log Ts) ≤ 0

by recalling the expressions of the and auxiliary temperatures
Tsr ≥ (1 − bsr )Ts + bsr Tr ,

and symmetry properties of coefficients (nsνsr bsr = nr νrsbrs)

□

M. Bisi, Parma Boltzmann–BGK model for gas mixtures 20 / 33



by recalling that < fs , log fs > takes its minimum at fs = ns Ms

where Ms is the Maxwellian having the same moments of fs

≤
N∑

s=1

N∑
r=1
r,s

νsr [< nsMsr , log(nsMsr ) > − < nsMs , log(nsMs) >]

by computing the logarithm of Maxwellian distributions

= −3
2

N∑
s=1

N∑
r=1
r,s

nsνsr (log Tsr − log Ts)

≤ 0

by recalling the expressions of the and auxiliary temperatures
Tsr ≥ (1 − bsr )Ts + bsr Tr ,

and symmetry properties of coefficients (nsνsr bsr = nr νrsbrs)

□

M. Bisi, Parma Boltzmann–BGK model for gas mixtures 20 / 33



by recalling that < fs , log fs > takes its minimum at fs = ns Ms

where Ms is the Maxwellian having the same moments of fs

≤
N∑

s=1

N∑
r=1
r,s

νsr [< nsMsr , log(nsMsr ) > − < nsMs , log(nsMs) >]

by computing the logarithm of Maxwellian distributions

= −3
2

N∑
s=1

N∑
r=1
r,s

nsνsr (log Tsr − log Ts) ≤ 0

by recalling the expressions of the and auxiliary temperatures
Tsr ≥ (1 − bsr )Ts + bsr Tr ,

and symmetry properties of coefficients (nsνsr bsr = nr νrsbrs)

□

M. Bisi, Parma Boltzmann–BGK model for gas mixtures 20 / 33



Equilibrium distributions

Q̂s = 0, s = 1, . . . , N ⇐⇒ fs = ns

( ms
2πT

) 3
2 exp

[
− ms

2T |v − u|2
]

⇐= Trivial
=⇒ The H–theorem provides

∂H
∂t =

N∑
s=1

< Qss , log fs >︸                ︷︷                ︸
≤0

+
N∑

s=1

N∑
r=1
r,s

< Q̃sr , log fs >

︸                              ︷︷                              ︸
≤0

⇒ From Boltzmann operators, equilibria are local Maxwellians.
Passing to the weak form

Q̂s = 0 ⇒ < Qss ,

(
msv

ms |v|2
)
> +

∑
r,s

< Q̃sr ,

(
msv

ms |v|2
)
>=

(
0
0

)
and computing explicitly, we obtain∑

r,s

λsr
msmr

ms + mr
nsnr (us − ur ) = 0 =⇒ u1 = u2 = . . . = uN∑

r,s

2λsr
msmr

(ms + mr )2 nsnr (Ts − Tr ) = 0 =⇒ T1 = T2 = . . . = TN
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General mixed Boltzmann–BGK model
∂fs
∂t + v · ∇xfs =

N∑
r=1

[
χsr Qsr (fs , fr ) + (1 − χsr ) Q̃sr (fs)

]
,

s=1,...,N

χsr ∈{0,1}

By similar arguments as above, it is possible to prove
- conservations of mass, momentum and energy;
- H-theorem;
- uniqueness of equilibrium solutions.

The proof of the entropy dissipation is based on

∂H
∂t

=
N∑

s=1

χss < Qss(fs , fs), log fs >︸                          ︷︷                          ︸
≤0

+
N∑

s=1

(1 − χss) < Q̃ss(fs), log fs >︸                     ︷︷                     ︸
≤0

+
N∑

s=1

N∑
r=1
r>s

χsr

(
< Qsr (fs , fr ), log fs > + < Qrs(fr , fs), log fr >︸                                                                ︷︷                                                                ︸

≤0

)
+

N∑
s=1

N∑
r=1
r>s

(1 − χsr )
(
< Q̃sr (fs), log fs > + < Q̃rs(fr ), log fr >︸                                                       ︷︷                                                       ︸

≤0

)
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Hydrodynamic limits
of Boltzmann/BGK model for intra–species / inter–species interactions

By a proper scaling, we introduce the non-dimensional equations

∂fs
∂t + v · ∇xfs = 1

ε
Qss + α

ε

N∑
r=1
r,s

Q̃sr , s = 1, . . . , N

where
- ε is the Knudsen number (small parameter)
- α is a proper constant allowing to analyze different regimes

(related to collision frequencies νsr of BGK operators)

We consider two different hydrodynamic regimes:
1 all collisions are dominant =⇒ α = 1
2 only intra–species collisions are dominant =⇒ α = ε

We expand distribution functions in powers of ε as fs = f (0)
s + εf (1)

s
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Euler equations

α = 1: collision dominated regime
At the zero-th order of approximation, we have

fs ≃ ns

( ms
2πT

) 3
2 exp

[
− ms

2T |v − u|2
]

and the evolution is governed by classical Euler equations

α = ε: intra–species dominant collisions
At the zero-th order of approximation, we have

fs ≃ ns

(
ms

2πTs

) 3
2

exp
[
− ms

2Ts
|v − us |2

]
and we obtain macroscopic multi-velocity and multi-temperature
equations, with production terms due to inter–species interactions
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Euler equations in the regime with intra–species
dominant collisions

∂ns

∂t + ∇x · (ns us) = 0 , s = 1, . . . , N

∂

∂t (ρsus) + ∇x · (ρsus ⊗ us) + ∇x(ns Ts) =
N∑

r=1
r,s

Rsr ,

∂

∂t

(1
2 ρs |us |2 + 3

2 ns Ts

)
+ ∇x ·

[(1
2 ρs |us|2 + 5

2 ns Ts

)
us

]
=

N∑
r=1
r,s

Ssr

with collision contributions (coming from slow BGK operators)

Rsr = − λsr
ms mr

ms + mr
nsnr (us − ur )

Ssr = − λsr
ms mr

(ms + mr )2 ns nr

[
(ms us + mr ur ) · (us − ur ) + 3 (Ts − Tr )

]
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Navier–Stokes equations

In progress: Collision dominated regime α = 1

First order distribution:

f (1)
s = 1∑N

r=1
r,s

ν
(0)
sr

[
ns

N∑
r=1
r,s

ν(0)
sr M(1)

sr + L(f (1)
s ) −

(
∂f (0)

s

∂t + v · ∇xf (0)
s

)]

where

M(1)
sr = ∂

∂ε
Msr

(
v; u + ε u(1)

sr ,
T + εT (1)

sr

ms

)∣∣∣
ε=0

∂f (0)
s

∂t + v · ∇xf (0)
s may be computed owing to Euler equations

L(f (1)
s ) = Qss(f (0)

s , f (1)
s ) + Qss(f (1)

s , f (0)
s )

is the linearized Boltzmann operator

⇒ We have to solve an equation of the form L̃s [f (1)
s ] = Φs

M. Bisi, Parma Boltzmann–BGK model for gas mixtures 26 / 33



Navier–Stokes equations

In progress: Collision dominated regime α = 1

First order distribution:

f (1)
s = 1∑N

r=1
r,s

ν
(0)
sr

[
ns

N∑
r=1
r,s

ν(0)
sr M(1)

sr + L(f (1)
s ) −

(
∂f (0)

s

∂t + v · ∇xf (0)
s

)]

where

M(1)
sr = ∂

∂ε
Msr

(
v; u + ε u(1)

sr ,
T + εT (1)

sr

ms

)∣∣∣
ε=0

∂f (0)
s

∂t + v · ∇xf (0)
s may be computed owing to Euler equations

L(f (1)
s ) = Qss(f (0)

s , f (1)
s ) + Qss(f (1)

s , f (0)
s )

is the linearized Boltzmann operator

⇒ We have to solve an equation of the form L̃s [f (1)
s ] = Φs

M. Bisi, Parma Boltzmann–BGK model for gas mixtures 26 / 33



Navier–Stokes equations

In progress: Collision dominated regime α = 1

First order distribution:

f (1)
s = 1∑N

r=1
r,s

ν
(0)
sr

[
ns

N∑
r=1
r,s

ν(0)
sr M(1)

sr + L(f (1)
s ) −

(
∂f (0)

s

∂t + v · ∇xf (0)
s

)]

where

M(1)
sr = ∂

∂ε
Msr

(
v; u + ε u(1)

sr ,
T + εT (1)

sr

ms

)∣∣∣
ε=0

∂f (0)
s

∂t + v · ∇xf (0)
s may be computed owing to Euler equations

L(f (1)
s ) = Qss(f (0)

s , f (1)
s ) + Qss(f (1)

s , f (0)
s )

is the linearized Boltzmann operator

⇒ We have to solve an equation of the form L̃s [f (1)
s ] = Φs

M. Bisi, Parma Boltzmann–BGK model for gas mixtures 26 / 33



Solvability of L̃s [f (1)
s ] = Φs , where L̃s = 1∑N

r=1
r,s

ν
(0)
sr

Ls − Id

(in collaboration with N. Bernhoff (Karlstad))

Under the Grad’s assumption on the collision kernel gss (which is
fulfilled by hard spheres and cut-off inverse power-law potentials)

L̃s is a coercive self-adjoint Fredholm operator

on the real Hilbert space L2(R3; f (0)
s dv) with inner product ⟨·, ·⟩f (0)

s

and Ker(L̃s) = {0}

L̃s is invertible, with inverse operator L̃s
−1

such that ∥L̃s
−1

∥f (0)
s

≤ 1

⇒ f (1)
s exists, is unique but cannot be made explicit;

however, its moments needed in the Navier–Stokes approximation may be
recovered by suitable computations
(in progress by the PhD student E. Lucchin (Parma))

M. Bisi, Parma Boltzmann–BGK model for gas mixtures 27 / 33



Solvability of L̃s [f (1)
s ] = Φs , where L̃s = 1∑N

r=1
r,s

ν
(0)
sr

Ls − Id

(in collaboration with N. Bernhoff (Karlstad))

Under the Grad’s assumption on the collision kernel gss (which is
fulfilled by hard spheres and cut-off inverse power-law potentials)

L̃s is a coercive self-adjoint Fredholm operator

on the real Hilbert space L2(R3; f (0)
s dv) with inner product ⟨·, ·⟩f (0)

s

and Ker(L̃s) = {0}

L̃s is invertible, with inverse operator L̃s
−1

such that ∥L̃s
−1

∥f (0)
s

≤ 1

⇒ f (1)
s exists, is unique but cannot be made explicit;

however, its moments needed in the Navier–Stokes approximation may be
recovered by suitable computations
(in progress by the PhD student E. Lucchin (Parma))

M. Bisi, Parma Boltzmann–BGK model for gas mixtures 27 / 33



Solvability of L̃s [f (1)
s ] = Φs , where L̃s = 1∑N

r=1
r,s

ν
(0)
sr

Ls − Id

(in collaboration with N. Bernhoff (Karlstad))

Under the Grad’s assumption on the collision kernel gss (which is
fulfilled by hard spheres and cut-off inverse power-law potentials)

L̃s is a coercive self-adjoint Fredholm operator

on the real Hilbert space L2(R3; f (0)
s dv) with inner product ⟨·, ·⟩f (0)

s

and Ker(L̃s) = {0}

L̃s is invertible, with inverse operator L̃s
−1

such that ∥L̃s
−1

∥f (0)
s

≤ 1

⇒ f (1)
s exists, is unique but cannot be made explicit;

however, its moments needed in the Navier–Stokes approximation may be
recovered by suitable computations
(in progress by the PhD student E. Lucchin (Parma))

M. Bisi, Parma Boltzmann–BGK model for gas mixtures 27 / 33



Regime with dominant intra–species collisions α = ε

L(f (1)
s ) = ∂f (0)

s

∂t + v · ∇xf (0)
s −

N∑
r=1
r,s

ν(0)
sr

(
ns M(0)

sr − f (0)
s

)
where L(f (1)

s ) is classical linearized Boltzmann operator

⇒ We obtain the Navier–Stokes equations
∂ns

∂t + ∇x · (nsus) = 0 , s = 1, . . . , N

∂

∂t (ρsus) + ∇x · (ρsus ⊗ us) + ∇x(nsTs) + ε∇x · P(1)
s =

N∑
r=1
r,s

Rsr

∂

∂t

(1
2ρu2

s + 3
2nsTs

)
+ ∇x ·

[(1
2ρsu2

s + 5
2nsTs

)
us

]
+ ε∇x ·

[
P(1)

s · us + q(1)
s
]

=
N∑

r=1
r,s

Ssr

with P(1)
s =

∫
R3

ms(cs ⊗ cs)f (1)
s (v)dv , q(1)

s =
∫
R3

1
2mscsc2

s f (1)
s (v)dv

where cs = v − us is the peculiar velocity
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First order correction P(1)
s

For pressure tensor, we have

P(1)
s = −µsΥs+

4
3nsλ2

ss

N∑
r=1
r,s

ν(0)
sr ρi(a(0)

sr )2
[
(us − ur ) ⊗ (us − ur ) − 1

3 |us − ur |2I
]

where
- Υs is the strain rate tensor, given by

Υs,ij = ∂us,i
∂xj

+ ∂us,j
∂xi

− 2
3∇x · usδij

- µs = 4Ts
3λ2

ss
is the viscosity coefficient
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First order correction q(1)
s

For heat flux, we have

q(1)
s = −Λs∇xTs + 10

λ2
ss

N∑
r=1
r,s

αsr ν
(0)
sr (a(0)

sr )2(Ts − Tr )(us − ur )

+ 2ms
3λ2

ss

N∑
r=1
r,s

ν(0)
sr (a(0)

sr )2(a(0)
sr − 5αrs)|us − ur |2(us − ur )

where

- Λs = 5Ts
msλ2

ss
is the heat conductivity coefficient

(results included in the Master thesis of A. Macaluso)
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Concluding remarks

The mixed Boltzmann-BGK model allows to combine the detailed
description of the collisions with the simplicity of the relaxation
operators

Various scenarios can be obtained in the hydrodynamic limit;
different Euler and Navier–Stokes equations can be deduced in
proper collision-dominated regimes

The dynamics of mixtures of heavy and light particles (plasma
physics, noble gases) can be more suitably reproduced in many
applications by a multi-velocity and multi-temperature description

Reference paper
M. Bisi, M. Groppi, E. Lucchin, G. Martalò, A mixed Boltzmann–BGK
model for inert gas mixtures, Kinetic and Related Models (2023), in press.
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Future works
Investigation of other collision–dominated regimes, like for instance
the one in which only collisions between heaviest particles are
dominant

Numerical simulations of the kinetic model: some preliminary
numerical tests have been recently performed for a binary mixture
owing to an IMEX finite volume scheme on unstructured meshes
(M. Bisi, W. Boscheri, G. Dimarco, M. Groppi, G. Martalò, Appl. Math.
Comput. (2022))

Extension of the BBGSP model and of the mixed Boltzmann–BGK
model to polyatomic gases and to reactive mixtures
(some work is in progress by G. Martalò, A.J. Soares, R. Travaglini)
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Thank you for your attention
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