Quasi-static Free-Boundary Equilibrium of Toroidal Plasma: Computational Methods and Applications

J. Blum, C. Boulbe, B. Faugeras, <u>H. Heumann</u>, ¹ J.-M. Ané, S. Brémond, V. Grandgirard, P. Hertout, E. Nardon, ²

¹TEAM CASTOR, INRIA and Université de Nice Sophia Antipolis, France ²CEA, IRFM, Saint-Paul-lez-Durance, France

Modeling and Numerical Methods for Hot Plasmas II Bordeaux, 12-14 October 2015

Quasi-static Free-Boundary Equilibrium of Toroidal Plasma

inside plasma and non-conducting parts:

grad
$$p = \mathbf{J} \times \mathbf{B}$$
, div $\mathbf{B} = 0$, curl $\frac{1}{\mu} \mathbf{B} = \mathbf{J}$,

in all other conducting structures:

$$\partial_t \mathbf{B} = \operatorname{curl} \frac{1}{\sigma} (\mathbf{J}_{src} - \mathbf{J}), \quad \operatorname{div} \mathbf{B} = 0, \quad \operatorname{curl} \frac{1}{\mu} \mathbf{B} = \mathbf{J}.$$

with toroidal symmetry: (ψ toroidal comp. of r A, B = curl A)

$$-\nabla(\frac{1}{\mu[\psi]r}\nabla\psi) = \begin{cases} rp'(\psi) + \frac{1}{\mu_0 r}ff'(\psi) & \text{in } \Omega_{\rm p}(\psi) \,, \\ \frac{n_i V_i(t)}{R_i S_i} - 2\pi \frac{n_i^2}{R_i S_i^2} \int_{\Omega_{\rm coil_i}} \frac{\partial \psi}{\partial t} \, dr dz =: \frac{l_i(\psi)}{S_i} & \text{in } \Omega_{\rm coil_i} \,, \\ -\frac{\sigma}{r} \frac{\partial \psi}{\partial t} & \text{in } \Omega_{\rm passive} \,, \\ 0 & \text{elsewhere} \,, \end{cases}$$

with p' and ff' known. f toroidal component of $r \mathbf{B}$. Infinite domain, plasma domain $\Omega_{p}(\psi)$ unknown, circuit equations, iron core.

H. Heumann et. al.

Genealogy

FEM for free-boundary equilibrium in tor. symm.:

Challenges	SCED [BFT81]	Proteus [ABB87]	CEDRES++ [G99]
iron core	+++	+++	+++[Boulbe '11]
infinite domain	not	+++ [ABB86]	+++ [G99]
free boundary	+++	+++	+++
circuit equations	version Blum	version Albanese	Blum/Boulbe/Nardon '14
Newton	+++	+++	+++ [Hetal15]
inverse problem	static [B89]	stat.	stat. & dynam. [Hetal15]

[BFT81] J. Blum, J. Le Foll, B. Thooris, The self-consistent equilibrium and diffusion code SCED, CPC, 1981.

[ABB86] R. Albanese, J. Blum, O. Barbieri, *On the solution of the magnetic flux equation in an infinite domain*, 8th Europhys. Conf. Comp. in Plasma Phys., 1986.

[ABB87] R. Albanese, J. Blum, O. Barbieri, 12th Conf. on Num. Simul. of Plasma, 1987.

[B89] J. Blum, Numerical simulation and optimal control in plasma physics, 1989.

[G99] V. Grandgirard, Modelisation de l'equilibre d'un plasma de tokamak, PhD., 1999.

[Hetal15] H.H. et al., *Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++* ..., Journal of Plasma Physics 2015.

H. Heumann et. al.

CEDRES++ & FEEQS.M (C. Boulbe, B. Faugeras, H. H.)

Applications, focus on control and scenarios:

- static equibrium calculations for given currents,
- currents calculation for given static equibrium,
- evolution of equilibrium calculation for given voltages,
- ▶ voltage evolution calculation for given equil. evolution,
- not real-time reconstruction, not for MHD instability

Codes at CASTOR/CEA/UNS

- ► CEDRES++
 - Couplage Equilibre Diffusion Resistive pour l'Étude des Scenarios
 - ▶ productive code written in C++;
 - in use at CEA for set up experiment scenarios at upcoming WEST;
 - interfaced for ITM (integrated tokamak modeling) Kepler Platform;

CEDRES++ & FEEQS.M (C. Boulbe, B. Faugeras, H. H.)

Applications, focus on control and scenarios:

- static equilibrium calculations for given currents,
- currents calculation for given static equilibrium,
- evolution of equilibrium calculation for given voltages,
- voltage evolution calculation for given equil. evolution,
- ▶ not real-time reconstruction, not for MHD instability

Codes at CASTOR (C. Boulbe, B. Faugeras, H. H.)

- ► CEDRES++
- ► FEEQS.M
 - Finite Element EQuilibrium Solver in Matlab
 - same core functionality as CEDRES++;
 - test and fast prototyping environment in MATLAB;
 - high performance, thanks to vectorization;
 - new applications;
 - improve and extend numerical methods;
 - simple code distributions;
 - intern and master projects;

Outline

Quasi-Static Free-Boundary Equilibrium of Toroidal Plasma

Direct Static Problem Inverse Static Problem Direct Evolution Problem Inverse Evolution Problem

Weak Formulation

Newton's Method

Sequential Quadratic Programming

Validation & Performance

Application: Vertical Displacement

Conclusions & Outlook

What's next?

Quasi-Static Free-Boundary Equilibrium of Toroidal Plasma

Direct Static Problem Inverse Static Problem Direct Evolution Problem Inverse Evolution Problem

Weak Formulation

Newton's Method

- Sequential Quadratic Programming
- Validation & Performance
- Application: Vertical Displacement

Conclusions & Outlook

Direct Static Problem (for flux $\psi(r, z)$)

$$-\nabla \cdot \left(\frac{1}{\mu r} \nabla \psi\right) = \begin{cases} r p'(\psi) + \frac{1}{\mu_0 r} ff'(\psi) & \text{in } \Omega_{p}(\psi), \\ \frac{l_i}{S_i} & \text{in } \Omega_{\text{coil}_i}, \\ 0 & \text{elsewhere}, \end{cases}$$
$$\psi(0, z) = 0, \quad \lim_{\|(r, z)\| \to +\infty} \psi(r, z) = 0,$$

Iron ($\mu_{\rm Fe}$ experimental data):

$$\mu = \mu(\mathbf{r}, |\nabla \psi|) = \begin{cases} \mu_{\rm Fe}(|\nabla \psi|^2 r^{-2}) & \text{in } \Omega_{\rm iron}, \\ \mu_0 & \text{elsewhere } . \end{cases}$$

Model for current density $(\alpha, \beta, \gamma, r_0 \text{ given})$:

$$\begin{split} p'(\psi) &\approx S_{p'}(\psi_{\rm N}) = \frac{\beta}{r_0} (1 - \psi_{\rm N}^{\alpha})^{\gamma} \,, \\ ff'(\psi) &\approx S_{\rm ff'}(\psi_{\rm N}) = (1 - \beta) \mu_0 r_0 (1 - \psi_{\rm N}^{\alpha})^{\gamma} \,, \end{split}$$

$$\psi_{\mathrm{N}}(\textbf{r}, \textbf{z}) = rac{\psi(\textbf{r}, \textbf{z}) - \psi_{\mathrm{ax}}[\psi]}{\psi_{\mathrm{bd}}[\psi] - \psi_{\mathrm{ax}}[\psi]} \,,$$

H. Heumann et. al.

Free-Boundary Equilibrium

$$egin{aligned} &\psi_{\mathrm{ax}}[\psi] := \psi(r_{\mathrm{ax}}[\psi], z_{\mathrm{ax}}[\psi])\,, \ &\psi_{\mathrm{bd}}[\psi] := \psi(r_{\mathrm{bd}}[\psi], z_{\mathrm{bd}}[\psi])\,. \end{aligned}$$

October 12, 2015 8 / 41

Inverse Static Problem (for currents I_i)

Objective and Regularization

$$\mathcal{K}(\psi) := rac{1}{2}\sum_{i=1}^{N_{ ext{desi}}} ig(\psi(r_i, z_i) - \psi(r_{ ext{desi}}, z_{ ext{desi}})ig)^2 \quad, \quad \mathcal{R}(I_1, \ldots, I_L) \quad := \sum_{i=1}^L rac{w_i}{2}I_i^2$$

Optimal Control/Inverse Problem:

$$\begin{split} \min_{\psi, l_1, \dots, l_L} & \mathcal{K}(\psi) + \mathcal{R}(l_1, \dots, l_L) \\ \text{subject to} \\ - \nabla \cdot \left(\frac{1}{\mu r} \nabla \psi\right) = \begin{cases} r S'_p(\psi_{\mathrm{N}}) + \frac{1}{\mu_0 r} S_{ff'}(\psi_{\mathrm{N}}) & \text{in } \Omega_{\mathrm{p}}(\psi) \,, \\ \frac{l_i}{S_i} & \text{in } \Omega_{\mathrm{coil}_i} \,, \\ 0 & \text{elsewhere }, \end{cases} \\ \psi(0, z) = 0 \,, \quad \lim_{\|(r, z)\| \to +\infty} \psi(r, z) = 0 \,, \end{split}$$

PDE-constrained optimization with non-linear constraints.

Direct Evolution Problem (for flux evolution $\psi(r, z, t)$)

$$-\nabla \cdot \left(\frac{1}{\mu r} \nabla \psi\right) = \begin{cases} r S'_{\rho}(\psi_{\mathrm{N}}, t) + \frac{1}{\mu_{0r}} S_{ff'}(\psi_{\mathrm{N}}, t) & \text{in } \Omega_{\mathrm{p}}(\psi) \,, \\ S_{i}^{-1} \left(\boldsymbol{S} \vec{V} + \boldsymbol{R} \vec{\Psi}(\partial_{t} \psi) \right)_{i} & \text{in } \Omega_{\mathrm{coil}_{i}} \,, \\ -\frac{\sigma_{k}}{r} \partial_{t} \psi & \text{in } \Omega_{\mathrm{passive}} \,, \\ 0 & \text{elsewhere }, \end{cases}$$
$$\psi(0, z, t) = 0 \,, \quad \lim_{\|(r, z)\| \to +\infty} \psi(r, z, t) = 0 \,, \quad \psi(r, z, 0) = \psi_{0}(r, z) \,,$$

Circuit equations $\vec{l} = S\vec{V} + R\vec{\Psi}(\partial_t\psi)$:

Inverse Evolution Problem (for volt. evolution $\vec{V}(t)$) Objective and Regularization:

$$\begin{split} \mathcal{K}(\psi(t)) &:= \frac{1}{2} \int_0^T \left(\sum_{i=1}^{N_{\text{desi}}} \left(\psi(r_i(t), z_i(t), t) - \psi(r_{\text{desi}}(t), z_{\text{desi}}(t), t) \right)^2 \right) dt \,, \\ \mathcal{R}(\vec{V}) &:= \sum_{i=1}^L \frac{w_i}{2} \int_0^T \vec{V}_i(t) \cdot \vec{V}_i(t) dt \,. \end{split}$$

Optimal Control/Inverse Problem:

$$\begin{split} \min_{\psi(t),\vec{V}(t)} & \mathcal{K}(\psi(t)) + \mathcal{R}(\vec{V}) \\ \text{subject to} \\ & -\nabla \cdot \left(\frac{1}{\mu r} \nabla \psi\right) = \begin{cases} r S'_{\rho}(\psi_{\mathrm{N}}, t) + \frac{1}{\mu_{0}r} S_{ff'}(\psi_{\mathrm{N}}, t) & \text{in } \Omega_{\mathrm{p}}(\psi) \,, \\ S_{i}^{-1} \left(\boldsymbol{S}\vec{V} + \boldsymbol{R}\vec{\Psi}(\partial_{t}\psi)\right)_{i} & \text{in } \Omega_{\mathrm{coil}_{i}} \,, \\ -\frac{\sigma_{k}}{r} \partial_{t}\psi & \text{in } \Omega_{\mathrm{passive}} \,, \\ 0 & \text{elsewhere }, \end{cases} \\ \psi(0, z, t) = 0 \,, \quad \lim_{\|(r, z)\| \to +\infty} \psi(r, z, t) = 0 \,, \quad \psi(r, z, 0) = \psi_{0}(r, z) \,, \end{split}$$

 ν_{41}

What's next?

Quasi-Static Free-Boundary Equilibrium of Toroidal Plasma

Direct Static Problem Inverse Static Problem Direct Evolution Problem Inverse Evolution Problem

Weak Formulation

Newton's Method

- Sequential Quadratic Programming
- Validation & Performance
- Application: Vertical Displacement
- Conclusions & Outlook

Weak Formulation

Find $\psi \in V$ such that

$$\mathsf{A}(\psi,\xi) - \mathsf{J}_\mathrm{p}(\psi,\xi) + \mathsf{c}(\psi,\xi) = \ell(ec{I},\xi) \quad orall \xi \in V$$
 .

with

$$V = \left\{ \psi : \Omega \to \mathbb{R}, \int_{\Omega} \psi^2 r \, dr dz < \infty, \int_{\Omega} (\nabla \psi)^2 r^{-1} \, dr dz < \infty, \psi_{|r=0} = 0 \right\} ,$$

$$\mathsf{A}(\psi, \xi) := \int_{\Omega} \frac{1}{\mu r} \nabla \psi \cdot \nabla \xi \, dr dz , \qquad \ell(\vec{I}, \xi) := \sum_{i=1}^{N_{\text{coil}}} S_i^{-1} \vec{I}_i \int_{\Omega_{\text{coil}_i}} \xi \, dr dz ,$$

$$\mathsf{U}_{\mathrm{P}}(\psi, \xi) := \int_{\Omega_{\mathrm{P}}(\psi)} \left(rp'(\psi) + \frac{1}{\mu_0 r} ff'(\psi) \right) \xi \, dr dz ,$$

No integral equations in the spirit of FEM-BEM or "mariage à la mode" (Zienkiewics, Johnson, Nedelec, ...)

 $c(\psi,\xi) \approx \int_{\partial\Omega} \xi \partial_n \psi dS$ taking into account boundary condition at infinity, details

H. Heumann et. al.

Free-Boundary Equilibrium

October 12, 2015 13 / 41

What is Ω , what is $c(\cdot, \cdot)$?

Weak Formulation, from infinite to finite If Ω semi-circle with radius ρ [Albanese1986, Gatica1995] ($\Gamma = \partial \Omega$):

$$\begin{aligned} \mathsf{c}(\psi,\xi) &= \int_{\partial\Omega} \xi \,\partial_{\mathsf{n}} \psi dS = \int_{\Gamma} \xi(\mathsf{P}_{1}) \,\partial_{\mathsf{n}_{1}} \left(\int_{\Gamma} \partial_{\mathsf{n}_{2}} G(\mathsf{P}_{1},\mathsf{P}_{2}) \psi(\mathsf{P}_{2}) dS_{2} \right) dS_{1} \\ &= \frac{1}{2\mu_{0}} \int_{\Gamma} \int_{\Gamma} \psi(\mathsf{P}_{1}) \mathcal{M}(\mathsf{P}_{1},\mathsf{P}_{2}) \xi(\mathsf{P}_{2}) dS_{1} dS_{2} \\ &= \frac{1}{\mu_{0}} \int_{\Gamma} \psi(\mathsf{P}_{1}) \mathcal{N}(\mathsf{P}_{1}) \xi(\mathsf{P}_{1}) dS_{1} \\ &\qquad + \frac{1}{2\mu_{0}} \int_{\Gamma} \int_{\Gamma} (\psi(\mathsf{P}_{1}) - \psi(\mathsf{P}_{2})) \mathcal{M}(\mathsf{P}_{1},\mathsf{P}_{2}) (\xi(\mathsf{P}_{1}) - \xi(\mathsf{P}_{2})) dS_{1} dS_{2} \end{aligned}$$

with $G(\mathbf{P}_1, \mathbf{P}_2) \approx \log(\|\mathbf{P}_1 - \mathbf{P}_2\|)^{-1}$, fundamental solution of $\nabla \frac{1}{\mu_0 r} \nabla$ and

$$M(\mathbf{P}_{1},\mathbf{P}_{2}) = \frac{k_{1,2}}{2\pi(r_{1}r_{2})^{\frac{3}{2}}} \left(\frac{2-k_{1,2}^{2}}{2-2k_{1,2}^{2}}E(k_{1,2}) - K(k_{1,2})\right)$$

where $\mathbf{P}_i = (\mathbf{r}_i, \mathbf{z}_i)$, K and E complete elliptic integrals of 1st and 2nd kind, and

$$N(\mathbf{P}_1) = \int_{\Gamma} M(\mathbf{P}_1, \mathbf{P}_2) dS_2, \quad k_{1,2} = \sqrt{\frac{4r_1r_2}{(r_1 + r_2)^2 + (z_1 - z_2)^2}}.$$

Weak Formulation, evolution problem

Semi-discretization in time with implicit Euler

Set
$$\psi^0 = \psi(t_0)$$
. Find $\psi^1, \dots, \psi^N \in V$ approximating $\psi(t_1), \dots, \psi(t_N)$ with

$$\Delta t_k \mathsf{A}(\psi^k, \xi) - \Delta t_k \mathsf{J}_p^k(\psi^k, \xi) - \mathsf{j}^{\mathrm{ps}}(\psi^k, \xi) - \mathsf{j}^{\mathrm{c}}(\psi^k, \xi) + \Delta t_k \mathsf{c}(\psi^k, \xi)$$

$$= \Delta t_k \ell(\boldsymbol{S} \vec{V}(t_k), \xi) - \mathsf{j}^{\mathrm{ps}}(\psi^{k-1}, \xi) - \mathsf{j}^{\mathrm{c}}(\psi^{k-1}, \xi) \quad \forall \xi \in V.$$

$$\mathsf{j}^{\mathrm{ps}}(\psi,\xi) := -\sum_{i=1}^{N_{\mathrm{passiv}}} \int\limits_{\Omega_{\mathrm{passive}}} \frac{\sigma_i}{r} \psi\xi \, dr dz \,, \quad \mathsf{j}^{\mathrm{c}}(\psi,\xi) := \sum_{i=1}^{N_{\mathrm{coil}}} S_i^{-1} \left(\boldsymbol{R} \vec{\Psi}(\psi) \right)_i \int\limits_{\Omega_{\mathrm{coil}_i}} \xi \, dr dz \,.$$

Stationary Problem:

 $\boldsymbol{A}(\mathbf{y}) = \boldsymbol{F}(\mathbf{u}),$

State **y** is flux ψ ; Control **u** are currents \vec{l} ; Evolution Problem:

$$\mathbf{A}(\mathbf{y}^{k+1}) + \mathbf{m}(\mathbf{y}^{k+1}) = \mathbf{G}(\mathbf{u}^{k+1}) + \mathbf{m}(\widehat{\mathbf{y}}^k),$$

State \mathbf{y}^1, \ldots is flux ψ^1, \ldots ; Control \mathbf{u}^1, \ldots are voltages $\vec{V}(t_1), \ldots$;

H. Heumann et. al.

Free-Boundary Equilibrium

October 12, 2015 15 / 41

What's next?

Quasi-Static Free-Boundary Equilibrium of Toroidal Plasma

Direct Static Problem Inverse Static Problem Direct Evolution Problem Inverse Evolution Problem

Weak Formulation

Newton's Method

- Sequential Quadratic Programming
- Validation & Performance
- Application: Vertical Displacement

Conclusions & Outlook

Newton's Method, Continuous Approach

Nonlinear variational formulation

$$\mathsf{A}(\psi,\xi) + \mathsf{J}_{\mathrm{p}}(\psi,\xi) + \mathsf{c}(\psi,\xi) = \ell(\xi),$$

Newton iterations

 $\left(D_{\psi}\mathsf{A}(\psi^{k},\xi) + D_{\psi}\mathsf{J}_{\mathsf{p}}(\psi^{k},\xi)\right)(\psi^{k+1} - \psi^{k}) = \ell(\xi) - \mathsf{A}(\psi^{k},\xi) - \mathsf{J}_{\mathsf{p}}(\psi^{k},\xi) - \mathsf{c}(\psi^{k},\xi),$

• $D_{\psi} A(\psi^k, \xi)$ simple, $D_{\psi} J_p(\psi^k, \xi)$ not so simple; From shape derivatives, rearrangement, or

$$D_{\psi} J_{p}(\psi^{k},\xi) \psi = \int_{\Omega_{p}(\psi^{k})} D_{\psi} j_{p}(r,\psi^{k}(r,z)) \psi^{k} \xi_{h} dr dz$$

$$a_{i} + \int_{\partial\Omega_{p}(\psi^{k})} j_{p}(r,\psi^{k}(r,z)) \xi \frac{\psi_{bd}(\psi^{k}) - \psi(r,z)}{|\nabla\psi^{k}|} dS,$$

• ψ_h is discretization of ψ with linear finite elements;

17 / 41

- $\partial \Omega_{\rm p}(\psi_h^k)$ piecewise straight;
- barycenter quadrature rule for surface integrals
- midpoint quadrature rule for line integrals; Free-Boundary Equilibrium
 October 12, 2015

Newton's Method: Example I

- mesh generation with TRIANGLE linear FEM;
- direct linear solver UMFPACK;

Newton's Method: Example II

West (with Iron)

ITER (without Iron):

Newton's Method, Plasma Domain $\Omega_{\rm p}(\psi_h^k)$

How to determine plasma domain $\Omega_p(\psi_h^k)$: Interior of last closed isoline

X-ploint plasma

limiter plasma

Algorithm:

- 1. find the maximum location ${\sf P}_{\rm ax}$ of $\psi_{\it h}$
- 2. find all discrete saddle points P_X of ψ_h ;
- 3. construct excluded area, via perpendicular cut lines;
- 4. $\psi_{\rm bd}$ is the maximal value of all $\psi_h({\sf P}_{\rm X})$ and ψ_h on limiter;

H. Heumann et. al.

Newton's Method, Linearization I

Newton iterations

$$\left(D_{\psi}\mathsf{A}(\psi^{k},\xi)+D_{\psi}\mathsf{J}_{\mathrm{p}}(\psi^{k},\xi)\right)(\psi^{k+1}-\psi^{k})=\ell(\xi)-\mathsf{A}(\psi^{k},\xi)-\mathsf{J}_{\mathrm{p}}(\psi^{k},\xi)-\mathsf{c}(\psi^{k},\xi),$$

Problem 1: We did observe fast but not quadratic convergence!

Problem 2: Gradient test failed! Recall Gradient test:

$$\begin{aligned} \widehat{C}(\mathbf{u}) &:= C(\mathbf{y}(\mathbf{u}), \mathbf{u}) \\ \text{with } \mathbf{A}(\mathbf{y}(\mathbf{u})) &= \mathbf{F}(\mathbf{u}) \end{aligned} \Rightarrow \begin{array}{c} \nabla_{\mathbf{u}} \widehat{C}(\mathbf{u}) &= \nabla_{\mathbf{u}} C(\mathbf{y}(\mathbf{u}), \mathbf{u}) + \nabla_{\mathbf{u}} \mathbf{F}(\mathbf{u})^{T} \mathbf{p} \\ \text{with } \nabla_{\mathbf{y}} \mathbf{A}(\mathbf{y}(\mathbf{u}))^{T} \mathbf{p} &= -\nabla_{\mathbf{y}} C(\mathbf{y}(\mathbf{u}), \mathbf{u}) \\ \| \frac{\widehat{C}(\mathbf{u} + \varepsilon \delta \mathbf{u}) - \widehat{C}(\mathbf{u})}{\varepsilon} - \nabla_{\mathbf{u}} \widehat{C}(\mathbf{u}) \delta \mathbf{u} \| &= O(\varepsilon) \end{aligned}$$

Reason: Quadrature of analytic derivative $D_{\psi} J_{p}(\psi_{h}^{k}, \xi_{h})$ is not a derivative! A discrete non-linear current:

$$\begin{split} \mathsf{J}_{h}(\psi_{h},\xi_{h}) &= \sum_{\mathcal{T}} |\mathcal{T} \cap \Omega_{\mathrm{p}}(\psi_{h})| j_{\mathrm{p}}(\mathbf{b}_{\mathcal{T}},\psi_{h}(\mathbf{b}_{\mathcal{T}})) \,\xi_{h}(\mathbf{b}_{\mathcal{T}}) \\ \text{and } \mathbf{b}_{\mathcal{T}} &= \mathbf{b}_{\mathcal{T}}(\psi_{h}) \end{split}$$

H. Heumann et. al.

Newton's Method, Linearization II

A discrete non-linear current:

 $\mathsf{J}_h(\psi_h,\xi_h) = \sum_{\mathcal{T}} |\mathcal{T} \cap \Omega_{\mathrm{p}}(\psi_h)| j_{\mathrm{p}}(\mathbf{b}_{\mathcal{T}},\psi_h(\mathbf{b}_{\mathcal{T}})) \xi_h(\mathbf{b}_{\mathcal{T}}) \text{ and } \mathbf{b}_{\mathcal{T}} = \mathbf{b}_{\mathcal{T}}(\psi_h)$

The derivative (the true discrete derivative!):

General implementation philosophy (everything local)

- Compute barycenter & intersection and their derivatives at same time!
- Assemble vector $J_h(\psi_h, \lambda_j)$ and matrix $D_{\psi}J_h(\psi_h, \lambda_j)(\lambda_i)$ at same time.

Newton's Method; Levelset and Mesh

Core function

Find intersection and quadrature points (and derivatives) of all elements that have non-zero intersection with levelline between ψ_l and ψ_u .

• $\psi_u = \psi_{ax}$ and $\psi_I = \psi_{bnd}$ for plasma domain;

Centroid formula to generate quadrature formulas

$$Area_{tot} \mathbf{Bary_{tot}} = \sum_{i} Area_i \mathbf{Bary_i}$$

H. Heumann et. al.

Newton's Method, Linearization III

- D, $T \cap O(t_{1})$

Case A: $T \cap \Omega_p(\psi_h) = T$: barycenter $(r_T, z_T) = \frac{1}{3}(\mathbf{a}_i + \mathbf{a}_j + \mathbf{a}_k)$.

م ایت بی م این د

 $a_k a_j$ $m_k a_j$ $a_k a_j$ $\partial \Omega_p$

Case D:
$$I + M_{\rm p}(\psi_h) = {\rm triangle}$$

$$r_{\mathcal{T}}(\psi_h), z_{\mathcal{T}}(\psi_h)) = \frac{1}{3}(\mathbf{a}_i + \mathbf{m}_k(\psi_h) + \mathbf{m}_j(\psi_h))$$
$$\mathbf{a}_i + \frac{1}{3}\lambda_j(\mathbf{m}_k(\psi_h))(\mathbf{a}_j - \mathbf{a}_i) + \frac{1}{3}\lambda_k(\mathbf{m}_j(\psi_h))(\mathbf{a}_k - \mathbf{a}_i)$$

 \mathbf{a}_{i}

Case C:
$$T \cap \Omega_{p}(\psi_{h}) = quadrilateral$$

$$egin{aligned} & (r_{\mathcal{T}}(\psi_h), z_{\mathcal{T}}(\psi_h)) = \mathbf{a}_i + rac{1}{3} rac{1-\lambda_j^2(\mathbf{m}_k(\psi_h))\lambda_k(\mathbf{m}_j(\psi_h))}{1-\lambda_j(\mathbf{m}_k(\psi_h))\lambda_k(\mathbf{m}_j(\psi_h))} (\mathbf{a}_j - \mathbf{a}_i) \ & + rac{1}{3} rac{1-\lambda_j(\mathbf{m}_k(\psi_h))\lambda_k^2(\mathbf{m}_j(\psi_h))}{1-\lambda_j(\mathbf{m}_k(\psi_h))\lambda_k(\mathbf{m}_j(\psi_h))} (\mathbf{a}_k - \mathbf{a}_i) \end{aligned}$$

$$\lambda_j(\mathbf{m}_k(\psi_h)) = rac{\psi_{
m bd}(\psi_h) - \psi_i}{\psi_i - \psi_i}\,,$$

$$\lambda_k(\mathbf{m}_j(\psi_h)) = \frac{\psi_{\mathrm{bd}}(\psi_h) - \psi_i}{\psi_k - \psi_i},$$

H. Heumann et. al.

Free-Boundary Equilibrium

October 12, 2015 24 / 41

```
Newton's Method, "Semi-Automatic" Differentiation
function [J_NL, DJ] = assemblePlasma_NL(Mesh, psi, jpHandle)
% J_NL: vector, non-linear operator at psi,
% DJ:
        matrix, derivative of J_NL at psi
. . .
% levelset is strucure levelset.ratio, level.bary
% containing ratio of intersection domain, barycenter
% and derivatives for each element
levelset = find_Plasma(Mesh, psi);
. . . .
. . . .
% non-linear operator
J_NL = [0.5 * det_BK .* ratio(:, 1) .* jplasma_bary(:, 1) .* N1(:, 1); ...
         0.5*det_BK.*ratio(:,1).*jplasma_bary(:,1).*N2(:,1);...
         0.5*det_BK.*ratio(:,1).*jplasma_bary(:,1).*N3(:,1)]
. . . .
% derivative of non-linear operator
DJ.E = [0.5 * det_BK.* ratio(:,2).* jplasma_bary(:,1).* N1(:,1) + ...
         0.5*det_BK.*ratio(:,1).*jplasma_bary(:,2).*N1(:,1)+...
         0.5*det_BK.*ratio(:,1).*jplasma_bary(:,1).*N1(:,2);
         0.5 * det_BK . * ratio (:, 2) . * jplasma_bary (:, 1) . * N2(:, 1) + ...
      н. неи Фальбек det_BK. * ratio (Free, Ebu) dan * Ejipibans ma_bary (:, 2). * (Na (12, 201)) + 25 / 41
```

What's next?

Quasi-Static Free-Boundary Equilibrium of Toroidal Plasma

Direct Static Problem Inverse Static Problem Direct Evolution Problem Inverse Evolution Problem

Weak Formulation

Newton's Method

Sequential Quadratic Programming

Validation & Performance

Application: Vertical Displacement

Conclusions & Outlook

Inverse Static Problem (for currents I_i)

Objective and Regularization

$$\mathcal{K}(\psi) := rac{1}{2}\sum_{i=1}^{N_{ ext{desi}}} ig(\psi(r_i, z_i) - \psi(r_{ ext{desi}}, z_{ ext{desi}})ig)^2 \quad, \quad \mathcal{R}(I_1, \ldots, I_L) \quad := \sum_{i=1}^L rac{w_i}{2} I_i^2$$

Optimal Control/Inverse Problem:

 $\min_{\psi,h,\dots,h} K(\psi) + R(I_1,\dots,I_L)$ subject to $-\nabla \cdot \left(\frac{1}{\mu r} \nabla \psi\right) = \begin{cases} r S'_{\rho}(\psi_{\mathrm{N}}) + \frac{1}{\mu_{0}r} S_{ff'}(\psi_{\mathrm{N}}) & \text{in } \Omega_{\mathrm{p}}(\psi) \,, \\ \frac{l_{i,j}}{S_{i,j}} & \text{in } \Omega_{\mathrm{coil}_{i}} \,, \\ 0 & \text{elsewhere} \,, \end{cases}$ $\psi(0,z) = 0$, $\lim_{\|(r,z)\| \to +\infty} \psi(r,z) = 0$,

PDE-constrained optimization with non-linear constraints.

Optimal Control: Numerical Methods

(B) Lagrange multipliers p_i / SQP:

stationary point of Lagrangian $L(\mathbf{y}, \mathbf{u}, \mathbf{p}) = C(\mathbf{y}, \mathbf{u}) + \mathbf{p}^{T}(\mathbf{A}(\mathbf{y}) - \mathbf{F}(\mathbf{u}))$

Fastest algorithm! Newton for (B) = Sequential quadratic programming (SQP)

H. Heumann et. al.

Steepest Descent vs. SQP I: fminunc

					<u> </u>			
Command Window								
	Iteration	f(x)	step	optimality	CG-itera			
	0	0.0748239		3.33e-06				
	1	0.0747357	10	3.33e-06	2			
	2	0.0745595	20	3.33e-06	2			
	3	0.0742077	40	3.32e-06	2			
	4	0.073506	80	3.32e-06	2			
	5	0.0721101	160	3.3e-06	2			
	6	0.0693473	320	3.27e-06	2			
	7	0.0644181	640	2.55e-06	2			
	8	0.0562001	1280	2.44e-06	1			
	10	0.00655371	40960	6.72e-07	4			
	17	0.00603318	669.542	3.49e-08	1			
	18	0.00603318	81920	3.49e-08	7			
	19	0.00603318	20480	3.49e-08	0			
	20	0.00603318	5120	3.49e-08	0			
	21	0.00600083	1280	6.15e-08	0			
	22	0.00592413	2560	3.2e-08	5			
	23	0.00581343	5120	5.59e-08	7			
	24	0.00581343	10240	5.59e-08	5			
	25	0.00581343	2560	5.59e-08	0			
	26	0.00581343	640	5.59e-08	0			
	27	0.00581343	160	5.59e-08	0			
	28	0.00581343	40	5.59e-08	0			
	29	0.00581224	10	5.16e-08	0			
	30	0.0058102	20	4.32e-08	5			

Solver stopped prematurely.

fminunc stopped because it exceeded the function evaluation limit, options.MaxFunEvals = 30 (the selected value).

Elapsed time is 206.081131 seconds.

Steepest Descent vs. SQP II: home made sqp

Command Window

Newtoniteration	0; relativ residuum 3.84e-05
	cost 7.41e-02; regularization 7.25e-04; objective 7.48e-02
	resid stat = 2.00e+00, resid ctrl = 2.31e+03, resid adj = 1.13e
Newtoniteration	1; relativ residuum 5.86e-01
	cost 1.70e-03; regularization 1.50e-03; objective 3.20e-03
	resid_stat = 5.41e-01, resid_ctrl = 5.47e-13, resid_adj = 5.866
Newtoniteration	2; relativ residuum 2.84e-01
	cost 1.90e-03; regularization 1.34e-03; objective 3.24e-03
	resid_stat = 5.90e-01, resid_ctrl = 2.21e-16, resid_adj = 2.84e
Newtoniteration	3; relativ residuum 4.34e-02
	cost 1.86e-03; regularization 1.38e-03; objective 3.24e-03
	resid_stat = 1.48e-03, resid_ctrl = 2.20e-16, resid_adj = 4.34e
Newtoniteration	4; relativ residuum 4.50e-03
	cost 1.86e-03; regularization 1.38e-03; objective 3.24e-03
	resid_stat = 2.92e-04, resid_ctrl = 5.05e-16, resid_adj = 4.500
Newtoniteration	5; relativ residuum 1.70e-04
	cost 1.86e-03; regularization 1.38e-03; objective 3.24e-03
	resid_stat = 1.23e-04, resid_ctrl = 5.30e-16, resid_adj = 1.700
Newtoniteration	6; relativ residuum 1.54e-05
	cost 1.86e-03; regularization 1.38e-03; objective 3.24e-03
	resid_stat = 5.67e-05, resid_ctrl = 2.65e-16, resid_adj = 1.540
Newtoniteration	7; relativ residuum 4.06e-10
	cost 1.86e-03; regularization 1.38e-03; objective 3.24e-03
	resid_stat = 7.50e-07, resid_ctr1 = 4.21e-16, resid_adj = 4.060
Newtoniteration	8; relativ residuum 1.12e-12
	cost 1.86e-03; regularization 1.38e-03; objective 3.24e-03
Discoul time is	$resid_stat = 0$ Ule-09, resid_ctrl = 3.16e-16, resid_adj = 1.126
Elapsed time is	11.649052 seconds.

Inverse Evolution Problem (for volt. evolution $\vec{V}(t)$)

Objective and Regularization:

$$egin{aligned} &\mathcal{K}(\psi(t)):=rac{1}{2}\int_{0}^{\mathcal{T}}\left(\sum_{i=1}^{N_{ ext{desi}}}ig(\psi(r_{i}(t),z_{i}(t),t)-\psi(r_{ ext{desi}}(t),z_{ ext{desi}}(t),t)ig)^{2}
ight)dt\,, \ &\mathcal{R}(ec{V}):=\sum_{i=1}^{L}rac{w_{i}}{2}\int_{0}^{\mathcal{T}}ec{V}_{i}(t)\cdotec{V}_{i}(t)dt\,. \end{aligned}$$

Optimal Control/Inverse Problem:

$$\begin{split} \min_{\psi(t),\vec{V}(t)} & \mathcal{K}(\psi(t)) + \mathcal{R}(\vec{V}) \\ \text{subject to} \\ & -\nabla \cdot \left(\frac{1}{\mu r} \nabla \psi\right) = \begin{cases} r S_p'(\psi_{\mathrm{N}},t) + \frac{1}{\mu_0 r} S_{\mathrm{ff'}}(\psi_{\mathrm{N}},t) & \text{in } \Omega_{\mathrm{p}}(\psi) \,, \\ S_i^{-1} \left(\boldsymbol{S} \vec{V} + \boldsymbol{R} \vec{\Psi}(\partial_t \psi) \right)_i & \text{in } \Omega_{\mathrm{coil}_i} \,, \\ & -\frac{\sigma_k}{r} \partial_t \psi & \text{in } \Omega_{\mathrm{passive}} \,, \\ 0 & \text{elsewhere} \,, \end{cases} \\ \psi(0,z,t) = 0 \,, \quad \lim_{\|(r,z)\| \to +\infty} \psi(r,z,t) = 0 \,, \quad \psi(r,z,0) = \psi_0(r,z) \,, \end{split}$$

PDE-constrained optimization with non-linear constraints.

H. Heumann et. al.

Inverse Evolution Problem

Non-linear, finite-dimensional, constrained optimization problem:

$$\begin{split} \min_{\bar{\mathbf{u}},\bar{\mathbf{y}}} \sum_{i=1}^{N} \frac{\tau}{2} \langle \mathbf{u}_{i}, \mathbf{R}_{i} \mathbf{u}_{i} \rangle + \frac{\tau}{2} \langle \mathbf{y}_{i}, \mathbf{K}_{i} \mathbf{y}_{i} \rangle \\ \text{s.t.} \quad \bar{\mathbf{A}}(\bar{\mathbf{y}}) - \bar{\mathbf{A}}_{0}(\mathbf{y}_{0}) := \begin{pmatrix} \tau \mathbf{A}(\mathbf{y}_{1}) + \mathbf{m}(\mathbf{y}_{1}) \\ \tau \mathbf{A}(\mathbf{y}_{2}) + \mathbf{m}(\mathbf{y}_{2} - \mathbf{y}_{1}) \\ \vdots \\ \tau \mathbf{A}(\mathbf{y}_{N}) + \mathbf{m}(\mathbf{y}_{N} - \mathbf{y}_{N-1}) \end{pmatrix} - \begin{pmatrix} \mathbf{m}(\mathbf{y}_{0}) \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \tau \mathbf{F}(\mathbf{u}_{1}) \\ \tau \mathbf{F}(\mathbf{u}_{2}) \\ \vdots \\ \tau \mathbf{F}(\mathbf{u}_{N}) \end{pmatrix} =: \bar{\mathbf{F}}(\bar{\mathbf{u}}) \end{split}$$

$$\begin{split} &\bar{\mathbf{u}} = (\mathbf{u}_1, \dots \mathbf{u}_N), \text{ voltages in coils at } t_1, \dots t_N, \\ &\bar{\mathbf{y}} = (\mathbf{y}_1, \dots \mathbf{y}_N), \text{ flux } \psi \text{ at } t_1, \dots t_N \\ &\text{Quasi-Newton for } \bar{\mathbf{y}}^{k+1} = \bar{\mathbf{y}}^k + \Delta \bar{\mathbf{y}}, \bar{\mathbf{u}}^{k+1} = \bar{\mathbf{u}}^k + \Delta \bar{\mathbf{u}}, \bar{\mathbf{p}}^{k+1} = \bar{\mathbf{p}}^k + \Delta \bar{\mathbf{p}}: \end{split}$$

$$\begin{pmatrix} \bar{\mathbf{K}} & 0 & D_{\bar{\mathbf{y}}}\bar{\mathbf{A}}^{\mathsf{T}}(\bar{\mathbf{y}}^k) \\ 0 & \bar{\mathbf{R}} & -D_{\bar{\mathbf{u}}}\bar{\mathbf{F}}^{\mathsf{T}}(\bar{\mathbf{u}}^k) \\ D_{\bar{\mathbf{y}}}\bar{\mathbf{A}}(\bar{\mathbf{y}}^k) & -D_{\bar{\mathbf{u}}}\bar{\mathbf{F}}(\bar{\mathbf{u}}^k) & 0 \end{pmatrix} \begin{pmatrix} \Delta \bar{\mathbf{y}} \\ \Delta \bar{\mathbf{u}} \\ \Delta \bar{\mathbf{p}} \end{pmatrix} = - \begin{pmatrix} \bar{\mathbf{K}}\bar{\mathbf{y}}^k + D_{\bar{\mathbf{y}}}\bar{\mathbf{A}}^{\mathsf{T}}(\bar{\mathbf{y}}^k)\bar{\mathbf{p}}^k \\ \bar{\mathbf{R}}\bar{\mathbf{u}}^k - D_{\bar{\mathbf{u}}}\bar{\mathbf{F}}^{\mathsf{T}}(\bar{\mathbf{u}}^k)\bar{\mathbf{p}}^k \\ \bar{\mathbf{A}}(\bar{\mathbf{y}}^k) - \bar{\mathbf{A}}_0(\mathbf{y}_0) - \bar{\mathbf{F}}(\bar{\mathbf{u}}^k) \end{pmatrix},$$

The "all-at-once" approach: Solve large $(N_{\text{timesteps}}(2N_{\text{FEM}} + N_{\text{coils}}))$ linear system a) with a direct solver b) with an iterative solver

H. Heumann et. al.

Free-Boundary Equilibrium

,

Inverse Evolution Problem, Details

$$D_{\bar{\mathbf{y}}} \bar{\mathbf{A}}(\bar{\mathbf{y}}) = \begin{pmatrix} \tau D_{\mathbf{y}} \mathbf{A}(\mathbf{y}_{1}) + D_{\mathbf{y}} \mathbf{m}(\mathbf{y}_{1}) & \tau D_{\mathbf{y}} \mathbf{A}(\mathbf{y}_{2}) + D_{\mathbf{y}} \mathbf{m}(\mathbf{y}_{2}) & 0 \\ & \ddots & \ddots & \ddots \\ 0 & -D_{\mathbf{y}} \mathbf{m}(\mathbf{y}_{N-1}) & \tau D_{\mathbf{y}} \mathbf{A}(\mathbf{y}_{N}) + D_{\mathbf{y}} \mathbf{m}(\mathbf{y}_{N}) \end{pmatrix}$$
$$D_{\bar{\mathbf{u}}} \bar{\mathbf{F}}(\bar{\mathbf{u}}) = \begin{pmatrix} \tau D_{\mathbf{u}} \tilde{\mathbf{F}}(\mathbf{u}_{1}) & 0 & 0 \\ 0 & \tau D_{\mathbf{u}} \tilde{\mathbf{F}}(\mathbf{u}_{2}) & 0 \\ \ddots & \ddots & \ddots \\ 0 & 0 & \tau D_{\mathbf{u}} \tilde{\mathbf{F}}(\mathbf{u}_{N}) \end{pmatrix}, \\ \bar{\mathbf{K}} = \begin{pmatrix} \tau \mathbf{K}_{1} & 0 & 0 \\ 0 & \tau \mathbf{K}_{2} & 0 \\ \ddots & \ddots & \ddots \\ 0 & 0 & \tau \mathbf{K}_{N} \end{pmatrix}, \\ \bar{\mathbf{R}} = \begin{pmatrix} \tau \mathbf{R}_{1} & 0 & 0 & 0 \\ 0 & \tau \mathbf{R}_{2} & 0 & 0 \\ \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \tau \mathbf{R}_{N} \end{pmatrix},$$

,

Inverse Evolution Problem

Sequential Quadratic Programming "Solve a sequence of quadratic problems" 1.) Solve full Newton system:

Quasi-Newton for $\mathbf{\bar{y}}^{k+1} = \mathbf{\bar{y}}^k + \Delta \mathbf{\bar{y}}, \mathbf{\bar{u}}^{k+1} = \mathbf{\bar{u}}^k + \Delta \mathbf{\bar{u}}, \mathbf{\bar{p}}^{k+1} = \mathbf{\bar{p}}^k + \Delta \mathbf{\bar{p}}:$

$$\begin{pmatrix} \mathbf{K} & 0 & D_{\bar{\mathbf{y}}}\mathbf{A}^{\,\prime}(\bar{\mathbf{y}}^{\,\prime}) \\ 0 & \bar{\mathbf{R}} & -D_{\bar{\mathbf{u}}}\bar{\mathbf{F}}^{\,\mathsf{T}}(\bar{\mathbf{u}}^{\,\prime}) \\ D_{\bar{\mathbf{y}}}\bar{\mathbf{A}}(\bar{\mathbf{y}}^{\,\prime}) & -D_{\bar{\mathbf{u}}}\bar{\mathbf{F}}(\bar{\mathbf{u}}^{\,\prime}) & 0 \end{pmatrix} \begin{pmatrix} \Delta \bar{\mathbf{y}} \\ \Delta \bar{\mathbf{u}} \\ \Delta \bar{\mathbf{p}} \end{pmatrix} = -\begin{pmatrix} \mathbf{K}\bar{\mathbf{y}}^{\,\prime} + D_{\bar{\mathbf{y}}}\mathbf{A}^{\,\prime}(\bar{\mathbf{y}}^{\,\prime})\bar{\mathbf{p}}^{\,\prime} \\ \bar{\mathbf{R}}\bar{\mathbf{u}}^{\,\prime} - D_{\bar{\mathbf{u}}}\bar{\mathbf{F}}^{\,\mathsf{T}}(\bar{\mathbf{u}}^{\,\prime})\bar{\mathbf{p}}^{\,\prime} \\ \bar{\mathbf{A}}(\bar{\mathbf{y}}^{\,\prime}) - \bar{\mathbf{A}}_{0}(\mathbf{y}_{0}) - \bar{\mathbf{F}}(\bar{\mathbf{u}}^{\,\prime}) \end{pmatrix},$$

System is roughly twice as large as for direct problem. 2.) Solve reduced Newton system with CG or directly:

Eliminate $\Delta \bar{\mathbf{y}}, \Delta \bar{\mathbf{p}}$: $\bar{\mathbf{M}}(\bar{\mathbf{u}}^k, \bar{\mathbf{y}}^k) \Delta \bar{\mathbf{u}} = \bar{\mathbf{h}}(\bar{\mathbf{u}}^k, \bar{\mathbf{y}}^k),$

where $\mathbf{\bar{M}}(\mathbf{\bar{u}},\mathbf{\bar{y}}) = \mathbf{\bar{R}} + D_{\mathbf{\bar{u}}}\mathbf{\bar{F}}^{T}(\mathbf{\bar{u}})D_{\mathbf{\bar{y}}}\mathbf{\bar{A}}(\mathbf{\bar{y}})^{-T}\mathbf{\bar{K}}D_{\mathbf{\bar{y}}}\mathbf{\bar{A}}(\mathbf{\bar{y}})^{-1}D_{\mathbf{\bar{u}}}\mathbf{\bar{F}}(\mathbf{\bar{u}}^{k})$

 $\text{and}\quad \bar{\mathbf{h}}(\bar{\mathbf{u}},\bar{\mathbf{y}})=-\bar{\mathbf{R}}\bar{\mathbf{u}}-D_{\bar{\mathbf{u}}}\bar{\mathbf{F}}^{\mathsf{T}}(\bar{\mathbf{u}})D_{\bar{\mathbf{y}}}\bar{\mathbf{A}}(\bar{\mathbf{y}})^{-\mathsf{T}}\bar{\mathbf{K}}D_{\bar{\mathbf{y}}}\bar{\mathbf{A}}(\bar{\mathbf{y}})^{-1}(\bar{\mathbf{F}}(\bar{\mathbf{u}})-\bar{\mathbf{A}}(\bar{\mathbf{y}})+D_{\bar{\mathbf{y}}}\bar{\mathbf{A}}(\bar{\mathbf{y}})\bar{\mathbf{y}}).$

- ► CG-solver: Very few CG-iterations, but one inversion of $D_{\bar{y}}\bar{A}(\bar{y})$ and $D_{\bar{y}}\bar{A}(\bar{y})^{T}$ in each iteration.
- direct sover: $\overline{\mathbf{M}}(\overline{\mathbf{u}}^k, \overline{\mathbf{y}}^k)$ is relatively small but not sparse.

H. Heumann et. al.

Control of Transient Plasma Equilibrium

Major critics: electrodynamic effects of the plasma are not included, yet! Remaining equations:

- conservation of density and energy;
- $-\partial_t \mathbf{B}_T = \operatorname{curl} \mathbf{E}_P$ in plasma;
- **E** + **v** × **B** = η **J** in plasma;

What's next?

Quasi-Static Free-Boundary Equilibrium of Toroidal Plasma

Direct Static Problem Inverse Static Problem Direct Evolution Problem Inverse Evolution Problem

Weak Formulation

Newton's Method

Sequential Quadratic Programming

Validation & Performance

Application: Vertical Displacement

Conclusions & Outlook

Validation & Performance

number of	number of	computing	iteration	relative residual
triangles	unknowns	time (in s)	1	$2.667473 \times 10^{+00}$
12099	6134	2		2.007473×10
23723	11985	5	2	9.157459×10^{-52}
58744	29556	11	3	$\mid 1.781645 imes 10^{-03} \mid$
328603	16/997	80	4	$0.525234 imes 10^{-06}$
1150174	104007	200	5	3.035226×10^{-12}
1153174	577415	368	5	5.555220 × 10

What's next?

Quasi-Static Free-Boundary Equilibrium of Toroidal Plasma

Direct Static Problem Inverse Static Problem Direct Evolution Problem Inverse Evolution Problem

Weak Formulation

Newton's Method

Sequential Quadratic Programming

Validation & Performance

Application: Vertical Displacement

Conclusions & Outlook

Application: Vertical Displacement

Figure: Left: Plasma boundary at intervals of 100 ms in a vertical instability simulation for WEST. Right: Time evolution of the vertical position of the magnetic axis z_{ax} in a vertical instability simulation for WEST.

What's next?

Quasi-Static Free-Boundary Equilibrium of Toroidal Plasma

Direct Static Problem Inverse Static Problem Direct Evolution Problem Inverse Evolution Problem

Weak Formulation

Newton's Method

Sequential Quadratic Programming

Validation & Performance

Application: Vertical Displacement

Conclusions & Outlook

Conclusions & Outlook

Conclusions:

- mature and sound equilibrium calculation;
- ready to use for applications and automation;
- Coupling of CEDRES and ETS (European Transport Solver) in ITM; (C. Boulbe & B. Faugeras with J.F. Artaud, P. Huyn, V. Basiuk, E. Nardon, J. Urban, D. Kalupin at CEA, Munich, Prag)
- FEEQS.M with Edge Plasma Code for divertor load optimization; (H.H. with M. Bloomart, T. Baelmans, N. Gauger, D. Reiter at Jülich, Leuven, Kaiserslautern),

Outlook:

- 1. towards monolitic solver for equilibrium and transport;
- 2. optimal control for scenario optimization for tokamaks;
- 3. control engineers are interested in realtime solutions of the coupled problem;
- 4. can not be achieved by only increasing computational power;