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Abstract. This paper is devoted to the construction of a discontinuous Galerkin (DG) discreti-
sation for the nonconservative bitemperature Euler system via a discrete BGK formulation. This
formulation is compatible with the entropy properties of the system and thus provides admissible so-
lutions. The DG method is used to approximate the linear transport part of the BGK model while the
force and source-terms are treated implicitly but with explicit expressions. High order in time has also
been investigated using SSP Runge-Kutta methods. We numerically show the good agreement of our
results with the ones provided by other schemes, including solutions with shocks.

Keywords. nonconservative hyperbolic system, discrete BGK approximation, discontinuous
Galerkin methods, Runge-Kutta methods.

AMS subject classifications. 65M08, 35L60, 76X05, 35Q31

1. Introduction

This paper is devoted to the approximation of the bitemperature Euler system
from a Discontinuous Galerkin (DG hereafter) method applied to a kinetic formulation
proposed in [5] and that is based on a discrete BGK model. The present fluid model
is able to treat out of equilibrium regimes. The standard strategy in plasma physics
for simulating such regimes is to develop PIC methods, that directly solve the kinetic
equations. But these methods are computationally very expensive. Therefore, the
bitemperature model is a compromise between the precision of the kinetic models and
the lower numerical cost of fluid models. This system is made of two conservation
equations for mass and momentum and of two nonconservative equations for ionic and
electronic energies. It describes the interaction of a mixture of thermalized ions and
electrons in a quasi-neutral regime. This system is nonconservative because of the
presence of a relaxation source term and of products between velocity and pressure
gradients. Those products make difficult the definition of weak solutions. In [21], a
general framework has been developed in order to define shocks in this context by using
families of paths. The generalization of this approach to a numerical setting has been
considered in [28]. However, even if the path is known theoretically, the numerical
determination of the path is delicate [2]. It is shown in [9] that the entropy does
not provide a symmetrizer for this system. However, a symmetrizer can be computed.
In [20], the authors consider the bitemperature Euler system with diffusive terms and by
assuming that the electrons are isentropic. In that case, the system is transformed into
a system of conservation laws. This approach has also been used in [30] where magnetic
fields are considered and a conservation equation on electronic entropy is derived. In [14],
magnetic fields are also considered in a transverse magnetic configuration. Moreover,
a Suliciu scheme is derived and proved to be entropic. In [31], the authors perform a
Chapman-Enskog expansion by introducing a small parameter representing the ratio
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between electronic and ionic molecular masses. At the end, they obtain a system with
an hyperbolic part for ions and a parabolic part for electrons.

In the context of kinetic equations, a DG method can be used to discretize the
space variable, whereas the velocity variable is treated by using a DVM discretization.
In ( [25], [26], [12]), the authors couple a DG discretization in the space variable with
a spectral method in the velocity variable for the Boltzmann equation. However in the
present paper, the aim is different, because our goal is to solve the bitemperature Euler
system. Hence, we perform a kinetic reformulation of the problem and next we apply
a DG discretization. The final algorithm is obtained by using a transport projection
procedure.

Discrete BGK schemes for general hyperbolic systems of conservation laws have
been introduced in [11, 27]. The method is performed by a transport projection
approach. The advantage is to put the nonlinearity inside the relaxation term whereas
the transport term is linear with constant advection velocities. The bitemperature
model under consideration is obtained in [5] by using an hydrodynamic limit starting
from a BGK model coupled with Poisson and Ampère equations in a quasi-neutral
regime. In particular, it is shown that the nonconservative terms come from the
Ohm’s law defining the electric field. By using this asymptotic a finite volume
BGK scheme generalizing the Aregba-Natalini method [11] to a nonconservative
setting has been designed in [5]. In particular, a force term is incorporated in the
discrete BGK formulation in order to deal with the nonconservative terms. This
formulation leads to the resolution of an hyberbolic system from a BGK relaxation
process. Hence we have to deal with a linear advection term and a source term.
Moreover, a Suliciu approach also is developed in [5] by relaxing on the pressures and
several comparisons are performed with different schemes. Next, in [7] the kinetic
approach has been generalized to a polyatomic setting by using a kinetic model with
a continuous energy variable. In [15], the authors use the asymptotic from the BGK
model toward the bitemperature Euler system considered in [5]. Next they derive
an asymptotic preserving scheme for this limit with a DVM discretization for the
velocity variable. The bi-dimensional case has been considered in [10] and a second
order finite volume scheme has been obtained. In [6], a Navier-Stokes system has been
derived from a Chapman-Enskog expansion and by computing viscous terms, general-
izing the model considered in [17]. However, as far as we know, there is no work on
the implementation of high order methods for the nonconservative bitemperature model.

Recent works use the discrete BGK setting with various approximation meth-
ods in the conservative case. In [3, 4], the authors perform a RD scheme for the
compressible Euler system in the space variable. The time discretization is obtained
by using a DeC method [1]. In [19] the authors constructed a high-order implicit
palindromic discontinuous Galerkin method from kinetic-relaxation approximation
for solving general hyperbolic systems of conservation laws. In [22], this approach is
used to solve Maxwell’s equations. The aim of the present work is to provide high
order methods for the nonconservative bitemperature Euler system which use a DG
scheme on the discrete BGK formulation with k-th degree basis for the spacial dis-
cretization and with an order (k+1)-SSP-Runge-Kutta method for the time integration.

This paper is organised as follows. Section 2 introduces the bitemperature Euler
system. Section 3 deals with the presentation of the discrete BGK models in the conser-
vative and in the nonconservative case. In particular the obtention of the bitemperature
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model from the kinetic formulation developed in [5] is explained. In section 4, the DG
method applied to the discrete BGK approximation is described. In particular, the
order in time is increased in order to be consistent with the order in the space variable.
Section 5 is devoted to numerical experiments. We investigate the accuracy of the pro-
posed schemes on some examples. We also compare our methods with other existing
numerical schemes. An important result in this nonconservative framework is that they
converge to the same solutions, even in the presence of shocks.

2. Bitemperature Euler system Subscripts e and i respectively denote elec-
tronic and ionic quantities. We denote by ρe and ρi the electronic and ionic densities,
ρ=ρe+ρi the total density, me and mi the related masses, ce and ci the mass fractions.
These variables satisfy

ρe=mene= ceρ, ρi=mini= ciρ, me>0, mi>0, ce+ci= 1. (2.1)

Quasineutrality is assumed, so that the ionization ratio Z=ne/ni is a constant. This
implies that the electronic and ionic mass fractions are constant and given by

ce=
Zme

mi+Zme
, ci=

mi

mi+Zme
. (2.2)

Electronic and ionic velocities ue, ui are assumed to be in equilibrium in the model.
Hence, ue=ui=u, where u denotes mixture velocity. The pressure of each species
satisfies a gamma-law with its own γ exponent :

pe= (γe−1)ρeεe=nekBTe, pi= (γi−1)ρiεi=nikBTi, γe>1, γi>1, (2.3)

where kB is the Boltzmann constant (kB>0), εα and Tα represent respectively the
internal specific energy and the temperature of species α for α=e,i.

Denoting by | · | the euclidean norm in RD, the total energies for the particles are
defined by

Eα=ραεα+
1

2
ρα|u|2, α=e,i. (2.4)

We denote by νei≥0 the interaction coefficient between the electronic and ionic tem-
peratures. The model consists of two conservative equations for mass and momentum
and two nonconservative equations for the energies:

∂tρ+div(ρu) = 0,

∂t(ρu)+div(ρu⊗u+(pe+pi)I) = 0,

∂tEe+div(u(Ee+pe))−u ·∇(cipe−cepi) =νei(Ti−Te),
∂tEi+div(u(Ei+pi))+u ·∇(cipe−cepi) =−νei(Ti−Te),

(2.5)

where I represents the identity matrix in R3. In the following we denote

U = (ρ,ρu,Ee,Ei), Uα= (ρα,ραu,Eα). (2.6)

The system (2.5) is hyperbolic, diagonalisable and owns 3 eigenvalues λ−, λ0 (with
multiplicity D+1 where D is the space dimension), λ+: for any ω∈SD−1

λ−=u ·ω−a, λ0 =u ·ω, λ+ =u ·ω+a
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where

a=

√∑
α=e,i

γαpα
ρ

(2.7)

is the sound velocity. The fields related to λ± are genuinely nonlinear, while the field
related to λ0 is linearly degenerate.

Defining the total energy E=Ee+Ei and the total pressure p=pe+pi, one can note
that if U is a solution of system (2.5) then (ρ,ρu,E) satisfies the following conservative
system: 

∂tρ+div(ρu) = 0,

∂t(ρu)+div(ρu⊗u+pI) = 0,

∂tE+div(u(E+p)) = 0.

(2.8)

If γe=γi this is the wellknown monotemperature Euler system. But even in this case,
one has to deal with one more equation to determine electronic and ionic temperatures.
If γe 6=γi system (2.8) is not closed. We want to underline the fact that in both cases, the
solutions of system (2.5) are to be defined in the context of nonconservative equations
were the product of a possibly discontinuous function with a Dirac measure appears.
To give a sense to such solutions, one has to bring more physical information. In [5]
we obtained solutions of (2.5) as hydrodynamic limits of solutions of an underlying,
physically realistic BGK model. The entropy-entropy flux of species α is defined as

ηα(Uα) =− ρα
mα(γα−1)

[
ln

(
(γα−1)ραεα

(ρα)γα

)
+C

]
, Qα(Uα) =ηα(Uα)u. (2.9)

For U = (ρ,ρu,Ee,Ei), one sets Uα= (cαρ,cαρu,Eα). The total entropy-entropy flux pair
for (2.5) is

η(U) =ηe(Ue)+ηi(Ui), Q(U) =η(U)u. (2.10)

We proved the following entropy inequality for these hydrodynamic limits:

∂tη(U)+divQ(U)≤− νei
kBTiTe

(Ti−Te)2. (2.11)

We then defined an admissible solution of (2.5) as a solution satisfying this inequality.

In the following we consider the 1D version of system (2.5):
∂tρ+∂x(ρu) = 0,

∂t(ρu)+∂x(ρu2 +pe+pi) = 0,

∂tEe+∂x(u(Ee+pe))−u∂x (cipe−cepi) =νei(Ti−Te),
∂tEi+∂x(u(Ei+pi))+u∂x (cipe−cepi) =−νei(Ti−Te).

(2.12)

3. BGK models This section is devoted to the presentation of discrete BGK
models that have been introduced for system of conservation laws in [11] and then
generalized to the nonconservative case in [5, 8, 10].
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3.1. Underlying kinetic (BGK) models for the conservative compressible
Euler system We start from BGK models for the Euler monotemperature equations.
Denoting

U = (ρ,ρu,E)∈Ω⊂R3, F (U) = (ρu,ρu2 +p,u(E+p)),

the Euler system is a system of conservation laws:

∂tU+∂xF (U) = 0. (3.1)

We assume that p= (γ−1)(E − 1
2ρu

2). We follow the framework proposed by F. Bouchut
in [13]. We define a measure space (X,dξ), a real valued function a defined on X, a
“maxwellian function” M from R3×X onto Rp, and a “moment operator” P from X
to L(Rp,R3) such that for all U ∈Ω:∫

X

P (ξ)(M(U,ξ))dξ=U,

∫
X

P (ξ)(a(ξ)M(U,ξ))dξ=F (U). (3.2)

Let fε(x,t,ξ)∈Rp be a solution of

∂tf
ε+a(ξ)∂xf

ε=
1

ε
(M(U(fε),ξ)−fε),

with

U(fε)(x,t) =

∫
X

P (ξ)(fε(x,t,ξ))dξ.

Formally if limε→0f
ε=f , then f(x,t,ξ) =M(U(f)(x,t),ξ) and U(f) is a solution of

(3.1). In [13], conditions are given for the existence of microscopic entropies compatible
with all the entropies of the macroscopic limit.

3.1.1. Example 1: a physically realistic BGK model Here we set

X=R3, ξ=v, dξ=dv, a(ξ) =v1, p= 1

and M(U,v)∈R is given by

M(U) =
n

(2πkBT/m)3/2
exp(− |v−u|

2

2kBT/m
). (3.3)

The moment operator is defined as

P (ξ)(M) = (m,mv1,
m|v|2

2
)M.

As fε(x,t,v)∈R, it is a rank one model. This model is compatible with the physical
entropy of Euler system. It corresponds to the classical BGK model in the context
of rarefied gases. Moreover, the model (2.12) has been derived in [5] by using this
formalism.

3.1.2. Example 2: a discrete velocity BGK model Here X={1,2}, a(ξ) =
λξ with λ2>λ1, P (ξ) = Id, p= 3 and

M(U,1) =
λ2U−F (U)

λ2−λ1
, M(U,2) =

−λ1U+F (U)

λ2−λ1
, (3.4)

see [11]. For any Euler entropy, the existence of related microscopic entropies is ensured
under Liu’s subcharacteristic condition, see [13]:

σ(F ′(U))⊂]λ1,λ2[.

The numerical scheme developed in the present paper is based on this model.
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3.2. BGK models for the nonconservative bitemperature Euler equations
We take a BGK model for the monotemperature Euler system (3.1) with γ=γe and

γ=γi. We choose

Xe=Xi=X, ae(ξ) =ai(ξ) =a(ξ), Pe(ξ) =Pi(ξ) =P (ξ).

In the following, we recall the kinetic formulation of bitemperature system (2.12)
that has been performed in [5]. For more details we refer to this paper. The authors
consider a kinetic system which consists of a BGK model for gas mixtures coupled with
the Ampère and Poisson equations through the electric force. The BGK model satis-
fies classical properties (H theorem, correct equilibrium states, .. .). Next the authors
consider a quasi-neutral regime where the collisions between the same species are dom-
inant and perform an hydrodynamic limit leading to the system (2.12). Throughout
this step, the electric field is shown to satisfies a generalized Ohm’s law defining the
nonconservative products. Next by using this asymptotic, a discrete BGK formulation
in a nonconservative setting has been performed in [5]. The discrete BGK model is
based on the formalism developed initially in [11]. The present model displayed in (3.5)
is not devoted to have a physical meaning. But it is used to develop a numerical scheme
for the fluid limit (2.12). In the following lines, we detail the asymptotic developed on
the discrete BGK model of section 3.1.2.

The equations for fεe and fεi belonging to R3 are coupled with the ones for the
electric field E:

∂tf
ε
e +a(ξ)∂xf

ε
e +

qe
me

EεN fεe =
1

ε
(Me−fεe )+Bei(f

ε
e ,f

ε
i ),

∂tf
ε
i +a(ξ)∂xf

ε
i +

qi
mi

EεN fεi =
1

ε
(Mi−fεi )+Bie(f

ε
i ,f

ε
e ),

∂tE
ε=− 1

ε2

(
qe
me

ρεeu
ε
e+

qi
mi

ρεiu
ε
i

)
,

∂xE
ε=

1

ε2

(
qe
me

ρεe+
qi
mi

ρεi

)
.

(3.5)

The term Bαβ represents the collisions between the different species α and β.
The linear operator N f represents the force term ( [5]) defined for f(ξ)∈R3 by

N f(ξ) =

 0 0 0
−1 0 0
0 −1 0

 f1(ξ)
f2(ξ)
f3(ξ)

 .
In the classical case corresponding to subsection 3.1.1, this term is replaced by E ·∇f .
For more precisions we refer to [5].

When ε tends to 0, we have formally

ue=ui=u,
qe
me

ρe+
qi
mi

ρi= 0, Mα(Uα) =fα. (3.6)

Quasineutrality holds: ρ=ρce=ρci and ce, ci are the constants defined in (2.2).
The collision operator Bαβ is computed when fα=Mα satisfying (3.6), so that∫

X

P (ξ)Bαβ(Mα,Mβ)dξ= (0,0,νei(Tβ−Tα)).
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The linear operator N ( [5]) is such that∫
X

P (ξ)(NMα(Uα,ξ))dξ=−(0,ρα,ραu).

By taking the moments, it comes that

∂tρα+∂x(ραu) = 0, α=e,i,

∂t(ραu)+∂x(ραu
2 +pα)− qα

mα
Eρα= 0, α=e,i,

∂tEe+∂x(u(Ee+pe))−
qe
me

Eρeu=νei(Ti−Te),

∂tEi+∂x(u(Ei+pi))−
qi
mi

Eρiu=−νei(Ti−Te).

(3.7)

Considering 
∂t(ρceu)+∂x(ρceu

2 +pe)−
ρeqe
me

E= 0,

∂t(ρciu)+∂x(ρciu
2 +pi)−

ρiqi
mi

E= 0

leads to the expression of E ( [5])

ρeqe
me

E=−ρiqi
mi

E= ci∂xpe−ce∂xpi (3.8)

and

∂t(ρu)+∂x(ρu2 +pe+pi) = 0.

Hence replacing E by the expression (3.8) into (3.7), we get that U = (ρ,ρu,Ee,Ei) is a
solution of system (2.12). The relation (3.8) corresponds to a genaralized Ohm’s law.

Theorem 3.1. Suppose that there exist microscopic entropies for the kinetic model
(3.5) related to the entropy η. Let U be a solution of the Euler bitemperature model
(2.12) obtained by passing to the limit in (3.5). Then one has the entropy inequality

∂tη(U)+∂xQ(U)≤− νei
kBTiTe

(Ti−Te)2.

We define such a solution U as an admissible solution.

In the case of examples 1 and 2 above, the microscopic entropies exist, see [5] for
details.

4. A Discontinuous Galerkin (DG) scheme This section is devoted to the
discretisation of system (2.12) by using the discrete BGK model developed in section
3. We denote ∆x and ∆t the space and time steps and we mesh the real line by cells
CK = [xK− 1

2
,xK+ 1

2
] with xK+ 1

2
−xK− 1

2
= ∆x. In practice an interval is considered with

appropriate boundary conditions : K ∈{1,. ..,N}. We also denote by P k the space of
all polynomials of degree at most k.
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4.1. Preliminary Let us consider a transport equation

∂tf+v∂xf = 0 (4.1)

where v∈R and f(x,t,v)∈R. We look for an approximation of f(·,t,v) under the form
N∑
K=1

fK(·,t,v) where each fK(·,t,v) has CK as support and its restriction to CK is in

P k. Let {ΦKj , j= 0,. ..,k} be a basis of polynomial functions defined on CK . For the
numerical simulations given in Section 5, we used Lagrange polynomials as a local basis
of P k on CK and below we denote xK0 ,. ..,x

K
k the related Lagrange points. Outside CK ,

ΦKj = 0.

On CK the approximate variational form of equation (4.1) is∫
CK

∂tf
K(x,t,v)ΦKi (x)dx−v

∫
CK

fK(x,t,v)(ΦKi )′(x)dx

+vf̂K+ 1
2
ΦKi (xK+ 1

2
)−vf̂K− 1

2
ΦKi (xK− 1

2
) = 0, i= 0,. ..,k.

We have to choose a flux vf̂K+ 1
2

=h(f(x−
K+ 1

2

),f(x+
K+ 1

2

),v). We can set the following

h(f,g,v) =v

(
λ2

λ2−λ1
f− λ1

λ2−λ1
g

)
+

λ1λ2

λ2−λ1
(g−f) (4.2)

where λ1≤0≤λ2.

Another choice is the upwind flux: denoting v+ = max(v,0), v−= max(−v,0)

h(f,g,v) =v+f−v−g. (4.3)

Now we write fK(x,t,v) as

fK(x,t,v) =

k∑
j=0

fKj (t,v)ΦKj (x). (4.4)

We obtain

k∑
j=0

MK
ij ∂tf

K
j (t,v)−v

k∑
j=0

SKij f
K
j (t,v)+vf̂K+ 1

2
ΦKi (xK+ 1

2
)−vf̂K− 1

2
ΦKi (xK− 1

2
) = 0

where we have defined two matrices MK and SK :

MK
ij =

∫
CK

ΦKj ΦKi dx, SKij =

∫
CK

ΦKj
(
ΦKi
)′
dx.

This is an ordinary differential system which solution is denoted f = (fK)1≤K≤N with
fK = (fK0 ,. ..,fKk ):

MK∂tf
K(t,v)+SKfK(t,v) =F (f ,t,v), 1≤K≤N. (4.5)

We denote fn+1(x,v) =Z(∆t,v)fn(x,v) the obtained numerical scheme.
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It is well-known that DG schemes may oscillate when sharp discontinuities are present
in the solution. Hence in order to control these instabilities we consider generalized
slope limiters [23]. We first define the interface fluxes as

u−
K+ 1

2

= f̄K−m
(
f̄K−fK(xK+ 1

2
), f̄K− f̄K−1, f̄K+1− f̄K

)
(4.6)

u+
K− 1

2

= f̄K +m
(
f̄K−fK(xK− 1

2
), f̄K− f̄K−1, f̄K+1− f̄K

)
(4.7)

where f̄K is the average of fK on CK and where m is the minmod function limiter

m(a1,a2,a3) =

{
s ·minj |aj | if s= sign(a1) = sign(a2) = sign(a3)
0 otherwise

Then the generalized slope limiter technique consists in replacing fK on each cell CK
with ΛΠh defined by

ΛΠh(fK) =


fK if u+

K− 1
2

=fK(xK− 1
2
) and u+

K+ 1
2

=fK(xK+ 1
2
),

f̄K +(x−xK)m(fKx ,
f̄K+1− f̄K

∆x/2
,
f̄K− f̄K−1

∆x/2
) otherwise.

4.2. A DG scheme for the bitemperature Euler system In this section we
approximate the initial value problem for system (2.12). An initial data U(·,0) =U0

being given, we first define U0 =

N∑
K=1

UK,0 by setting, for K= 1,. ..,N :

UK,0(x) =

k∑
j=0

UK,0j ΦKj (x) with UK,0j =U0(xKj ), j= 0,. ..,k.

Suppose that for n≥0, we have Un(x) =

N∑
K=1

k∑
j=0

UK,nj ΦKj (x). For α=e,i, we define

Unα = (ρnα,ρ
n
αu

n,Enα) with ρnα=ρncα. (4.8)

Then Unα (x) =

N∑
K=1

k∑
j=0

UK,nα,j ΦKj (x) with

UK,nα,j = (cαρ
K,n
j ,cαρ

K,n
j uK,nj ,EK,nα,j ).

Our numerical scheme is based on system (3.5) where the two-velocity discrete BGK
model described in Example 2, subsection 3.1.2 is used for both ions and electrons.

Step 1: projection onto equilibrium
In this step, we define fnα for α=e,i as

fnα (x,ξ) =

N∑
K=1

k∑
j=0

Mα(UK,nα,j ,ξ)Φ
K
j (x), ξ= 1,2 (4.9)

that is, on each cell CK , the Lagrange interpolate of Mα(Unα (x),ξ) on CK .
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Remark 4.1. Define U(x,t) =
∫
X
P (ξ)(f(x,t,ξ))dξ. By linearity if

f(x,t,v) =

N∑
K=1

k∑
j=0

fKj (t,v)ΦKj (x)

then

U(x,t) =

N∑
K=1

k∑
j=0

UKj (t)ΦKj (x) with UKj (t) =

∫
X

P (ξ)(fKj (t,ξ))dξ.

In particular, the compatibility conditions (3.2) imply that Unα (x) =
∫
X
P (ξ)(fnα (x,ξ))dξ.

Step 2: transport by DG method. For α∈{e,i} and ξ∈{1,2} we solve the transport
equations {

∂tfα+a(ξ)∂xfα= 0, t∈ [tn,tn+1],

fα(x,tn) =fnα (x).

We choose the same a(ξ) for ions and electrons by using the subcharacteristic condition.
Here fα takes values in R3 and the procedure described in the Preliminary section is
applied to all its components and for each ξ∈{1,2}, hence 6 times. We still use the
notation Z(∆t,ξ) for the solution:

f
n+ 1

2
α (ξ) =Z(∆t,ξ)fnα (ξ)

and we denote

f
n+ 1

2
α =Z∆tfnα .

Here a (k+1)-SSP-Runge-Kutta method is used for the time integration. According to
remark 4.1 we then define

U
n+ 1

2
α (x) =

∫
X

P (ξ)(f
n+ 1

2
α (x,ξ))dξ=

N∑
K=1

k∑
j=0

U
K,n+ 1

2
α,j ΦKj (x)

with

U
K,n+ 1

2
α,j =

∫
X

P (ξ)(f
K,n+ 1

2
α,j (ξ))dξ. (4.10)

For the first component of fα we have by (3.4)

fnα,1(1) = cα
λ2ρ

n−ρnun

λ2−λ1
, fnα,1(2) = cα

−λ1ρ
n+ρnun

λ2−λ1
.

Solving the related transport equations preserve this property: f
n+ 1

2
α,1 = cαf

n+ 1
2

1 where

f
n+ 1

2
1 is the solution with data fnα,1/cα. Consequently for α∈{e,i} ρn+ 1

2
α = cαρ

n+ 1
2 where

ρn+ 1
2 =ρ

n+ 1
2

e +ρ
n+ 1

2
i .
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Step 3: force and source terms. For α=e,i

f
n+ 3

4
α =f

n+ 1
2

α −∆t
qα
mα

En+1N fn+ 3
4

α +∆tBαβ(f
n+ 3

4
e ,f

n+ 3
4

i ), β 6=α

and

Un+1
α =

∫
X

P (ξ)(f
n+ 3

4
α (ξ))dξ= (ρn+1

α ,ρn+1
α un+1

α ,En+1
α ).

We obtain

Un+1
α =U

n+ 1
2

α −∆t
qα
mα

En+1NUn+1
α +S(Tn+1

e ,Tn+1
i ).

This expression is not implemented in the code. It is an intermediate result which is

taken into account in Step 4. In particular f
n+ 3

4
α,1 =f

n+ 1
2

α,1 , so

ρn+1
α =ρ

n+ 1
2

α = cαρ
n+1, ρn+1 =ρn+1

e +ρn+1
i . (4.11)

Step 4: coupling with Maxwell-Ampère and Poisson equations.
qe
me

ρn+1
e +

qi
mi

ρn+1
i = 0,

qe
me

ρn+1
e un+1

e +
qi
mi

ρn+1
i un+1

i = 0.

Hence un+1
i =un+1

e . We set un+1 =un+1
i =un+1

e . As qe=−e and qi=Ze, we get as in
the continuous case ρn+1

e = ceρ
n+1, ρn+1

i = ciρ
n+1, which is consistent with (4.11). We

have analogously to (3.7)

ρn+1
α =ρ

n+ 1
2

α , α=e,i,

ρn+1
e un+1 =ρ

n+ 1
2

e u
n+ 1

2
e +∆t

qe
me

En+1ρn+1
e ,

ρn+1
i un+1 =ρ

n+ 1
2

i u
n+ 1

2
i +∆t

qi
mi

En+1ρn+1
i ,

En+1
e =En+ 1

2
e +∆t

qe
me

En+1ρn+1
e un+1 +∆tνei(T

n+1
i −Tn+1

e ),

En+1
i =En+ 1

2
i +∆t

qi
mi

En+1ρn+1
i un+1−∆tνei(T

n+1
i −Tn+1

e ).

(4.12)

The equations on mass and momentum give ρn+1 and un+1:{
ρn+1 =ρn+ 1

2 ,

ρn+1un+1 =ρ
n+ 1

2
e u

n+ 1
2

e +ρ
n+ 1

2
i u

n+ 1
2

i .
(4.13)

We then compute En+1 as in the continuous case ( [5]):

ceρ
n+1un+1 =ρ

n+ 1
2

e u
n+ 1

2
e +∆t

qe
me

En+1ρn+1ce,

ciρ
n+1un+1 =ρ

n+ 1
2

i u
n+ 1

2
i +∆t

qi
mi

En+1ρn+1ci,
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hence

∆t
qe
me

En+1ρn+1
e =−∆t

qi
mi

En+1ρn+1
i =−ciρ

n+ 1
2

e u
n+ 1

2
e +ceρ

n+ 1
2

i u
n+ 1

2
i (4.14)

and
En+1
e =En+ 1

2
e +un+1

(
−ciρ

n+ 1
2

e u
n+ 1

2
e +ceρ

n+ 1
2

i u
n+ 1

2
i

)
+∆tνei(T

n+1
i −Tn+1

e )

En+1
i =En+ 1

2
i +un+1

(
ciρ

n+ 1
2

e u
n+ 1

2
e −ceρ

n+ 1
2

i u
n+ 1

2
i

)
+∆tνei(T

n+1
e −Tn+1

i ).
(4.15)

As

Tn+1
α =

(
En+1
α

ρn+1
α

− 1

2
(un+1)2

)
(γα−1)mα

kB

system (4.15) can be solved explicitly at each Lagrange point. Finally we obtain
Un+1(x), an approximation of U(x,tn+1).

Remark 4.2. Formula (4.14) corresponds to an approximation of the genaralized Ohm’s
Law.

Remark 4.3. Note that the definition of Un+1
α is consistent with (4.8).

We summarize the time step: Un being known by its values at each Lagrange point of
each cell, we compute the following quantities at the same Lagrange points:

1. Une and Uni by (4.8)

2. fne and fni by (4.9)

3. DG algorithm to obtain f
n+ 1

2
e and f

n+ 1
2

i

4. ρ
n+ 1

2
α =

∫
X

P (ξ)f
n+ 1

2
α,1 (ξ)dξ and ρ

n+ 1
2

α u
n+ 1

2
α =

∫
X

P (ξ)f
n+ 1

2
α,2 (ξ)dξ for α∈{e,i}

5. ρn+1 =
∑
α=e,i

ρ
n+ 1

2
α , ρn+1un+1 =

∑
α=e,i

ρ
n+ 1

2
α u

n+ 1
2

α

6. Ee and Ei by (4.15)

4.3. Focus on the time discretization The scheme described in subsection 4.2
can be viewed as a fractional step method which computes the approximate solution
Un+1
h at time tn+1 as a function of Unh :

Un+1 =E∆t(Un). (4.16)

This method is only first order in time, even if each step is high order, basically be-
cause in the underlying Trotter formula, when two operators A and B do not commute,
exp(∆t(A+B)) = exp(∆tA)exp(∆tB)+O(∆t2). We can view this procedure as an ex-
plicit RK1 Euler scheme applied to the semi-discretized system obtained by performing
the DG spacial discretization of system (2.5):

∂tUh=G(Uh).
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It is important to increase the order in time when one increases the order in space,
otherwise you will not observe any significant improvement of the numerical results, see
section 5 below. For this purpose, we use higher order Nr steps explicit Runge Kutta
schemes. The approximate solution Unh being known, we set

Y1 =Unh , V1 =Y1 ,

{
Yi+1 =E∆t(Vi),

Vi+1 =d
(Nr)
i1 Unh +d

(Nr)
i2 Yi+1,

i= 1,. ..,Nr, (4.17)

and

Un+1
h =VNr+1. (4.18)

The scheme is defined by a Nr×2 matrix D(Nr) =
(
d

(Nr)
ij

)
. Here we set:

D(1) = (0,1), D(2) =

(
0 1
1
2

1
2

)
, D(3) =

 0 1
3
4

1
4

1
3

2
3

.
The case Nr = 1 is the explicit Euler method. It is used with a P 0-DG discretization.
The case Nr = 2 is the RK2 Heun method, used with a P 1-DG discretization. This
method is Strong Stability Preserving (SSP) [24]. For the third-order Nr = 3, we
consider the Shu-Osher RK3-SSP scheme [23], used with P 2-DG discretization. It is to
be noted that the case Nr = 2 can also be viewed as a DeC method [1].

We consider here the following CFL condition:

CFL=
∆t

∆x
|v|≤ 1

2k+1
(4.19)

where k is the degree of the polynomial [18].

5. Numerical results This section is devoted to the numerical validation of the
numerical scheme that is constructed in the previous section. The numerical method
is firstly applied to the compressible Euler system (2.8) and next to the bitemperature
Euler system (2.5).

5.1. Compressible Euler system

5.1.1. Euler isentropic In this subsection we test the the efficiency of the high
order in time of the method and we show the convergence in space of the scheme for
Euler equations (2.8) by considering the case of isentropic flow i.e when γ= 3 and p=ργ ,
with the initial conditions ρ0

u0

p0

=

1+0.5sin(πx)
0
ργ0


where the domain is Ω = [−1,1], the final time T = 0.1 and we take CFL= 0.1. We
plot in Figure 5.1 the numerical order of convergence of the method. The considered
error is the L2-norm. We observe that we get k+1 order when we choose for a P k-DG
discretisation the space with a time discretisation of order k+1. We also give in table
5.1 the numerical rate of convergence. We have measured the L2-error

EN =‖uh(T, ·)− ûe(T, ·)‖,
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k N EN Order αN

0

5 0.0902 -
10 0.0485 0.8983
20 0.0247 0.9735
40 0.0125 0.9826
80 0.0063 0.9885

1

5 0.1214 -
10 0.0193 2.6533
20 0.0042 2.2056
40 0.0010 2.0377
80 2.5414.10−4 2.0034

2

5 0.0286 -
10 0.0059 2.2883
20 7.1844.10−4 3.0267
40 1.1757.10−4 2.6114
80 1.7051.10−5 2.7856

Table 5.1. Error and numerical rate of convergence of u for Euler equations for k= 0,1,2. N
denotes the number of elements.

where ûe is the numerical solution which has been computed using a very fine grid and
the approximation rate of convergence

αN =

(
1

log2

)(
logE2N − logEN

)
.

Fig. 5.1. Convergence of u for Euler equations
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We next show in Figure 5.2 the impact of the high order Runge-Kutta method associated
to the high order DG-space discretization. As expected we obtain the optimal order
two in space when we use the P 1-DG space discretization associated to a second-order
Runge-Kutta (RK2) method as opposed to the Euler method for the time discretization.

Fig. 5.2. Convergence of u of Euler equations for P 1-DG space discretization with RK2 (red)
and Euler (blue) time discretization.

5.1.2. Shu-Osher test case We consider the test case [29] applied to the com-
pressible Euler system for γ= 1.4. The initial conditions of the Shu-Osher test are given
by ρ0

u0

p0

=

 3.857143
2.6929369
10.333333

 if x∈ [−5,−4],

ρ0

u0

p0

=

1+0.2sin(5x)
0
1

 if x∈ [−4,5],

on the domain [−5, 5] and the final time of the problem is T = 1.8.
The reference solution represented in Figure 5.3 is obtained with the P 2-DG method

with 5000 points. We compare in Figure 5.3 the results obtained with P 0, P 1 and P 2

method for 512 points with the reference solution. We observe that the oscillations are
well captured by the P 2 reconstruction and that the precision increases with the order
of the scheme.

5.1.3. Blast waves In order to highlight the advantages for using a high
order method, we consider the test case proposed by Collela and Woodward [16]
devoted to the compressible Euler system for γ= 1.4. We consider the initial conditions
ρ0 = 1, u0 = 0, p0 = 1031[0,0.1[ +10−21[0.1,0.9[ +1021[0.9,1]. The density and the energy
are displayed in Figure 5.4 for 1000 points in space. As observed in Figure 5.4, the P 2

reconstruction is able to catch correctly the second pick.
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Fig. 5.3. Density for the Shu-Osher test case.

Fig. 5.4. Density (left) and Energy (right) for the blast waves.

All the previous numerical tests have been tested in [4] for a RD scheme and anal-
ogous results are obtained.

5.2. Bitemperature Euler system Next the numerical method is applied to
the bitemperature Euler system (2.12). In subsection 5.2.1, we perform a convergence
study for the DG kinetic scheme for the P 1 and the P 2 reconstruction. In the next test
cases, the DG kinetic scheme for the P 2 reconstruction is compared with the kinetic
scheme for a finite volume space discretization (FV kinetic scheme) and the Suliciu
method developed in [5].
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5.2.1. Analytical test case We look for a smooth analytical solution of system
(2.12). We assume that ρ and u are constant, so that the system reduces to

∂x(ZTe+Ti) = 0,

∂tTe+u∂xTe=βe(Ti−Te),
∂tTi+u∂xTi=βi(Te−Ti)

(5.1)

with

βα=
νeimα(γα−1)

ρcαkB
, α∈{e,i}.

We choose initial temperatures Te(x,0) =Te,0(x), Ti(x,0) =Ti,0(x) such that

∂x(ZTe,0 +Ti,0) = 0. (5.2)

It is easy to compute the solution (Te,Ti) of the last two equations: denoting β1 +β2 =β,
µ= γe−1

Z +γi−1:

Te(x+ut,t) =
1

µ

(
γe−1

Z
(Te,0(x)−Ti,0(x))e−βt+(γi−1)Te,0(x)+

γe−1

Z
Ti,0(x)

)
(5.3)

Ti(x+ut,t) =
1

µ

(
(γi−1)(Ti,0(x)−Te,0(x))e−βt+(γi−1)Te,0(x)+

γe−1

Z
Ti,0(x)

)
Then one can observe that if γe 6=γi the first equation of (5.1) cannot be satisfied unless
∂xTe,0 =∂xTi,0 = 0. Therefore we set γe=γi. In that case, if (5.2) is satisfied then we
have a solution of the bitemperature Euler system.

We choose νei= 1, T = 0.1, Ω = [0,1] and CFL= 0.1. We plot in Figure 5.5 the conver-
gence of the method for the bitemperature Euler system (2.12). In contrast to compress-
ible Euler system, the numerical simulation show a convergence of order k when using
a P k-DG for the space discretisation and with a (k+1)-RK time approximation. We
also give in table 5.2 the numerical rate of convergence. For the electronic temperature,
we have measured the L2-error

ENte = ||Te(T, ·)− T̂e(T, ·)||,

where T̂e is the exact solution given in (5.3) and the approximation rate of convergence
is computed as

αtN =

(
1

log2

)(
logE2N

te − logENte
)
.

5.2.2. Double shock In this test case, we consider the following physical pa-
rameters:

kB = 1.3807×10−23 J.K−1, me= 9,1094×10−31 kg, mi= 1.6726×10−27 kg,

e=−qe= qi= 1.6022×10−19 C, γe=
5

3
, γi=

7

5
.

We consider a double shock for νei= 0 which is a Riemann problem

ρL= 1, uL= 105, Te,L= 2.3107, Ti,L= 2.3106
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Fig. 5.5. Convergence of electronic temperature for the bitemperature Euler system

k N ENte Order αN

1

5 0.0924 -
10 0.0265 1.8023
20 0.0186 0.5061
40 0.0104 0.8380
80 0.0053 0.9663
160 0.0028 0.9414
320 0.0014 0.9698

2

5 0.0099 -
10 0.0030 1.7203
20 0.0023 0.3681
40 8.3520e−4 1.4621
80 1.089e−4 2.9380
160 2.3431e−5 2.2176
320 4.323e−6 2.4281

Table 5.2. Error and numerical rate of convergence of electronic temperature for the bitemper-
ature Euler system for k= 1,2. N denotes the number of elements.

ρR= 1, uR=−105, Te,R= 2.3107, Ti,R= 2.3106.

The results for electronic and ionic temperatures are displayed in Figures 5.6 and 5.7
at time t= 4.0910−7 s for 10000 points in space. They are obtained with the Suliciu
method, the finite volume kinetic method constructed in [5] and the DG method with a
P 2 reconstruction developed in this paper. The three methods show analogous results.
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5.2.3. Double rarefaction wave
Using similar physical parameters as in subsection 5.2.2 we consider here a rarefac-

tion wave for νei= 0 which is a Rieman problem

ρL= 1, uL=−105, Te,L= 2.3107, Ti,L= 2.3106,

ρR= 1, uR= 105, Te,R= 2.3107, Ti,R= 2.3106.

We take γe= 5/3 and γi= 7/5. This test case is a rarefaction wave computed at time
t= 4.0910−7 s for 10000 points in space. In this test case, an analytical solution can be
computed. The results displayed in Figure 5.8 and in Figure 5.9 compare for electronic
and ionic temperatures the P 2 reconstruction with the finite volume kinetic scheme and
the Suliciu scheme developed in [5]. All the scheme show a good agreement with the
exact solution.

5.2.4. Stationary shock We consider here the test case of the stationary shock
presented in [5] in the case νei= 100 and with the following parameters:

kB = 1.0, me= 10−3, mi= 1.0, Z= 1.0, γe=γi= 5/3 (5.4)

In that case, the left and the right states of the Riemann problem are the following

ρL= 1.001, uL= 10, Te,L= 1, Ti,R= 1,

ρR= 3.640330609, uR= 2.749750250, Te,R= 3, Ti,R= 17.5060240977.

The results displayed in Figure 5.10 and in Figure 5.11 are computed for 10000 points
in space and at time t= 0.005s.

5.2.5. Sod test case We finally consider the Sod test case with the parameters
(5.4), νei= 0, a final time t= 0.05s and

ρL= 1, uL= 0, Te,L= 1, Ti,R= 1,

ρR= 0.125, uR= 0, Te,R= 2, Ti,R= 3.

Figures 5.13 and 5.12 represent ionic and electronic temperatures for 10000 points in
space with Suliciu, kinetic and discontinuous Galerkin method with a P 2 reconstruction.
The three schemes show the same results. In particular, the “plateaux” after the shocks
have the same amplitude. The DG kinetic scheme shows some oscillations for the
electronic temperatures. However, these oscillations do not propagate.

6. Conclusion and perspectives In this paper, we have developed a DG-
kinetic scheme for the bitemperature Euler system for any order of space discretization.
The principle is to consider a discrete BGK model as in [5] and to construct a DG
discretisation with k-th degree basis for the space discretization and with an (k+1)-
SSP-Runge-Kutta method for the time discretization. Due to the kinetic model, a
special treatment has been used to implement the order in time. This method has
been illustrated on several test cases and numerical order has been investigated on both
conservative Euler equations and nonconservative bitemperature Euler model. It is to
be noted that in the nonconservative case, when shocks occur, the electronic and ionic
temperatures cannot be predicted analytically, even in the framework of a Riemann
problem as for a conservative system. They can depend on the numerical viscosity. A
crucial fact here is that even in the presence of shocks we observe that whatever the
order, the DG method converges to the same solutions as the ones obtained in previous
articles.
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Fig. 5.6. Electronic temperature for the double shock computed with the DG kinetic scheme, the
finite volume kinetic scheme, the Suliciu scheme, with 10000 points in space
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Fig. 5.7. Ionic temperature for the double shock computed with the DG kinetic scheme for a P 2

reconstruction, the finite volume kinetic scheme, the Suliciu scheme, with 10000 points in space
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Fig. 5.8. Electronic temperature for the double rarefaction wave computed with the DG scheme
for a P 2 reconstruction, the kinetic scheme, the Suliciu scheme and the exact solution for 10000 points
in space
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Fig. 5.9. Ionic temperature for the double rarefaction computed with the DG kinetic scheme, the
finite volume kinetic scheme, the Suliciu scheme and the exact solution for 10000 points in space
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Fig. 5.10. Ionic temperature for the stationary shock computed with the DG kinetic scheme, the
finite volume kinetic scheme, the Suliciu scheme for 10000 points in space
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Fig. 5.11. Electronic temperature for the stationary choc computed with the DG kinetic scheme,
the finite volume kinetic scheme, the Suliciu scheme for 10000 points in space
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Fig. 5.12. Electronic temperature for the sod test case computed with the DG kinetic scheme, the
finite volume kinetic scheme, the Suliciu scheme computed with 10000 points.
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Fig. 5.13. Ionic temperature for sod test case computed with the DG kinetic scheme, the finite
volume kinetic scheme, the Suliciu scheme computed with 10000 points
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The generalization of the present work to a two dimensional framework as done
in [10] for finite volumes is postponed to a future paper. Moreover in the present case,
only the electric field has been taken into account. The question of the presence of the
magnetic fields can also be considered as in [14] for a transverse magnetic field.
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