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Abstract This work is devoted to the derivation of an asymptotic-preserving
scheme for the electronic M1 model in the diffusive regime. A numerical scheme
is proposed in order to deal with the mixed derivatives which arise in the dif-
fusive limit leading to an anisotropic diffusion. The derived numerical scheme
preserves the realisibility domain and enjoys asymptotic-preserving properties
correctly handling the diffusive limit recovering the relevant limit equation. In
addition, the cases of non constants electric field and collisional parameter are
naturally taken into account with the present approach. Numerical test cases
validate the considered scheme in the non-collisional and diffusive limits.

Keywords Electronic M1 moment model · approximate Riemann solvers ·
Godunov type schemes · asymptotic preserving schemes · diffusive limit ·
plasma physics · anisotropic diffusion.

1 Introduction

In order to initiate nuclear fusion reactions, it was proposed to use laser pulses
in order to ignite a deuterium-tritium target. During this process the energy
is transported from the critical surface to denser parts through the electron
transport. This transport plays a key role in the understanding of plasma
physical phenomena such as, parametric [46,26] and hydrodynamic [53,59,
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20] instabilities, laser-plasma absorption [51,34], wave damping [39,18], en-
ergy redistribution and hot spot formation [10,44]. Spitzer and Hrm were the
first to proposed a electron transport theory in a fully ionised plasma with-
out magnetic field. They derived the electron plasma transport coefficients by
solving the electron kinetic equation by using the expansion of the electron
mean free path over the temperature scale length (denoted ε in this paper).
The results of Spitzer and Hrm have been reproduced in other works [9,3,54]
using the early works of Chapman [15,16] and Enskog [25] for neutral gases.
However in the case of non-local regimes [49], the Spitzer-Hrm theory is no
more valid. Indeed the electron transport plasma coefficients were derived in
the case where the isotropic part of the electron distribution function remains
close to the Maxwellian. For example, in the context of inertial confinement
fusion, the plasma particles may have an energy distribution far from the ther-
modynamic equilibrium so that the fluid description is not adapted. Moreover
kinetic effects like the non local transport [10,44], wave damping or the de-
velopment of instabilities [20] can be important over time scales shorter than
the collisional time so that fluid simulations are insufficient and kinetic codes
have to be considered to capture the physical processes. Therefore, a kinetic
description seems unavoidable for the study of inertial confinement fusion pro-
cesses. However such a kinetic description is accurate but also computationally
expensive for describing most of real physical applications. Kinetic codes are
often limited to time and length much shorter than those studied with fluid
simulations. It is therefore an essential issue to describe kinetic effects by using
reduced kinetic codes operating on fluid time scales.

Angular moments models can be seen as a compromise between kinetic and
fluid models. On one hand, they have the advantage to be less computationally
expensive than kinetic description since less variables are involved in the mod-
els and on the other hand they provide results with a higher accuracy than
fluid models. Grad [29], initially proposed a moment closure hierarchy which
leads to hyperbolic set of equations for close equilibrium flows. The hierarchy
proposed is based a polynomial series expansion of a distribution function close
to the Maxwellian equilibrium. However, the truncation of this expansion leads
to a loose of the positivity of the distribution function and to unrealisable mo-
ments. In [41,47,48,56,1], closures based on entropy minimisation principles
are investigated. It has been shown that this closure choice enables to recover
fundamental properties such as the positivity of the underlying distribution
function, the hyperbolicity of the model and an entropy dissipation property
[30,45,41]. In this work, the moment model is based on an angular moments
extraction. The kinetic equation is only integrated with respect to the velocity
direction while the velocity modulus is kept as a variable. The closure used is
based on an entropy minimisation principle and gives the angular M1 model.
This model is used in numerous applications such as radiative transfer [5,22,
57,17,50] or electron transport [42,21,32]. It satisfies fundamental properties
and recovers the asymptotic diffusion equation in the long time and small
mean free path regimes [23]. In order to perform numerical simulations, the
HLL scheme [35] is often used for the M1 electronic model because it ensures
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the positivity of the first angular moment and the flux limitation property.
However, this scheme does not degenerate accordingly in the diffusive limit as
most of the schemes. Even if the scheme is consistent and one could use a very
refined mesh with space step smaller than the mean free path, such a solution
would be far too computationally expensive to be used in practice. Over-
coming this major drawback a class of numerical schemes has emerged over
the years called asymptotic-preserving schemes (AP). Asymptotic-preserving
schemes in the sense of Jin-Levermore [37,36] are designed to handle multi-
scale situations and behave correctly in the asymptotic limit considered. In
this context many works have been performed following different approaches
in a one dimensional framework [8,2,27,40,52,19,38]. In particular, one of the
most productive approach from the work of Gosse-Toscani [28] and which has
been largely extended [12,11,5,14,7], is based on the modification of approx-
imate Riemann solvers. Some works also deal with the two dimensional case
[13,6]. In the present paper, the difference and the main difficulty comes from
the mixed derivatives arising in the diffusive limit. In the present paper, we
consider the M1 model for the electronic transport [21,42,43,34,33]. Ions are
supposed fixed and electron-electron collisions are not considered. The angular
moment model studied reads

∂tf0(t, x, ζ) + ζ∂xf1(t, x, ζ) + E(x)∂ζf1(t, x, ζ) = 0,

∂tf1(t, x, ζ) + ζ∂xf2(t, x, ζ) + E(x)∂ζf2(t, x, ζ)

− E(x)

ζ
(f0(t, x, ζ)− f2(t, x, ζ)) = −2αei(x)f1(t, x, ζ)

ζ3
,

(1)

where f0, f1 and f2 are the first three angular moments of the electron distri-
bution function f . Omitting the x and t dependency, they are given by

f0(ζ) = ζ2
∫ 1

−1
f(µ, ζ)dµ,

f1(ζ) = ζ2
∫ 1

−1
f(µ, ζ)µdµ, (2)

f2(ζ) = ζ2
∫ −1
−1

f(µ, ζ)µ2dµ.

The coefficient αei is a positive physical function which may depend of x, E
represents the electrostatic field as function of x and ζ the velocity modulus.
The fundamental point of the moments models is the definition of the closure
which gives an expression of the highest moment as a function of the lower
ones. This closure relation corresponds to an approximation of the underlying
distribution function, which the moments system is constructed from. For
the M1 model the closure relation originates from an entropy minimisation
principle [41,47]. The moment f2 can be computed [21,22] as a function of f0
and f1

f2(t, x, ζ) = χ
(f1(t, x, ζ)

f0(t, x, ζ)

)
f0(t, x, ζ), with χ(α) =

1 + α2 + α4

3
. (3)
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The set of admissible states [21] is defined by

A =
(

(f0, f1) ∈ R2, f0 ≥ 0, |f1| ≤ f0
)
. (4)

In [31], a numerical scheme was proposed for the electronic M1 model without
electric field and in the homogeneous case. The scheme derived using the con-
sistency with the integral form of the approximate Riemann solver ensures the
admissibility conditions (4) and correctly captures the limit diffusion equa-
tion. The method proposed in [31] naturally takes into account the source
term −E(x)(f0 − f2)/ζ, the non linearity of the model which comes from the
M1 model closure and the spatial dependencies of the electric field and the
collisional parameter. However, the general model considering the x and ζ de-
pendencies has not been considered. In such a general case, mixed derivatives
arise in the diffusion limit leading to complex diffusion equation. In addition,
the source term −E(x)(f0 − f2)/ζ also contributes in the limit equation. In
this paper, the general electronic M1 model (1) is considered. The aim is to
propose a numerical scheme, extending the ideas of [31], in order to take into
account the mixed derivatives in the diffusive limit. Such a scheme must en-
sure the admissibility conditions (4) and include the contribution of the source
term in the diffusion −E(x)(f0 − f2)/ζ limit.

We first introduce the electronicM1 model with its diffusion limit in Section
2. In Section 3, extending the ideas of [31], a numerical scheme is proposed. The
scheme is modified to ensure the admissibility conditions (4) and to capture the
non isotropic diffusion then the asymptotic-preserving property is exhibited.
The contribution of the term−E(x)(f0−f2)/ζ is finally included in the scheme.
In Section 4, numerical examples are presented to testify of the efficiency of
the method. Finally, Section 5 presents our conclusions.

2 Model and diffusive limit

In this section, the diffusive limit of the electronic M1 model is introduced.
After considering a diffusive scaling, we use a formal Hilbert expansion to
derive the limit model. Even if such a procedure is not strictly rigorous from
a mathematical point of view, it is known that this approach gives an easy
way to derive the limit model. In addition, mathematical rigorous methods
used for continuous descriptions can not be easily adapted in this numerical
context.
We consider the following diffusion scaling

t̃ = t/t∗, x̃ = x/x∗, ζ̃ = ζ/vth, Ẽ = Ex∗/vth. (5)

The parameters t∗ and x∗ are chosen such that τei/t
∗ = ε2, λei/x

∗ = ε, where
the electron-ion collisional period is given by τei = v3th/(αeiσ) and the mean
free path by λei = vthτei. The coefficient σ depends on the temperature and
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the ion density in the plasma. It is a positive function of x and a positive
parameter ε, which is devoted to tend to zero. In this case system (1) rewrites

ε∂tf0(t, x, ζ) + ζ∂xf1(t, x, ζ) + E(x)∂ζf1(t, x, ζ) = 0,

ε∂tf1(t, x, ζ) + ζ∂xf2(t, x, ζ) + E(x)∂ζf2(t, x, ζ)

− E(x)

ζ
(f0(t, x, ζ)− f2(t, x, ζ)) = −2σ(x)

ζ3
f1(t, x, ζ)

ε
.

(6)

Introducing the following Hilbert expansion of fε0 and fε1{
fε0 = f00 + εf10 +O(ε2),

fε1 = f01 + εf11 +O(ε2),
(7)

into the second equation of (6) taken at order ε−1 leads to

f01 = 0. (8)

Using the definition of f2 in (3), it follows that

f02 = f00 /3. (9)

Inserting the Hilbert expansion (7) into the second equation of (1) gives at
order ε0

f11 = − ζ
4

6σ
∂xf

0
0 −

Eζ3

6σ
∂ζf

0
0 +

Eζ2

3σ
f00 . (10)

Finally, using the previous equation in the first equation of (1) at order ε1,
the following limit equation is obtained

∂tf
0
0 + ζ∂x

(
− ζ4

6σ
∂xf

0
0 −

Eζ3

6σ
∂ζf

0
0 +

Eζ2

3σ
f00

)
(11)

+ E∂ζ

(
− ζ4

6σ
∂xf

0
0 −

Eζ3

6σ
∂ζf

0
0 +

Eζ2

3σ
f00

)
= 0.

In the case E = 0, one recognises a classical diffusion equation involving a
second order space derivative with a diffusion coefficient of −ζ5/6σ. However,
in the general case this limit equation involves mixed x and ζ derivatives
leading to a non isotropic diffusion. In addition, the source term E(f0− f2)/ζ
also contributes in the diffusive limit leading to the term (Eζ2/(3σ))f00 in the
right side of (10) and in the x and ζ derivatives of (11). Such an asymptotic
limit is unusual compared to what has been studied in radiative transfer for
example [4,5]. The difference lies in the fact that here charged particles are
considered. Then, the contribution of the electric field must be taken into
account leading to these unexpected limit involving mixed derivatives.
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3 Numerical scheme

The aim of this part is to propose a numerical scheme, generalising the ideas
introduced in [31], for the general model (1) and consistent, in the limit ε tends
to zero, with equation (11). The main difficulty comes from the derivation of
a numerical scheme consistent in the diffusive limit with equation (11) and in
particular with the mixed-derivatives. The numerical scheme proposed must
also be able to deal with the contribution of the source term E(f0 − f2)/ζ.

3.1 Case without the source term E
ζ (f0 − f2)

We first consider the case without the source term E
ζ (f0−f2). With the present

approach, it will be seen in part 3.2 that this term can be naturally taken
into account. Therefore, for clarity, we start without considering it. Then the
electronic M1 model reads

∂tf0(t, x, ζ) + ζ∂xf1(t, x, ζ) + E(x)∂ζf1(t, x, ζ) = 0,

∂tf1(t, x, ζ) + ζ∂xf2(t, x, ζ) + E(x)∂ζf2(t, x, ζ) = −2σ(x)f1(t, x, ζ)

ζ3
(12)

and its diffusive limit equation writes

∂tf
0
0 + ζ∂x

(
− ζ4

6σ
∂xf

0
0 −

Eζ3

6σ
∂ζf

0
0

)
+E∂ζ

(
− ζ4

6σ
∂xf

0
0 −

Eζ3

6σ
∂ζf

0
0

)
= 0. (13)

3.1.1 Derivation of the scheme

In this part the derivation of an numerical scheme for the model (12) is de-
tailed.
Let us consider an uniform mesh with a constant space step ∆x = xi+1/2 −
xi−1/2, a constant energy step ∆ζ = ζi+1/2 − ζi−1/2 and a time step ∆t.
Extending the ideas introduced in [31], we propose to consider the following
numerical scheme

Un+1
ij − Unij
∆t

=
ax
∆x

UR∗i−1/2j +
2ax
∆x

Unij +
ax
∆x

UL∗i+1/2j (14)

+
aζ
∆ζ

UR∗ij−1/2 +
2aζ
∆ζ

Unij +
aζ
∆ζ

UL∗ij+1/2,

where the intermediate states of the approximated Riemann solver (see Figure
1) UL∗i+1/2j , U

R∗
i−1/2j , U

L∗
ij+1/2 and UR∗ij−1/2 are defined by

UR∗i−1/2j =

(
fR∗0i−1/2j
f∗1i−1/2j

)
, UL∗i+1/2j =

(
fL∗0i+1/2j

f∗1i+1/2j

)
,

UR∗ij−1/2 =

(
fR∗0ij−1/2
f∗1ij−1/2j

)
, UL∗ij+1/2 =

(
fL∗0ij+1/2

f∗1ij+1/2

)
.
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−ax ax
t

x

URUL

U ∗RU ∗L

Fig. 1 Structure of the approximate Riemann solver considered.

The second components of the intermediate states at each interface are chosen
equal, ie fL∗1i+1/2j = fR∗1i+1/2j = f∗1i+1/2j and fL∗1ij+1/2 = fR∗1ij+1/2 = f∗1ij+1/2.

Following [4,5,31], the velocity waves ax and aζ are fixed such that

ax = ζj , aζ = |Ei|. (15)

For clarity, in the following, we omit the dependency of the speed ax in energy
and aζ in space. However, the results presented hold in the general case. If
the intermediate states are defined following [31] the numerical scheme (14)
recovers only the second order space and energy derivatives in the diffusive
limit. Therefore, in order to take into account the mixed-derivative terms in
the diffusive limit leading to an anisotropic diffusion, we propose to modify the
numerical viscosity of the intermediate state f∗1 used in [31] in the following
way

f∗1i+1/2j = αi+1/2j

[f1i+1j + f1ij
2

− 1

2ax
(ζjf2i+1j − ζjf2ij) (16)

− ci+1/2j(
∂f0
∂ζ

)i+1/2j(1− αi+1/2j)
]
,

f∗1ij+1/2 = βij+1/2

[f1ij+1 + f1ij
2

− 1

2aζ
(Eif2ij+1 − Eif2ij) (17)

− c̄ij+1/2(
∂f0
∂x

)ij+1/2(1− βij+1/2)
]
,

with

αi+1/2j =
2axζ

3
j

2axζ3j + σi+1/2∆x
, βij+1/2 =

2aζζ
3
j+1/2

2aζζ3j+1/2 + σi∆ζ
. (18)
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In this case, the numerical viscosity contributes in the x and ζ directions. The
terms (∂f0∂ζ )i+1/2j , (∂f0∂x )ij+1/2 and the coefficients c and c̄ are fixed in order to

obtain the relevant limit equation (11) in the diffusion regime. We set

ci+1/2j =
Ei+1/2∆x

3ax
, c̄ij+1/2 =

ζj+1/2∆ζ

3aζ
. (19)

We use an upwind scheme for the discretisation of the terms (∂f0∂ζ )i+1/2j and

(∂f0∂x )ij+1/2. The coefficient c̄ is always positive then

c̄ij+1/2(
∂f0
∂x

)ij+1/2 ≈ c̄ij+1/2
f0i+1j+1 − f0ij+1 + f0i+1j − f0ij

2∆x
,

ci+1/2j(
∂f0
∂ζ

)i+1/2j ≈


ci+1/2j

f0i+1j − f0i+1j−1 + f0ij − f0ij−1
2∆ζ

if ci+1/2j < 0,

ci+1/2j
f0i+1j+1 − f0i+1j + f0ij+1 − f0ij

2∆ζ
if ci+1/2j > 0.

The previous two conditions rewrite

ci+1/2j(
∂f0
∂ζ

)i+1/2j = c−i+1/2j

f0i+1j − f0i+1j−1 + f0ij − f0ij−1
2∆ζ

+ c+i+1/2j

f0i+1j+1 − f0i+1j + f0ij+1 − f0ij
2∆ζ

,

with (c)+ = max(c, 0) and (c)− = min(c, 0).

We introduce the following notations

f̃0i+1/2j =
f1i+1j + f1ij

2
− (ζjf2i+1j − ζjf2ij)

2ax(2− αi+1/2j)
,

f̃1i+1/2j =
f1ij+1 + f1ij

2
− (Eif2ij+1 − Eif2ij)

2aζ(2− βij+1/2)
.

(20)

In [31], the intermediate states of the considered approximate Riemann solvers
were defined using consistency relations and a corrective coefficient to ensure
the admissibility conditions. Extending these ideas, the intermediate states
fR∗0i+1/2j and fL∗0i+1/2j are defined by

{
fL∗0i+1/2j = f̃0i+1/2j − Γi+1/2jθ1i+1/2j ,

fR∗0i+1/2j = f̃0i+1/2j + Γi+1/2jθ1i+1/2j ,
(21)

with

Γi+1/2j =
1

2
[f0i+1j − f0ij −

ζj
ax

(f1ij − 2f∗1i+1/2j + f1i+1j)], (22)
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and the coefficient θ1i+1/2j is fixed in order to ensure the admissibility condi-
tions (4). Similarly, the definitions of fR∗0ij+1/2 and fL∗0ij−1/2 read

{
fL∗0ij+1/2 = f̃0ij+1/2 − Γij+1/2θ2ij+1/2,

fR∗0ij+1/2j = f̃0ij+1/2 + Γij+1/2θ2ij+1/2,
(23)

with

Γij+1/2 =
1

2
[f0ij+1 − f0ij −

ζj
aζ

(f1ij − 2f?1ij+1/2 + f1ij+1)].

In order to ensure the admissibility conditions (4), the definitions of the inter-
mediate states f∗1i+1/2j and f∗1ij+1/2 given in (16) and (17) are modified such
that

f∗1i+1/2j = αi+1/2j

[
f̃1i+1/2j − θ1i+1/2jci+1/2j(

∂f0
∂ζ

)i+1/2j(1− αi+1/2j)
]
, (24)

f∗1ij+1/2 = βij+1/2

[
f̃1ij+1/2 − θ2ij+1/2c̄ij+1/2(

∂f0
∂x

)ij+1/2(1− βij+1/2)
]
. (25)

Remark 1 In the case θ1i+1/2j = 0 and θ2ij+1/2 = 0, the admissibility require-
ments (4) are fulfilled.

Then θ1i+1/2j and θ2ij+1/2 are fixed in the interval [0, 1], the larger possible
such that the admissibility requirements (4) are fulfilled. A simple calculation
gives the following conditions

θ̃1i+1/2j =
f̃0i+1/2j − αi+1/2j |f̃1i+1/2j |

|Γi+1/2j |+ |αi+1/2j(
∂f0
∂ζ )i+1/2jci+1/2j |

, (26)

and

θ̃2ij+1/2 =
f̃0ij+1/2 − βij+1/2|f̃1ij+1/2|

|Γij+1/2|+ |βij+1/2(∂f0∂ζ )ij+1/2c̄ij+1/2|
. (27)

Finally, θ1i+1/2j = min(θ̃1i+1/2j , 1) and θ2ij+1/2 = min(θ̃2ij+1/2, 1).

Theorem 1 (Admissibility) If for all (i, j) ∈ N2, Uni,j ∈ A, then for all (i, j) ∈
N2, Un+1

i,j ∈ A as soon as the following CFL condition holds

∆t ≤ ∆ζ∆x

(2ax∆ζ + 2aζ∆x)
.
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Proof The numerical scheme (14) also writes as a convex combination of vec-
tors of A

Un+1
ij =(1− 2ax∆t

∆x
− 2aζ∆t

∆ζ
)Unij +

ax∆t

∆x
UR∗i−1/2j +

ax∆t

∆x
UL∗i+1/2j (28)

+
aζ∆t

∆ζ
UR∗ij−1/2 +

aζ∆t

∆ζ
UL∗ij+1/2,

Using the definitions of θ1 and θ2 given in (26) and (27) the intermediate states
UR∗i−1/2j , U

L∗
i+1/2j , U

R∗
ij−1/2 and UL∗ij+1/2 belong to A. Since A is a convex space

it follows that the updated states Un+1
i belongs to A.

3.1.2 Asymptotic-preserving properties

In this part, the consistency in the classical regime and the asymptotic-preserving
property of the scheme in the diffusive regime are exhibited.

Theorem 2 (Consistency in the classical regime) The numerical scheme (14)
is consistent, when ∆t and ∆x tend to zero, with the set of equations (12).

Proof Using the definitions (16) and (17), the second component of (14) reads

fn+1
1ij − fn1ij

∆t
=
ax
∆x

[
αi+1/2j

(
f̃1i+1/2j − θ1i+1/2jci+1/2j(

∂f0
∂ζ

)i+1/2j(1− αi+1/2j)
)]

−2ax
∆x

fn1ij

+
ax
∆x

[
αi−1/2j

(
f̃1i−1/2j − θ1i−1/2jci−1/2j(

∂f0
∂ζ

)i−1/2j(1− αi−1/2j)
)]

(29)

+
aζ
∆ζ

[
βij+1/2

(
f̃1ij+1/2 − θ2ij+1/2c̄ij+1/2(

∂f0
∂x

)ij+1/2(1− βij+1/2)
)]

−2aζ
∆ζ

fn1ij

+
aζ
∆ζ

[
βij−1/2

(
f̃1ij−1/2 − θ2ij−1/2c̄ij−1/2(

∂f0
∂x

)ij−1/2(1− βij−1/2)
)]
.

Inserting the definitions (20) into (29) and using the following expressions for
αi+1/2j and βij+1/2

αi+1/2j =
2axζ

3
j

2axζ3j + σi+1/2∆x
= 1−

σi+1/2∆x

2axζ3j + σi+1/2∆x
,

and

βij+1/2 =
2aζζ

3
j+1/2

2aζζ3j+1/2 + σi∆ζ
= 1− σi∆ζ

2aζζ3j+1/2 + σi∆ζ
,
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lead to the consistency with the second equation of (12) as ∆x and ∆t tend
to zero. A similar calculation gives the consistency with the first equation of
(12).

Theorem 3 (Consistency in the diffusive regime)

In the diffusive limit, the numerical scheme (14) degenerates into

fn+1,0
0ij − fn,00ij

∆t
=
ζj
∆x

[ ζ4j
6σi+1/2∆x

(fn,00i+1j − f
n,0
0ij )−

ζ4j
6σi−1/2∆x

(fn,00i1j − f
n,0
0i−1j)

+
ζ3jEi+1/2

6σi+1/2
(
∂fn,00

∂ζ
)i+1/2j −

ζ3jEi−1/2

6σi−1/2
(
∂fn,00

∂ζ
)i−1/2j

]
(30)

+
Ei
∆ζ

[Eiζ3j+1/2

6σi∆ζ
(fn,00ij+1 − f

n,0
0ij )−

Eiζ
3
j−1/2

6σi∆ζ
(fn,00i1j − f

n,0
0ij−1)

+
ζ4j+1/2

6σi
(
∂fn,00

∂x
)ij+1/2 −

ζ4j−1/2

6σi
(
∂fn,00

∂x
)ij−1/2

]
.

Proof Following the same approach as in [5,7,31], using the diffusive scaling
and equation (14) leads to

ε
Un+1,ε
ij − Un,εij

∆t
=
ax
∆x

UR∗,εi−1/2j −
2ax
∆x

Un,εij +
ax
∆x

UL∗,εi+1/2j (31)

+
aζ
∆ζ

UR∗,εij−1/2 −
2aζ
∆ζ

Un,εij +
aζ
∆ζ

UL∗,εij+1/2,

and equations (24) and (25) give

f∗,ε1i+1/2j = αεi+1/2j

[
f̃ε1i+1/2j − θ1i+1/2jci+1/2j(

∂fε0
∂ζ

)i+1/2j(1− αεi+1/2j)
]
,

f∗,ε1ij+1/2 = βεij+1/2

[
f̃ε1ij+1/2 − θ2ij+1/2c̄ij+1/2(

∂fε0
∂x

)ij+1/2(1− βεij+1/2)
]
,

(32)

with

αεi+1/2j =
2axζ

3
j

2axζ3j + σi+1/2∆x/ε
, βεij+1/2 =

2aζζ
3
j+1/2

2aζζ3j+1/2 + σi∆ζ/ε
. (33)

Then it follows that

f∗,01i+1/2j = 0 and f∗,01ij+1/2 = 0.

The second component of (31) reads

ε
fn+1,ε
1ij − fn,ε1ij

∆t
=
ax
∆x

f∗,ε1i−1/2j −
2ax
∆x

fn,ε1ij +
ax
∆x

f∗,ε1i+1/2j

+
aζ
∆ζ

f∗,ε1ij−1/2 −
2aζ
∆ζ

fn,ε1ij +
aζ
∆ζ

f∗,ε1ij+1/2.
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At order ε0 the previous equation leads to

fn,01ij = 0. (34)

In the limit ε tends to zero, the results (3.1.2) and (34) give

θ1i+1/2j = 1, θ2ij+1/2 = 1. (35)

Indeed, when ε tends to zero, the definitions (26) and (27) lead to

θ̃1i+1/2j =
fn,00i+1j + fn,00ij

|fn,00i+1j − f
n,0
0ij |
≥ 1, θ̃2ij+1/2 =

fn,00ij+1 + fn,00ij

|fn,00ij+1 − f
n,0
0ij |
≥ 1.

The first component of (31) reads

ε
fn+1,ε
0ij − fn,ε0ij

∆t
=
ax
∆x

fR∗,ε0i−1/2j −
2ax
∆x

fn,ε0ij +
ax
∆x

fL∗,ε0i+1/2j

+
aζ
∆ζ

fR∗,ε0ij−1/2 −
2aζ
∆ζ

fn,ε0ij +
aζ
∆ζ

fL∗,ε0ij+1/2.

Using the definitions (21) and (23), the result (35) and the previous equation
considered at order ε1 gives the numerical scheme (30).

3.2 General case with the term E
ζ (f0 − f2)

As specified in part 3.1, in order to take into account the contribution of the
source term E

ζ (f0 − f2), we simply propose to modify the intermediate states

f∗1i+1/2j and f∗1ij+1/2 given in (24) and (25) such that

f∗1i+1/2j = αi+1/2j

[
f̃1i+1/2j − θ1i+1/2jci+1/2j

(
(
∂f0
∂ζ

)i+1/2j −
S̃i+1/2j

2

)
(1− αi+1/2j)

]
,

(36)

f∗1ij+1/2 = βij+1/2

[
f̃1ij+1/2 +

∆ζ

2aζ
Sij+1/2 − θ2ij+1/2c̄ij+1/2(

∂f0
∂x

)ij+1/2(1− βij+1/2)
]
,

with

S̃i+1/2j =
ζ2j
3σi

f0i+1j + f0ij
2

and Sij+1/2 =
Ei
2

(f0ij+1 − f2ij+1

ζj+1
+
f0ij − f2ij

ζj

)
.

In this case, as in the previous part the coefficients θ1 and θ2 are also fixed to
ensure the admissibility requirements.

Theorem 4 In the diffusive limit, the numerical scheme given by (14)-(21)-
(23)-(36) is consistent with the limit equation (11).
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Proof The proof is the same than for Theorem 3, considering the intermediate
states f∗1i+1/2j and f∗1ij+1/2 given in (36). A direct calculation using the Hilbert
expansions leads to the result. The terms Sij+1/2 are consistent with the term
E
ζ (f0−f2) while the terms S̃i+1/2j enable to correctly recover the contribution

of the two terms Eζ2

3σ f0 in the x and ζ derivatives of the limit equation.

4 Numerical examples

In this section, the asymptotic-preserving scheme (14) is compared with the
HLL scheme and an explicit discretisation of the diffusion equation (11) in the
diffusive regime.

4.1 Relaxation of a Gaussian profile in the diffusive regime

In this example, the numerical scheme (14)-(21)-(23)-(36) is validated in the
diffusive regime considering an inhomogeneous plasma with electric field. In
this case, the initial conditions are the following{

f0(t = 0, x, ζ) = ζ2 exp(−x2) exp(2(ζ − 3)2),

f1(t = 0, x, ζ) = 0.

The profile of f0 at initial time as a function of x and ζ is displayed in Figure
2.
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Fig. 2 Representation of the f0 profile at the initial time as a function of x and ζ.

For this test we have set E = 1, σ = 104, the space range chosen is [-10,10] and
the energy range [0,6]. In Figure 3, the solution obtained with the numerical
scheme (14)-(21)-(23)-(36) is compared with the solution obtained with the
HLL scheme and with an explicit discretisation of the limit diffusion equation
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(11) at different times. At time t = 1, one remarks that the f0 profile obtained
with the HLL scheme is already seriously spread out while the profiles obtained
with the AP scheme and the diffusion equation do not have changed. At time
t = 50, the AP scheme and diffusion equation discretisation f0 profiles are
spread out while the profile obtained with the HLL scheme has vanished. As
observed at time t=100, in the long time regime, the AP scheme and the
discretisation of the diffusion equation behave identically.
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Fig. 3 Representation of the f0 profile as function of x and ζ at time t=1 (top), t=50
(middle), t=100 (bottom), for the HLL scheme (left), AP scheme (middle) and the diffusion
equation.

4.2 Relaxation of a temperature profile in the diffusive regime with a
self-consistent electric field

In this example, we consider the relaxation of a temperature profile in the
diffusive regime considering a self-consistent electric field. The space range is
[−40, 40] and the energy range [0, 6]. The initial conditions are the following f0(t = 0, x, ζ) =

√
2

π

ζ2

T ini(x)3/2
exp(− ζ2

2T ini(x)
),

f1 = 0,

(37)
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with T ini(x) = 2− arctan(x).

In this case the electric field is self-consistent meaning that at each time step
it is calculated from the plasma profile. In this case we consider a Spitzer type
model [55,9], to evaluate the electric field

E(x) = −dT (x)

dx
, (38)

where

T (x) =
1

3ne

(∫ +∞

0

ζ2f0dζ − u2ne
)
,

with ne =
∫ +∞
0

f0dζ and u = 1
ne

∫ +∞
0

f1ζdζ.

In Figure 4, the temperature profile is displayed at the initial time and at
time t=80. The temperature profiles obtained with the HLL scheme, the AP
scheme and a discretisation of the diffusion equation (11) are compared at
time t=80. On one hand, one remarks that the HLL temperature profile is
excessively spread out compared to the AP and diffusion profiles while on
the other hand the AP and diffusion profiles match exactly at time t=80.
This example demonstrates the inability of the HLL scheme in capturing the
correct temperature profile while the AP scheme presented handle perfectly
the diffusive limit regime.

-40 -20 0 20 40
0

1

2

3

4

Initial condition

HLL

AP

diffusion

Fig. 4 Representation of the temperature profile as a function of x at time t=80.

4.3 Two electron beams interaction

In this example the interaction between two electron beams is considered.
This collisionless test case enables us to validate the AP scheme (14)-(21)-
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(23)-(36) in a regime where electrostatic effects are predominant compared to
the collisional effects, therefore we set σ = 0.
Consider two electron beams propagating at velocity v0 and v1. In that case,
the dispersion relation [34] is given by

1− 1

(ω − kv0)2
− 1

(ω − kv1)2
= 0,

where v0 and v1 denote the beams velocities.

This configuration can lead to electrostatic instabilities [18,34]. Indeed, the
solutions of the form Aeiωt+ikx are unstable when ωI the imaginary part of
ω is strictly positive. In the case v0 = −v1 we can show that the solution is
stable if kv0 ≥

√
2.

This test is problematic for the M1 model. Indeed, if we consider two electron
beams propagating with opposite velocities the distribution function is well de-
fined. Nevertheless, the M1 model considers only the angular moments f0 and
f1. For the calculation of f1 the two populations contributions cancel and we
get f1 = 0. The M1 model sees an unrealistic isotropic configuration. To over-
come this problem the superposition principle is used since the model is linear
[58,34]. Two particle populations (one per beam) are considered. For each
time step the M1 problem is solved for the first population then for the sec-
ond one. Hence the electrostatic field is calculated using the Maxwell-Ampere
solved taking into account the two distribution functions. This approach was
validated for the present test case in [32].

In the case of two streams propagating with opposite velocities vd and −vd,
the initial electron distribution function is the following

f(t = 0, x, v) = 0.5[(1 +A cos(kx))Mvd(v) + (1−A cos(kx))M−vd(v)],

with

M±vd(v) = exp
(
− (v ∓ vd)2

2

)
.

The first corresponding angular moments f10 and f20 of the first and second
population read
f10 (t = 0, x, ζ) = 0.5(1 +A cos(kx))

ζ

vd

(
exp(− (ζ − vd)2

2
)− exp(− (ζ + vd)

2

2
)
)
,

f20 (t = 0, x, ζ) = 0.5(1−A cos(kx))
ζ

vd

(
exp(− (ζ − vd)2

2
)− exp(− (ζ + vd)

2

2
)
)
.

The second angular moments f11 and f21 of the first and second population
read
f11 (t = 0, x, ζ) = 0.5(1 +A cos(kx))

1− ζvd
v2d

(
exp(− (ζ − vd)2

2
)− exp(− (ζ + vd)

2

2
)
)
,

f21 (t = 0, x, ζ) = −0.5(1−A cos(kx))
1− ζvd
v2d

(
exp(− (ζ − vd)2

2
)− exp(− (ζ + vd)

2

2
)
)
.
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At each time step, the electrostatic field is computed using the Maxwell-
Ampere equation considering the contribution of the two population of parti-
cles

dE

dt
=

∫ +∞

0

f11 ζdζ +

∫ +∞

0

f21 ζdζ.

The parameter A is introduced to perturb the initial condition in order to
enable the development of the electrostatic instability. The energy range chosen
is [0,12] and the space range is [0,25]. In this example we set vd = 4, A = 0.001
and periodical boundary conditions are used. The results have been compared
with a kinetic code [24]. In Figure 5, the evolution of the electrostatic energy is
displayed as a function of time using the AP scheme in red and the kinetic code
in dashed blue. The AP scheme and the kinetic code give analogous results.
This numerical experiment shows the good behaviour of the AP scheme in a
regime where electrostatic effects are predominant.

0 10 20 30
-20

-10

0

lo
g
(E
)

AP
kinetic

Fig. 5 Representation of the temporal evolution of the electrostatic energy.

4.4 Relaxation of a temperature profile in the diffusive regime with a
self-consistent electric field and non-constant collisional parameter

In this example, the initial conditions are the same than for the previous
example where the initial temperature profile is given by (37) and the electric
field is computed using (38). In this case the collisional parameter σ is not
constant and follows the linear profile

σ(x) = ax+ b,

with σ(xmin = −40) = 5 · 103 and σ(xmax = 40) = 105. It follows that the
coefficients a and b read

a =
105 − 5.103

xmax − xmin
, b = 5.103 − axmin.

The space range is [-40,40] and the energy range [0,6]. In Figure 6, the tem-
perature profile is displayed at the initial time and at time t=5000 for the AP
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scheme and an explicit discretisation of the diffusion equation (11). After a
long time (t=5000) and despite the strong spatial variation of the function σ
the AP and diffusion profiles give very close result. One remark on the space
interval [-40,0] the AP curve in red is slightly different to the diffusion curve
in dashed blue while on the interval [0,40] the results match perfectly. This
could be explained as the collisional parameter σ becomes larger for important
x, therefore, the limit diffusive regime is fully reached for large x where the
comparison with the diffusion equation is valid.

-40 -20 0 20 40
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1

2

3

4

Initial condition

AP

Diffusion

Fig. 6 Representation of the temperature profile at time t=5000.

4.5 Case a non-constant self-consistent collisional parameter

When considering physical relevant configurations occurring in plasma physics,
the collisional parameter depends of the state of the plasma. The knowledge of
the ionic and electronic distribution function is required to compute the colli-
sional parameter. Therefore in this test case, we choose to consider a nonlinear
collisional parameter which depends of the solution itself

σ(t, x, ζ) = exp(f0(t, x, ζ) + f1(t, x, ζ)).

In this case, E = 1, the space range chosen is [-10,10] and the energy range
[0,6]. The initial condition is given by{

f0(t = 0, x, ζ) = ζ2 exp(−(ζ − 3)2)) exp(−x2/10),

f1 = 0.



Numerical scheme for the electronic M1 model in the diffusive limit. 19

We consider periodical boundary conditions. In Figure 7, the initial profile of
f0 is displayed at the initial time and at time t=3.
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Fig. 7 Representation of the f0 profile as function of x and ζ at the initial time (left) and
t=3 (right).

5 Conclusion

In this work, an asymptotic-preserving scheme has been proposed for the
electronic M1 model in the diffusive limit. In order to deal with the mixed
derivatives which arise in the diffusive limit an anisotropic numerical viscosity
has been considered. The numerical scheme preserves the realisibility domain
and captures the correct limit equation. The contribution of the source term
E(f0 − f2)/ζ is integrated and the cases of non constant electric field and
collisional parameter are naturally included. Numerical examples have been
performed in non-collisional and diffusive regimes. It has been observed that
the present scheme behaves correctly in both regimes.
A possible perspective could be to consider an electron-electron collisional
operator or the study of the coupling with the Maxwell’s equations.
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55. L. Spitzer and R. Härm. Phys. Rev. 89 (1953) 977.
56. H. Struchtrup. Macroscopic Transport Equations for Rarefied Gas Flows. Springer,

Berlin (2005).
57. R. Turpault. A consistent multigroup model for radiative transfer and its underlying

mean opacity. J. Quant. Spectrosc. Radiat. Transfer 94, 357371 (2005).
58. R. Turpault, M. Frank, B. Dubroca, and A. Klar. Multigroup half space moment app-

proximations to the radiative heat transfer equations. J. Comput. Phys. 198 363 (2004).
59. A. Velikovich, J. Dahlburg, J. Gardner, and R. Taylor. Phys. Plasmas 5, 1491 1998.


	Introduction
	Model and diffusive limit
	Numerical scheme
	Numerical examples
	Conclusion

