Fredholm Property of the Linearized Boltzmann Operator Mixture of Polyatomic Gases

Stéphane Brull, Marwa Shahine, Philippe Thieullen

université ${ }^{*}$ BORDEAUX

Polyatomic Gases

Higher Degrees of Freedom

Rotation + Vibration

Degrees of Freedom

Molecular State

Post-Collisonal Variables

Borgnakke-Larsen Model

The Borgnakke-Larsen Procedure ${ }^{1}$

- Equivalent Formulation of Conservation Equations

$$
\begin{aligned}
m_{i} v+m_{j} v_{*} & =m_{i} v^{\prime}+m_{j} v_{*}^{\prime} \\
\frac{\mu_{i j}}{2}\left(v-v_{*}\right)^{2}+I+I_{*} & =\frac{\mu_{i j}}{2}\left(v^{\prime}-v_{*}^{\prime}\right)^{2}+I_{*}^{\prime}+I^{\prime}=E
\end{aligned}
$$

- Partition of total energy by the variable $R \in[0,1]$

$$
\begin{aligned}
& \frac{\mu_{i j}}{2}\left(v^{\prime}-v_{*}^{\prime}\right)^{2}=R E \\
& I^{\prime}+I_{*}^{\prime}=(1-R) E
\end{aligned}
$$

- Partition of internal energy by the variable $r \in[0,1]$

$$
\begin{aligned}
& I^{\prime}=r(1-R) E \\
& I_{*}^{\prime}=(1-r)(1-R) E
\end{aligned}
$$

[^0]
Borgnakke-Larsen Procedure

- Post-Collisional Velocities

$$
\begin{aligned}
& v^{\prime}=\frac{m_{i} v+m_{j} v_{*}}{m_{i}+m_{j}}+\frac{m_{j}}{m_{i}+m_{j}} \sqrt{\frac{2 R E}{\mu_{i j}}} \sigma \\
& v_{*}^{\prime}=\frac{m_{i} v+m_{j} v_{*}}{m_{i}+m_{j}}-\frac{m_{i}}{m_{i}+m_{j}} \sqrt{\frac{2 R E}{\mu_{i j}}} \sigma,
\end{aligned}
$$

with $\sigma \in S^{2}$

- Post-Collisional Internal Energies

$$
\begin{aligned}
& I^{\prime}=r(1-R) E \\
& I_{*}^{\prime}=(1-r)(1-R) E
\end{aligned}
$$

Internal Energy

References

- Continuous internal energy
(1) Borgnakke, Larsen (1975).
(2) Bourgat, Desvillettes, Le Tallec, Perthame (1994)
(3) Desvillettes, Monaco, Salvarani (2005)
(4) Baranger, Bisi, Brull, Desvillettes (2018)
© Park, Yun (2019)
© Gamba, Pavić-Čolić (2020)
(Duan, Li (2023)
- Discrete internal energy
- Giovangigli, Multi-component Flow Modeling (1999)
- Undifferentiated
- Bisi, Borsoni, Groppi (2022)

Polyatomic Boltzmann Equation (Monospecies)

- Distribution function: $f(t, x, v, I)$
- Boltzmann equation:

$$
\partial_{t} f+v . \nabla_{x} f=Q(f, f)
$$

- Boltzmann Collision Operator ${ }^{2}$:

$$
\begin{aligned}
Q(f, f)(v, I)=\int & \left(\frac{f^{\prime} f_{*}^{\prime}}{\left(I^{\prime} I_{*}^{\prime}\right)^{\alpha}}-\frac{f f_{*}}{\left(I I_{*}\right)^{\alpha}}\right)\left(I I_{*}\right)^{\alpha} \mathcal{B} \\
& (r(1-r))^{\alpha}(1-R)^{2 \alpha}(1-R) R^{1 / 2} \mathrm{~d} R \mathrm{~d} r \mathrm{~d} \sigma \mathrm{~d} I_{*} \mathrm{~d} v_{*},
\end{aligned}
$$

- $\alpha=\frac{D-5}{2}$
- D : degrees of freedom
${ }^{2}$ Bourgat, Desvillettes, Le Tallec, Perthame (1994)

Polyatomic Boltzmann Equation (Mixtures)

- Boltzmann Equation:

$$
\partial_{t} f_{i}+v . \nabla_{x} f_{i}=\sum_{j=1}^{n} Q_{i j}\left(f_{i}, f_{j}\right), \quad 1 \leq i \leq n,
$$

- Boltzmann Collision Operator:

$$
\begin{aligned}
& Q_{i j}\left(f_{i}, f_{j}\right)(v, l)=\int_{\mathbb{R}^{3} \times \mathbb{R}_{+} \times S^{2} \times(0,1)^{2}}\left(\frac{f_{i}^{\prime} f_{j *}^{\prime}}{I_{j}^{\prime \alpha_{i}} I_{*}^{\alpha_{j}}}-\frac{f_{i} f_{j *}}{I \alpha_{i} I_{*}^{\alpha_{j}}}\right) \times \mathcal{B}_{i j} \times \\
& r^{\alpha_{i}}(1-r)^{\alpha_{j}}(1-R)^{\alpha_{i}+\alpha_{j}} I^{\alpha_{i}} I_{*}^{\alpha_{j}}(1-R) R^{1 / 2} \mathrm{~d} R \mathrm{~d} r \mathrm{~d} \sigma \mathrm{~d} I_{*} \mathrm{~d} v_{*}
\end{aligned}
$$

- $\alpha_{k}=\frac{D_{k}-5}{2}, \quad k=1, \cdots n$
- $f_{j *}=f_{j}\left(v_{*}, I_{*}\right), f_{i}^{\prime}=f_{i}\left(v^{\prime}, I^{\prime}\right)$, and $f_{j *}^{\prime}=f_{j}\left(v_{*}^{\prime}, I_{*}^{\prime}\right)$

The Collision Cross-Section

- Micro-reversibility conditions:

$$
\begin{aligned}
& \mathcal{B}_{i j}\left(v, v_{*}, I, I_{*}, r, R, \sigma\right)=\mathcal{B}_{j i}\left(v_{*}, v, I_{*}, I, 1-r, R, \sigma\right) \\
& \mathcal{B}_{i j}\left(v, v_{*}, I, I_{*}, r, R, \sigma\right)=\mathcal{B}_{i j}\left(v^{\prime}, v_{*}^{\prime}, I^{\prime}, I_{*}^{\prime}, r^{\prime}, R^{\prime}, \sigma^{\prime}\right)
\end{aligned}
$$

- Bounds
- $\gamma_{i j} \geq 0$ (hard potential/ Maxwell like) ${ }^{3}$

$$
\Phi_{i j}(r, R) E^{\gamma_{i j} / 2} \leq \mathcal{B}_{i j}\left(v, v_{*}, I, I_{*}, r, R, \sigma\right) \leq \Psi_{i j}(r, R) E^{\gamma_{i j} / 2}
$$

- $-1<\gamma_{i j}<0$ (soft like potential)

$$
\mathcal{B}_{i j}\left(v, v_{*}, I, I_{*}, r, R, \sigma\right) \leq \Psi_{i j}(r, R) E^{\gamma_{i j} / 2}
$$

${ }^{3}$ Gamba, Pavić-Čolić: On the Cauchy problem for Boltzmann equation modelling a polyatomic gas

Properties of the Cross-section

- Symmetry
- $\Phi_{i j}(r, R)=\Phi_{i j}(1-r, R)$,
- $\Psi_{i j}(r, R)=\Psi_{i j}(1-r, R)$
- Boundedness
- $\Psi_{i j}^{2}(r, R) r^{\alpha_{i}+\alpha_{j}-1-\gamma_{i j}}(1-r)^{\alpha_{j}-1}(1-R)^{\alpha_{i}+2 \alpha_{j}-\gamma_{i j}} R \in L^{1}\left((0,1)^{2}\right)$
- $\Psi_{i j}^{2}(r, R) r^{\alpha_{i}-1}(1-r)^{2 \alpha_{j}-\gamma_{i j}-1}(1-R)^{\alpha_{i}+2 \alpha_{j}-\gamma_{i j}} R \in L^{1}\left((0,1)^{2}\right)$
${ }^{4}$ Gamba, Pavić-Čolić: On the Cauchy problem for Boltzmann equation modelling a polyatomic gas

Properties of the Cross-section

- Symmetry
- $\Phi_{i j}(r, R)=\Phi_{i j}(1-r, R)$,
- $\Psi_{i j}(r, R)=\Psi_{i j}(1-r, R)$
- Boundedness
- $\Psi_{i j}^{2}(r, R) r^{\alpha_{i}+\alpha_{j}-1-\gamma_{i j}}(1-r)^{\alpha_{j}-1}(1-R)^{\alpha_{i}+2 \alpha_{j}-\gamma_{i j}} R \in L^{1}\left((0,1)^{2}\right)$
- $\Psi_{i j}^{2}(r, R) r^{\alpha_{i}-1}(1-r)^{2 \alpha_{j}-\gamma_{i j}-1}(1-R)^{\alpha_{i}+2 \alpha_{j}-\gamma_{i j}} R \in L^{1}\left((0,1)^{2}\right)$

MODEL $^{4}: \gamma_{i j}<\alpha_{i}+\alpha_{j}, \alpha_{i}>0$, and $\alpha_{j}>0$

$$
\mathcal{B}_{i j}=\frac{\mu_{i j}}{2}\left|v-v_{*}\right|^{\gamma_{i j}}+I^{\gamma_{i j} / 2}+I_{*}^{\gamma_{i j} / 2}
$$

${ }^{4}$ Gamba, Pavić-Čolić: On the Cauchy problem for Boltzmann equation modelling a polyatomic gas

Linearization

- Global Maxwellian function:

$$
M_{i}(v, I)=\frac{\left(m_{i}\right)^{\frac{3}{2}}}{(2 \pi)^{\frac{3}{2}} \Gamma\left(\alpha_{i}+1\right)} I^{\alpha_{i}} e^{-\frac{m_{i}}{2} v^{2}-I}
$$

- Perturbation:

$$
f_{i}(t, x, v, I)=M_{i}(v, I)+M_{i}^{1 / 2}(v, I) g_{i}(t, x, v, I)
$$

- Linearized Boltzmann operator:

$$
[\mathcal{L} g]_{i}=\sum_{j=1}^{n} M_{i}^{-\frac{1}{2}}\left[Q_{i j}\left(M_{i}, M_{j}^{\frac{1}{2}} g_{j}\right)+Q_{i j}\left(M_{i}^{1 / 2} g_{i}, M_{j}\right)\right]
$$

- $g=\left(g_{1}, \cdots, g_{n}\right)$

Linearized Boltzmann Operator

- Linearized Boltzmann Operator:

$$
\left.\begin{array}{rl}
{[\mathcal{L} g]_{i}=} & \sum_{j=1}^{n} \int M_{*}^{\frac{1}{2}} M^{\prime \frac{1}{2}}\left(\frac{l}{l^{\prime}}\right)^{\frac{\alpha_{i}}{2}}\left(\frac{l_{*}}{l_{*}}\right)^{\frac{\alpha_{j}}{2}} g_{j}\left(v_{*}^{\prime}, I_{*}^{\prime}\right) \tilde{\mathcal{B}}_{i j} \mathrm{~d} r \mathrm{~d} R \mathrm{~d} \sigma \mathrm{~d} I_{*} \mathrm{~d} v_{*} \\
& +\sum_{j=1}^{n} \int M_{j *} M_{j *}^{\prime \frac{1}{2}}\left(\frac{l}{l^{\prime}}\right)^{\frac{\alpha_{i}}{2}}\left(\frac{l_{*}}{I_{*}^{\prime}}\right)^{\frac{\alpha_{j}}{2}} g_{i}\left(v^{\prime}, I^{\prime}\right) \tilde{\mathcal{B}}_{i j} \mathrm{~d} r \mathrm{~d} R \mathrm{~d} \sigma \mathrm{~d} l_{*} \mathrm{~d} v_{*} \\
& -\sum_{j=1}^{n} \int M^{\frac{1}{2}} M_{*}^{\frac{1}{2}} g_{j}\left(v_{*}, I_{*}\right) \tilde{\mathcal{B}}_{i j} \mathrm{~d} r \mathrm{~d} R \mathrm{~d} \sigma \mathrm{~d} I_{*} \mathrm{~d} v_{*} \\
& \left.-\sum_{j=1}^{n} \int M_{j *} g_{i}(v, I) \tilde{\mathcal{B}}_{i j} \mathrm{~d} r \mathrm{~d} R \mathrm{~K} \mathrm{~d} \sigma \mathrm{~d} l_{i} \mathrm{~d} v_{*}\right\}=\nu_{i}
\end{array}\right\}
$$

- Write

$$
\mathcal{L} g(v, I)=\underbrace{\mathcal{K}}_{\text {Perturbation operator }} g(v, I)-\underbrace{\nu(v, I)}_{\text {Collision Frequency }} g(v, I)
$$

Part I:
 Fredholm Property of the Linearized Operator

S. Brull, M. Shahine, P. Thieullen (2022). Fredholm Property of the Linearized Boltzmann Operator for a Mixture of Polyatomic Gases. preprint.
雨 S. Brull, M. Shahine, P. Thieullen (2022). Fredholm Property of the Linearized Boltzmann Operator for a Single Polyatomic Gas. to appear in Kinetic and Related Models.

S. Brull, M. Shahine, P. Thieullen (2022). Compactness Property of the Linearized Boltzmann Operator for a Single Diatomic Gas. Networks and Heterogeneous Media, 17, 847-861.

Plan

Compact

Coercive

Fredholm

Plan

Hilbert Schmidt Operator

Compact

Coercive

Extracting the kernel

Proving square integrability

Kernel of \mathcal{K}_{1}

- Integral form of \mathcal{K}_{1}

$$
\left[\mathcal{K}_{1} g\right]_{i}(v, I)=\sum_{j=1}^{n} \int_{\mathbb{R}^{3} \times \mathbb{R}_{+}} g_{j}\left(v_{*}, I_{*}\right) k_{1}^{i j}\left(v, I, v_{*}, I_{*}\right) \mathrm{d} I_{*} \mathrm{~d} v_{*}
$$

- Kernel of \mathcal{K}_{1}

$$
k_{1}^{i j}=\int_{(0,1)^{2} \times S^{2}} M^{\frac{1}{2}} M_{*}^{\frac{1}{2}} \mathcal{B}_{i j} r^{\alpha_{i}}(1-r)^{\alpha_{j}}(1-R)^{\alpha_{i}+\alpha_{j}+1} R^{1 / 2} \mathrm{~d} r \mathrm{~d} R \mathrm{~d} \sigma
$$

- Assumption on $\mathcal{B}_{i j} \rightsquigarrow k_{1}$ is L^{2} integrable

Kernel of \mathcal{K}_{2}

- Explicit expression of \mathcal{K}_{2}

$$
\begin{gathered}
{\left[\mathcal{K}_{2} g\right]_{i}=\sum_{j=1}^{n} \int M_{j *}^{\frac{1}{2}} M_{i}^{\prime \frac{1}{2}}\left(\frac{I}{I^{\prime}}\right)^{\frac{\alpha_{i}}{2}}\left(\frac{I_{*}}{I_{*}^{\prime}}\right)^{\frac{\alpha_{j}}{2}} \tilde{\mathcal{B}}_{i j}} \\
g_{j}\left(\frac{m_{i} v+m_{j} v_{*}}{m_{i}+m_{j}}-\frac{m_{i}}{\left(m_{i}+m_{j}\right)} \sqrt{\frac{2 R}{\mu_{i j}}\left(\frac{\mu_{i j}}{2}\left(v-v_{*}\right)^{2}+I+I_{*}\right)} \sigma,\right. \\
\left.(1-R)(1-r)\left[\frac{\mu_{i j}}{2}\left(v-v_{*}\right)^{2}+I+I_{*}\right]\right) \\
\mathrm{d} r \mathrm{~d} R \mathrm{~d} \sigma \mathrm{~d} v_{*} \mathrm{~d} l_{*}
\end{gathered}
$$

- Could we express \mathcal{K}_{2} as follows ?

$$
\mathcal{K}_{2} g=\int_{H} g(x, y) k_{2}(v, I, x, y) J \mathrm{~d} y \mathrm{~d} x
$$

Kernel of \mathcal{K}_{2}

- Define the change of variable:
$\mathbf{h}: \mathbb{R}^{3} \times \mathbb{R}_{+}{ }^{\prime} \longrightarrow \mathbf{h}\left(\mathbb{R}^{3} \times \mathbb{R}_{+}\right) \subset \mathbb{R}^{3} \times \mathbb{R}_{+}$

$$
\left(v_{*}, I_{*}\right) \quad\left[\begin{array}{l}
x=\frac{m_{i} v+m_{j} v_{*}}{m_{i}+m_{j}}-\frac{m_{i}}{\left(m_{i}+m_{j}\right)} \sqrt{\frac{2 R}{\mu_{i j}}\left(\frac{\mu_{i j}}{2}\left(v-v_{*}\right)^{2}+I+I_{*}\right)} \sigma \\
y=(1-R)(1-r)\left[\frac{\mu_{i j}}{2}\left(v-v_{*}\right)^{2}+I+I_{*}\right]
\end{array}\right.
$$

- Jacobian:

$$
J=\left|\frac{\partial v_{*} \partial I_{*}}{\partial x \partial y}\right|=\left(\frac{m_{i}+m_{j}}{m_{j}}\right)^{3} \frac{1}{(1-r)(1-R)}
$$

Proof

$$
\begin{aligned}
& \left(v_{*}, I_{*}\right) \rightsquigarrow\left\{\begin{array}{l}
x=\frac{m_{i} v+m_{j} v_{*}}{m_{i}+m_{j}}-\frac{m_{i}}{\left(m_{i}+m_{j}\right)} \sqrt{\frac{2 R}{\mu_{i j}}\left[\frac{\mu_{i j}}{2}\left(v-v_{*}\right)^{2}+I+I_{*}\right]} \sigma \\
y=(1-R)(1-r)\left[\frac{\mu_{i j}}{2}\left(v-v_{*}\right)^{2}+I+I_{*}\right] \\
\| d l_{*}=d E \sqrt{2}=\frac{\mu_{i j}}{2}\left(v-v_{*}\right)^{2}+I+I_{*}
\end{array}\right. \\
& \left(v_{*}, E\right) \rightsquigarrow\left\{\begin{array}{l}
x=\frac{m_{i} v+m_{j} v_{*}}{m_{i}+m_{j}}-\frac{m_{i}}{\left(m_{i}+m_{j}\right)} \sqrt{\frac{2 R}{\mu_{j}} E \sigma} \\
y=(1-R)(1-r) E
\end{array}\right.
\end{aligned}
$$

Kernel of \mathcal{K}_{2}

- Integral form of \mathcal{K}_{2}

$$
\left[\mathcal{K}_{2} g\right]_{i}(v, l)=\sum_{j=1}^{n} \int_{\mathbb{R}^{3} \times \mathbb{R}_{+}} g_{j}(x, y) k_{2}^{i j}(v, l, x, y) \mathrm{d} y \mathrm{~d} x
$$

- Kernel

$$
k_{2}^{i j}(v, I, x, y)=\int\left[M_{*}^{\frac{1}{2}} M^{\prime \frac{1}{2}}\left(\frac{I}{I^{\prime}}\right)^{\frac{\alpha_{i}}{2}}\left(\frac{I_{*}}{I_{*}^{\prime}}\right)^{\frac{\alpha_{j}}{2}} \tilde{\mathcal{B}}_{i j}\right] \circ h^{-1}(x, y) \mathrm{d} r \mathrm{~d} R \mathrm{~d} \sigma
$$

- Kernel of \mathcal{K}_{2} in $L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}_{+} \times \mathbb{R}^{3} \times \mathbb{R}_{+}\right)$?

L^{2} integrability of kernel

- L^{2} norm:

$$
\left\|k_{2}^{i j}\right\|_{L^{2}}^{2}=\int_{R^{6} \times R_{+}^{2}} k_{2}^{i j 2}(x, y, v, I) \mathrm{d} y \mathrm{~d} x \mathrm{~d} / \mathrm{d} v
$$

$$
\leq \int\left[J M_{j *}^{\frac{1}{2}} M_{i}^{\prime \frac{1}{2}}\left(\frac{l}{l^{\prime}}\right)^{\frac{\alpha_{i}}{2}}\left(\frac{l_{*}}{l_{*}^{\prime}}\right)^{\frac{\alpha_{j}}{2}} \tilde{\mathcal{B}}_{i j}\right] \circ h^{-1}(x, y)^{2} d r d R d \sigma \mathrm{~d} y \mathrm{~d} x \mathrm{~d} / \mathrm{d} v
$$

- Move backwards to $\left(v_{*}, I_{*}\right)$ (C.O.V: $\left.(x, y) \mapsto\left(v_{*}, I_{*}\right)\right)$
- C.O.V: $(I, v) \mapsto\left(E, v^{\prime}\right):$

$$
\rightsquigarrow\left\{\begin{array}{l}
E=\frac{\mu_{i j}}{2}\left(v-v_{*}\right)^{2}+I+I_{*} \\
v^{\prime}=\frac{m_{i} v+m_{j} v_{*}}{m_{i}+m_{j}}-\frac{m_{i}}{\left(m_{i}+m_{j}\right)} \sqrt{\frac{2 R}{\mu_{i j}} E} \sigma
\end{array}\right.
$$

Work on \mathcal{K}_{3}

$$
\left[\mathcal{K}_{3} g\right]_{i}(v, l)=\sum_{j=1}^{n} \int_{\mathbb{R}^{3} \times \mathbb{R}_{+}} g_{j}(x, y) k_{3}^{i j}(v, l, x, y) \mathrm{d} y \mathrm{~d} x
$$

- Change of variables :

$$
\begin{aligned}
\mathbb{R}^{3} \times \mathbb{R}_{+} & \longrightarrow \mathbb{R}^{3} \times \mathbb{R}_{+} \\
\left(v_{*}, I_{*}\right) & \quad \longrightarrow\left(v^{\prime}, I^{\prime}\right)
\end{aligned}
$$

Jacobian

$$
\tilde{J}=\left|\frac{\partial v_{*} \partial I_{*}}{\partial v^{\prime} \partial I^{\prime}}\right|=\left(\frac{m_{i}+m_{j}}{m_{j}}\right)^{3} \frac{1}{r(1-R)}
$$

- Final requirement:

$$
\int_{(0,1)^{2}} \Psi_{i j}^{2}(r, R) r^{\alpha_{i}-1}(1-r)^{2 \alpha_{j}-\gamma_{i j}-1}(1-R)^{\alpha_{j}+2 \alpha_{i}-\gamma_{i j}} R d r d R<\infty
$$

Properties

Collision frequency ν

- ν Id is Coercive with bounds

$$
\nu(v, l) \geq c\left(|v|^{\gamma}+l^{\frac{\gamma}{2}}+1\right)
$$

- Collision cross section monotonic \rightsquigarrow Collision frequency monotonic.

Properties

Collision frequency ν

- ν Id is Coercive with bounds

$$
\nu(v, l) \geq c\left(|v|^{\gamma}+l^{\frac{\gamma}{2}}+1\right)
$$

- Collision cross section monotonic \rightsquigarrow Collision frequency monotonic.

Linearized operator \mathcal{L}

- Compactness of $\mathcal{K} \&$ Coercivity of $\nu \rightsquigarrow$ Fredholm alternative of \mathcal{L}
- \mathcal{L} is a self-adjoint unbounded operator

$$
\operatorname{Dom}(\mathcal{L})=\operatorname{Dom}(\nu \mid \mathrm{d})=\left\{f \in L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}_{+}\right): \nu f \in L^{2}\right\}
$$

Monatomic Gases?

$$
\left[\mathcal{K}_{2} g\right]_{i}=\sum_{j=1}^{n} \iint_{\mathbb{R}^{3} \times S^{2}} M_{i}^{\prime 1 / 2} M_{j *}^{1 / 2} g_{j}\left(v_{*}^{\prime}\right) \mathcal{B}_{i j}\left(\sigma, v, v_{*}\right) \mathrm{d} \sigma \mathrm{~d} v_{*}
$$

- Change of variable

$$
\begin{aligned}
h: \mathbb{R}^{3} & \mapsto \mathbb{R}^{3} \\
v_{*} & \mapsto x=\frac{m_{i} v+m_{j} v_{*}}{m_{i}+m_{j}}-\frac{m_{i}}{m_{i}+m_{j}} \frac{\left|v-v_{*}\right|}{2} \sigma
\end{aligned}
$$

- Jacobian:

$$
\left.\mu_{j}^{2}\left|1-\frac{\mu_{i}}{2}\right| \sigma-\left.\sigma^{\prime}\right|^{2} \right\rvert\,
$$

- $\sigma^{\prime}=\frac{v-v_{*}}{\left|v-v_{*}\right|}, \quad \sigma=\frac{v^{\prime}-v_{*}^{\prime}}{\left|v^{\prime}-v_{*}^{\prime}\right|}$

State of Art

- Single monoatomic gas
- Grad (1963): Hard Potentials
- Drange (1975): Soft Potentials
- Mixture of monoatomic gases
- Boudin, Grec, Pavic, Salvarani (2014)
- Bernhoff (2022)
- Single polyatomic gas
- Brull, S., Thieullen (2022): diatomic gases
- Brull, S., Thieullen (to appear): polyatomic gases
- Bernhoff (2022): polyatomic gases
- Borsoni, Boudin, Salvarani (2022): resonant model
- Mixture of polyatomic gases
- Brull, S., Thieullen (2022): continuous Internal Energy
- Bernhoff (2022): discrete Internal Energy

Part II: Application

Macroscopic Equations derived from the Boltzmann Equation

Hydrodynamic Limits

Scaled Boltzmann equation

$$
\varepsilon \partial_{t} f_{\varepsilon}+v \cdot \nabla_{x} f_{\varepsilon}=\frac{1}{\varepsilon} Q\left(f_{\varepsilon}, f_{\varepsilon}\right)
$$

Incompressible Navier-Stokes equations

$$
\begin{aligned}
& \partial_{t} u+\left(u \cdot \nabla_{x}\right) u+\nabla_{x} p=\nu \Delta u \\
& \partial_{t} \theta+u \cdot \nabla_{x} \theta=\kappa \Delta \theta \\
& \nabla_{x} \cdot u=0, \quad \nabla_{x}(\rho+\theta)=0
\end{aligned}
$$

Navier stokes equations

- Scaled Boltzmann equation

$$
\varepsilon \partial_{t} f_{\varepsilon}+v . \nabla_{x} f_{\varepsilon}=\frac{1}{\varepsilon} Q\left(f_{\varepsilon}, f_{\varepsilon}\right)
$$

- Perturbation near equilibrium:

$$
f_{\varepsilon}(v, I)=M(v, I)+\varepsilon M(v, I) g_{\varepsilon}(v, I)
$$

- Linearized equation:

$$
\varepsilon \partial_{t} g_{\varepsilon}+v . \nabla_{x} g_{\varepsilon}=\frac{1}{\varepsilon} \mathcal{L}\left(g_{\varepsilon}\right)+\Gamma\left(g_{\varepsilon}, g_{\varepsilon}\right)
$$

- Kernel:

$$
\operatorname{ker} \mathcal{L}=M^{1 / 2} \operatorname{span}\left\{1, v_{1}, v_{2}, v_{3}, \frac{1}{2}|v|^{2}+l\right\}
$$

Main result

Theorem

Assume g_{ε} converges a.e. to a function g as $\varepsilon \rightarrow 0$. Then

$$
g=\rho+u \cdot v+\theta\left(\frac{1}{2} v^{2}+I-\alpha-\frac{5}{2}\right),
$$

such that

$$
\begin{array}{r}
\nabla_{x} \cdot u=0, \quad \nabla_{x}(\rho+\theta)=0, \\
\partial_{t} u+u \cdot \nabla_{x} u+\nabla_{x} P=\nu \Delta u, \\
\partial_{t} \theta+u \cdot \nabla_{x} \theta=\kappa \Delta \theta,
\end{array}
$$

where $\nu:$ viscosity, κ : thermal conductivity.

Idea of the proof:

$$
\varepsilon \partial_{t} g_{\varepsilon}+v . \nabla_{\times} g_{\varepsilon}=\frac{1}{\varepsilon} \mathcal{L}\left(g_{\varepsilon}\right)+\Gamma\left(g_{\varepsilon}, g_{\varepsilon}\right)
$$

- multiply by ε, then $\varepsilon \rightarrow 0 \Longrightarrow g=\rho+v \cdot u+\left(\frac{1}{2} v^{2}+I-\alpha-\frac{5}{2}\right) \theta$
- multiply by M and $M v$ and integrate over (v, I)

$$
\begin{aligned}
& \varepsilon \partial_{t}\left\langle g_{\varepsilon}\right\rangle+\nabla_{x}\left\langle v g_{\varepsilon}\right\rangle=0 \\
& \varepsilon \partial_{t}\left\langle v g_{\varepsilon}\right\rangle+\nabla_{x}\left\langle v \otimes v g_{\varepsilon}\right\rangle=0
\end{aligned}
$$

$\varepsilon \rightarrow 0$

$$
\nabla_{x}\langle v g\rangle=0, \quad \nabla_{x}\langle v \otimes v g\rangle=0
$$

expression of g

Idea of the proof:

- Deriving the limiting momentum equation

$$
\begin{gathered}
\varepsilon \partial_{t}\left\langle v g_{\varepsilon}\right\rangle+\nabla_{x}\left\langle v \otimes v g_{\varepsilon}\right\rangle=0 \\
\varepsilon \partial_{t}\left\langle v g_{\varepsilon}\right\rangle+\nabla_{x}\langle\underbrace{\left(v \otimes v-\frac{1}{3} v^{2} I\right)}_{A(v)} g_{\varepsilon}\rangle+\nabla_{x} \underbrace{\left\langle\left.\frac{1}{3} v^{2} \right\rvert\, g_{\varepsilon}\right\rangle}_{P_{\varepsilon}}=0 \\
\partial_{t}\left\langle v g_{\varepsilon}\right\rangle+\nabla_{x} \frac{1}{\varepsilon}\left\langle A(v) g_{\varepsilon}\right\rangle+\nabla_{x} P_{\varepsilon}=0 \\
\downarrow \varepsilon \rightarrow 0 \\
\partial_{t} u+\lim _{\varepsilon \rightarrow 0} \nabla_{x} \frac{1}{\varepsilon}\left\langle A(v) g_{\varepsilon}\right\rangle+\nabla_{x} P=0
\end{gathered}
$$

Idea of the proof:

$$
\begin{aligned}
& \text { Fredholm } \text { self-adjoint } \\
& \begin{aligned}
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left\langle A(v) g_{\varepsilon}\right\rangle & \stackrel{\downarrow}{=} \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left\langle\mathcal{L} \tilde{A}(v, I) g_{\varepsilon}\right\rangle \stackrel{\downarrow}{=} \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left\langle\tilde{A}(v, I) \mathcal{L} g_{\varepsilon}\right\rangle \\
& =\left\langle\tilde{A}(v, I) v \cdot \nabla_{\times} g\right\rangle-\langle\tilde{A}(v, I) \Gamma(g, g)\rangle
\end{aligned}
\end{aligned}
$$

Galilean Invariance of $\mathcal{L}: \exists a$ such that $\tilde{A}(v, I)=a(|v|, I) A(v)$

- $\left\langle\tilde{A} v, \nabla_{x} g\right\rangle=\frac{1}{15}\left(\int a(|v|, I) v^{4} M d v d l\right)\left(\left.\nabla_{x} u+\nabla_{x}^{T} u-\frac{2}{3} d i v_{x} u \right\rvert\,\right)$
- $\left.\langle\tilde{A}(v, I) \Gamma(g, g)\rangle=\frac{1}{2}\left\langle\tilde{A}(v, I) \mathcal{L}\left(g^{2}\right)\right\rangle=\frac{1}{2}\left\langle A(v) g^{2}\right\rangle=u \otimes u-\frac{1}{3}|u|^{2} \right\rvert\,$

Transport Coefficients

- Viscosity

$$
\nu=\frac{1}{15}\left(\int a(|v|, I) v^{4} M d v d l\right)
$$

- Thermal conductivity

$$
\kappa=\frac{1}{\left(\alpha+\frac{7}{2}\right)} \int b(|v|, I)|B(v, I)|^{2} M(v, I) d v d l
$$

- Sonine polynomial

$$
B(v, I)=v\left(\frac{1}{2}|v|^{2}+I-\frac{7}{2}-\alpha\right)
$$

Perspectives

- Fredholm Property of the Linearized Boltzmann Operator: Improving assumptions+ mono-poly mixture
- Spectral Gap Estimates: Use the monotony property of ν
- Incompressible Navier-Stokes Equations:

Mixture of polyatomic gases

[^0]: ${ }^{1}$ Borgnakke, Larsen (1975)

