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Introduction

Why are we interested in geophysical flows?
@ water management
@ natural disasters

@ energy production

— numerical schemes, simulations

Mathieu Rigal Implicit kinetic schemes for the shallow water system 1/28



Introduction
Tc(t’ ) Free surface Quantities of interest:
h - water height

u — horizontal velocity
hu —  horizontal discharge
Rigid bottom z —  bathymetry

Free surface flows = evolving fluid geometry

Shallow water equations: vertically averaged model (reduced complexity)

Simplifying assumptions

@ shallow flow

@ velocity has small variations along the vertical
@ no plunging wave
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Important properties

1D shallow water system:

Oh +0.hu =0
inR (SV)

Oihu + 0, (i + §h?) = —ghd,z

Convenient vector notation d,U + 0,.F(U) = S (U, z) with U = (h, hu)".
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Important properties

1D shallow water system:

Oh +0.hu =0
inR (SV)

Oihu + 0, (i + §h?) = —ghd,z

Convenient vector notation d,U + 0,.F(U) = S (U, z) with U = (h, hu)".

Important properties at the continuous level:
@ Positivity (2 > 0 V1)
@ Stationary state h+z=Cst,u =0
@ Entropy inequality d,7(U, z) + 0,G(U,z) <0

h*  gh? gh?
nU,2) = -+ - +ghz, GW.2) = (U.9) + =~ Ju
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Finite volumes: a simple example

Fﬁl/z F?+1/2
| | | | | |
| P U T !
Finite volume scheme of the form
Ut -y 1
# + E(F?H/z -Fl) =S

F,”1+1/2 = T(U?,Zi, U?H,Ziﬂ)
For instance, Rusanov flux + centered source

1 a
Flp = 5(FWL) + F(UL o) = (UL, = UD. a>0

Zis1 — Zi1 [0
St = —opt =7
=25 ()
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Finite volumes: numerical challenges

Problem n°1: if it exists, find G7,, ,, numerical entropy flux such that

TI(U;HI,Zi) - U(U;',Zi)
Update (1) = At
G;ﬂrl/z = Q(Uin, Zis U;l+1azi+1)

1 n n
+ E(GHI/Z - GH/z) <0

Problem n°2: preserve lakes atrest (h +z =0, u = 0)
Steady state 9,U = 0 implies 0, F(U) = S (U, z), whereas at discrete level:

a Zixy = 2% + Zi-

L ; 27 A 0
E(Ftn/z - FH/z) =| ¢ o # [gZiZm %1 |,
= (1) = (2-1)%) 2Ax
2Ax

Ul —yr
and therefore ——-

0.
At ’
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Finite volumes: numerical challenges

Solution proposed by Audusse et. al (2016)

— Explicit kinetic scheme preserving lakes at rest...
— but satisfying a discrete entropy inequality with error term

UM, z) = (U, z)
At

where in some cases D > 0

1
+ E(G?Hn -Gy, < D],

Our goal is to implicit this scheme to improve its stability

Outline of the talk:
@ Brief recall of the kinetic formalism
@ The case of a flat topography
© The case of a varying topography
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Kinetic representation of the shallow water system

Kinetic equation with BGK collision operator
. 1
Ouf +£0.f = 8(0:0)0f = —(M(U.£) - f) (BGK)

@ f(t,x,&) > 0 density of particles with velocity &
@ Moment relations f(l,g, EOTM(U, &) dé = (h, hu, hu® + gh*/2)T
@ In the limit e — 0, we formally have f - M

Proposition 1 (Audusse, Bouchut, Bristeau, and Sainte-Marie 2016)

If the bathymetry z(x) is Lipschitz continuous, then U is solution of the shallow water system
iff M(U, &) satisfies the kinetic equation

M + £0:M — 8(0,:2)0:M = Q @)

for some collision term Q(t, x, ¢) that satisfies fR(l,f)Tng =0 fora.e. (1, x).
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Kinetic representation of the shallow water system

Definition 1 (Kinetic entropy H)

H(f,¢) convex in f and satisfying

fR HM(U.£),€)dé = (), fR HM(U;,6).€) d€ < fR H(f.£)dE Y f

If flat bottom (z = Const), integrate (BGK) against 9, H(f, £) to get

1
5 fR HCf.6)d¢ + 9, fR EH( O = - fR O H(f. MU, &) — ) dé

=0 £—=0
— ImUy) — :G(Uy) < f HM)-H(f.£)de <0
Extends to varying bottoms if

f O3H(f. 2,6)dé = hu,
R

which implies
tim [ 018(7,2.8) (60,1 - 80.2001) dé = 0.6(01.2)
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Kinetic representation of the shallow water system

Given a convex H, determine M(U, -) by minimizing
f fH(f,g)dg constrained by f(l,f)deg =U
R R

Francois Bouchut. “Construction of BGK Models with a Family of Kinetic Entropies for a
Given System of Conservation Laws.” (1999)

Lemma 1 (Perthame and Simeoni 2001)

&

H(f,z,¢) = f 8 f + gzf is a kinetic entropy for M(U, &) = glﬂ VQ2gh — (€ — u)?),.

M(U. &)

- ;/Zgh u u+ ;/2gh
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The case of a flat topography

Explicit time discretization involving BGK splitting

fn+l/2 fn
T = MUY - %) collision step
s .
n+l _ en+l/2
% + &0, ™' =0 transport step

Explicit first order upwind scheme when € — 0

n+1 M"
f+ +A£(15<0(Mn

A = M) + LeoM; — M7,)) =0 @®
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The case of a flat topography

Explicit time discretization involving BGK splitting

fn+l/2 fn
T = MUY - %) collision step
n+l _ en+l/2
% +&0. " =0 transport step

Explicit first order upwind scheme when € — 0

fn+l M" f
L+ A_(ILM(M - M)+ Leo(M! - ML) =0

Macroscopic rewriting by integrating (3) against (1, &)”

U;‘l+l _ Un

At Al (F(Un Ui = FUL, ))=0

Kinetic numerical flux F(U,, Ug) = f&O (f) M(UR,f)df+f§>0 ( )M(UL,f)df
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The case of a flat topography

Do we satisfy a discrete counterpart to 9,7 + 9,.G < 0?

Proposition 2 (Audusse, Bouchut, Bristeau, and Sainte-Marie 2016)

If the CFL £ %1€l < 1 holds for any ¢ € supp M", then the explicit kinetic scheme (3) satisfies

U(l+1 _ Un 1
H*'> 0 together with % + =Gl ~Glip) <0

Proof: set o = ﬁ and rewrite (3) as

= (1 - olehM? + oléIML, = 0

Also i*! = [ H(M}*', &) dé < [ H(f™',€)dé < f (1 - cléDH; + olé|HY,, dé

1 =0(Gly 1 =Gy )
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The case of a flat topography

We study the implicit version of the previous scheme.

n+l _ n
B (el = )+ 17 - 7)) =0 @

Solve the system (I + o L) f™*! = M" + oB™! with o = At/Ax and

1 ~Leeo 0 M g
—1eso 1 —Teco 0
L=l . BT=|
—L1gso 1 —Leco 0
0 —1sso L Mir\l/trll Leco/y

In practice, ghost cell contribution B! unknown — substitute it by B".
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The case of a flat topography

We study the implicit version of the previous scheme.

f;n+1 — Ml" & (]l§<0(

- =

ot (el = )+ Lo - £51)) = 0 (4)

Solve the system (I + o L) f™*! = M" + oB™! with o = At/Ax and

1 ~Leeo 0 M g
—1eso 1 —Teco 0
L=l . BT=|
—L1gso 1 —Leco 0
0 —1sso L Mir\l/trll Leco/y

In practice, ghost cell contribution B! unknown — substitute it by B".

Proposition 3 (El Hassanieh, R., Sainte-Marie)

The implicit kinetic scheme (4) is well defined, its update can be computed analytically and
it enjoys the same properties as the explicit scheme YAt > 0.

Mathieu Rigal Implicit kinetic schemes for the shallow water system 12/28



The case of a flat topography

fi’Hl ~ M? & (et n+1 n+1 n 7
A E(fiu/z - fH/z) =0 = d+o)f™" =M +oB “)

Sketch of the proof:

Well-defined: The mass matrix has a strictly dominant diagonal = invertible
Positivity: The mass matrix is monotone and RHS is positive

Analytic expression: Decompose L = |¢|]I — N so that

i 1 o -1 1 ul [oa
T+ol)™ = 1+a|§|(l_ 1+g|§|N) T 1+l ;(1 +a|§|N)

Entropy inequality: Multiply (4) by 8, H(f™*', &) and use

k

g2 71.2

0Hb,E)(b—a)=Hb,¢) —H(a,¢é) + T(Zb +a)(b - a)*

to obtain

H(f*) - HMY) L€

At E(Hﬁll/z - H?-Jrll/z) = Ei(f) <0
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The case of a flat topography

In practice, cannot obtain explicit expression for fR (;) (I + L)™' M d¢ with

Mo = — Jfesh- =),

Substitute M with a simpler Maxwellian satisfying the moment relations

— h gh
MWU,&) = —F—Li i €=\ 5
¢ 2y3e sV 2

@ nonlinear implicit update can be rewritten explicitly

e counterpart: unlike M, M doesn’t minimize [, H(-,£)dé

@ as a consequence, no proof of discrete entropy inequality...

@ ... but in practice, it seems to dissipate energy (numerical validation)
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Explicit writing of the implicit kinetic scheme

Neglecting the ghost cells, the implicit kinetic update writes
W™ = K((Ah) + (BR) Vh",  hu™' = K'(Bhu) — (Ahu)) Vi

For instance, matrix (Ah) is given by

—min(0,a)o —min(0,as)o N-1 _1 ;71— min(0,ay)o

[ ]—min(O,bl)o' [z- ]—min(O,bz)a' B EED VAT /l]—min(O,bN)a
—min(0,a)0
0 [ ']— min(0,b7)o

—min(0,an)o
[z— ]—min(O,bN)u'

0 . .0 []” min@an)e

—min(0,by)o

where y = x/(1+x),z=1In|l +x|,a; = w! - V3¢ and b; = u + V3¢!
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Computational cost of the implicit kinetic scheme

Neglecting the ghost cells, the implicit kinetic update writes

W= K((AR) + (BR) VY, b = K’ ((Ahu) — (Bhu)) Vhr

Matrices (Ah), (Bh), (Ahu), (Bhu) have N(N + 1)/2 nonzero coefficients
@ matrix vector product has complexity O(N?) (cannot do better)
@ up to O(N) steps for each coefficient = matrix assembly in O(N?)

Optimization: assemble matrices in specific order
@ each coefficient computed in O(1) steps from the previous one
@ cost of matrix assembly reduced to O(N?)

— Fully vectorized implementation in Python
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Implicit kinetic scheme: Riemann problem

Water height Discharge
7
2.0 oo — Analytic
— HLL 61
1.8 Explicit kinetic
" —— lterative kinetic 51 .
2 ke
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The case of a varying topography: hydrostatic reconstruction

|
o

0h + d.hu =

Discretize source term in (SV) { Oyhut + 0, (hii® + %hz) = _ghd.z

Problem: how to preserve lakes at rest 4 + z = Cst, u = 0?
@ Upwinding introduces diffusion on h = 1! # h"

@ Pressure variation should balance with source: 6x(§h2) = —ghd,z

Hydrostatic reconstruction

Discrete lake at rest —
! Ziv1/2 = Max(z;, Zi+1)
I Bisoe Bisijos hivip- = (hi + 2 = Ziv12)+
< hisy hi+1/2+ = (hiy1 + Zig1 — Zi+1/2)+

Interface i + 1/2

Audusse, Bouchut, Bristeau, Klein, et al. 2004 “A fast and stable well-balanced scheme with hydrostatic

reconstruction for shallow water flows.”

Mathieu Rigal Implicit kinetic schemes for the shallow water system

18/28



The case of a varying topography: hydrostatic reconstruction

Numerical flux and source term using reconstructed values

{ Fivipp = F(Uir1)2-, Uis1/24) —

8 2 2 0
— s Si= o= 1/2—_hi—l/2 )( )
Fiiipp = F(Uiz1jo-, Ui 24) 28 A\l

o §i is indeed consistent with the source term

1 1 1
E(h,%,l/z_ - h,-2_1/2+) = E(hiJrl/Z— + hicijp) X E(hiﬂ/z— = hi_1jp4+) = —h0z + O(Ax)

hi+O(Az;) —@ir1/2=2i-1/2)/ Ax

o If F(U,U) = F(U) (consistency), then over lakes at rest one has

Fiip— Fio F(Uisip-) — F(U. -
Ui+1/2— — Ui+1/2+ — +1/2 1/2 — ( +1/2 ) ( 1/2+) — Si
Ax Ax

Mathieu Rigal Implicit kinetic schemes for the shallow water system 19/28



The case of a varying topography: explicit kinetic scheme

Explicit kinetic scheme with hydrostatic reconstruction:

Fooi = fR E(é) (llg>oM(U,-+1/z/_,§) mU,-H/Z+,§))d§

U;HI - Uzn 1 —n n on
A + A_x(Fi+l/2 —Flip) =S5 (5)

Proposition 4 (Audusse, Bouchut, Bristeau, and Sainte-Marie 2016)

Under the CFL condition j—;|§| < 1 the scheme (5) preserves the water height positivity, and
admits the discrete entropy inequality
77(U,-"+1,Zi) -n(U}, z)
At

1 n n
+ E(GHI/Z -Gl <D,

where D; features a quadratic error term, Lipschitz in o, Ax, Az; and vanishing when u! — 0.

v

= We cannot ensure the dissipation of the total energy fﬂ n(U(¢, x)) dx
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The case of a varying topography: iterative kinetic scheme

To solve this issue, implicit the previous scheme

urt-ur 1
A + A_x(F’TI]/Z - Fn 1/2) = S?H

Nonlinear system can’t be solved directly — iterative approximation
AI(

(1 +a/)Ul.n+1’k+1 — Uin +a,U;:+l,k ~

Frilh—FiA)+ 517, a2 0 (6)

Proposition 5 (El Hassanieh, R., Sainte-Marie)
® We have h/*'"**! > 0 under the CFL

A
Ve R, (SoIEl - MU, 8 < ML)

@ The iterative process (6) satisfies the macroscopic entropy inequality

U ) - Ut z) 1
+ |

n+1,k n+1,k n+lk
At Ax itz = Gi )<D;

i+1/2 i-1/2

with DI*'* < 0 from some rank k assuming (6) converges.
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The case of a varying topography: iterative kinetic scheme

Sketch of the proof: relies on the kinetic rewriting

+1,k+1 _ +1,k +1.k +1.k +1,k +1,k +1,k
(1+a)f =M} +aM]"" - &M = M ) + 0§ — w7 OIME, 5 - MZ 51 (7)

so that U™ = [[(1,&)" fr+1% dé for any k € N

Positivity: The quantity (1 + a)k*"* equals
fR (M} + aM ™ — ceM s - M) dé > fR (M} + M (@ - olel)) de
Entropy inequality: Multiply (7) by 8, H(M!"*'*, z;,£) and use convexity of H
HM™, 2) < HM, z) — oGl = G fA) + Q@) + D,
with [ Q(&)d¢ = 0 and

D; = Strictly negative term +O(M/*"*! — pr+1)
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The case of a varying topography: iterative kinetic scheme

Proposition 6 (El Hassanieh, R., Sainte-Marie)

Assume the iterative scheme (7) keeps U¥*! in {(h, )T, §<h<Ky, |ul < Kz} for all k.

There exists C(Ki, K, 1/6) such that At < CAx implies the convergence of (f"*"* )i to f*!
solution of the implicit scheme.

— In practice, iterative process seems to converge without restriction
Stopping criteria: tolerance + total energy dissipation

1 n n l n n
||Un+l,k+l _ Un+1,k|| <7t & = Z (U(U,-H'kﬂ,zi) (U ,Zi)) L E(GNTIJ;Z _ G|/+zl’k) <0

1<i<N
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Numerical simulations

Total energy fg ndx shoud decrease in time due to entropy inequality.

0.5 Le=3 Total energy dissipation
o 0.0
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©
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Numerical testcase:

h+z=Cst
u=Cst #0
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Numerical simulations

Free surface elevation Discharge
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Implicit kinetic schemes: extension to 2D

— Results still valid in 2D

— Good approximation of the parabolic bowl (difficult numerical testcase)

Time: 0
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Conclusion and perspectives

For a flat topography
@ Positivity and entropy inequality obtained unconditionally
@ Obtained fully implicit scheme with explicit update for shallow water
@ Optimal setting: inversion by hand, no factorization/iterative method
@ Computational cost quadratic (cannot be improved further)

With varying bathymetry
@ Hydrostatic reconstruction requires iterative strategy
@ Positivity and entropy inequality hold under CFL

Advantageous framework for numerical analysis, but costly in practice
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Conclusion and perspectives

Perspectives
@ |Improve convergence proof
@ 2D version of implicit scheme
@ Increase order of accuracy (iterative only)

Application in oceanography
@ Coarse resolution = dissipation D; very large
@ Improve hydrostatic reconstruction by also reconstructing velocity u
@ Make |D;| smaller near Bernoulli equilibrium
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Thank you for your attention!
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