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|. Introduction

Symmetric hyperbolic systems with relaxation:

n
A%y + Z Ajuxj + Lu =0, (SHS)
j=1
where u = u(x,t): m-vector function of z = (xy1,--- ,x,) € R” and ¢ > 0.

Assume that

(a) A° is symmetric and positive definite,
(b) A7 is symmetric for each j,

(c) L is symmetric and non-negative definite.
Applying the Fourier transform, we obtain
A0y + i|€|A(w)i + L = 0,

where A(w) =377, Aw;, w=¢/|gle S
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Eigenvalue problem

Eigenvalue problem:
A% + (i|¢|A(w) + L)p = 0.

A = A(|¢],w): Eigenvalue, ¢ = ¢p(|{|,w): Eigenvector.

Jin-Xin model:
Pt + Vg = 07

Ut + px + v = 0
We rewrite Jin-Xin model that

up + Aug + Lu = 0,

=) =) =)

where
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Stability conditions

Condition(SC): Shizuta & Kawashima (1985)

For any (u,w) € R x S~ 1, Ker(ul + A(w)) NKer(L) = {0}.

Condition(R): Kalman,Ho & Narendra (1963), Beauchard & Zuazua (2011)

For any w € S" 1,
L
L(A%) ™ A(w)
rank .

I
s

L((AO)‘l:A(W))m‘1

Condition(K): Umeda, Kawashima & Shizuta (1984)

There exists K (w) with the following properties:
(i) K(~w) =—-K(w). (i) K(w)A? is skew-symmetric.
(i) L+ (K(w)A(w))? is positive definite.

Here X! is the symmetric part of X.
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Characterization and decay estimate

Theorem 1.1 (Characterization for the dissipative structure)

The following conditions are equivalent.
(i) Condition(SC). (ii) Condition(R). (iii) Condition(K).
(iv) ReA([],w) <0 for [§] #0. (v) ReA(l€],w) < —clé?/(1+ &)%)

v

Theorem 1.2 (Decay estimate)

Under Condition(K), the solutions to (SHS) satisfy the pointwise estimate
(€, 1)) < Cem*ao(€)),

where p(€) = [€]?/(1 + |€|?). Namely, we obtain

105u(t)lle < C(L+ ) 2 ug| 11 + Ce™|Ofuol 2. k = 0.

Q: Can we extend these conditions for (SHS) with non-symmetric L?77
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Dissipative Timoshenko system(linear):
bt — (¢o — ) =0,
wtt_z/}:ca:_ (%—iﬁ)-i-wt:o

Putting p = ¢, — ¥, v = ¢, 2 = V¥, y = Yy, we obtain the symmetric
hyperbolic system
up + Aug + Lu = 0,

where u = (p,v,z,y)" and

O O = O
oo o=
_ o o o
S = O O
o O O O
o O O O
— o O
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2. General stability condition
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2. General stability condition

Symmetric hyperbolic systems with relaxation:

n

Auy + Y " Aug; + Lu =0, (SHS)

Assume that =t
(a) A° is symmetric and positive definite,
(b) A7 is symmetric for each j,

(c) L* is non-negative definite (not necessary symmetric).

1 1 _
Xti= S (X + X%, szzi(X—X*), X*=X"

2
ODE in Fourier space:
A% + i) €| A(w) i 4 L = 0.

Alw) = 3fy Awj, w=¢/|g] € ST
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Eigenvalue problem

Eigenvalue problem:

M + (irA(w) + L) = 0. (EP)

A = A(r,w): Eigenvalue, ¢ = ¢(r,w): Eigenvector.

ReA(r,w) <0 for r >0, we S !

Indeed, taking a C™ inner product (EP) with ¢, and taking a real part for
the resultant equation, we obtain

ReA(A%, o) + (Lfp, ) = 0.

Here, we used the symmetric property for A(w). Therefore, since A° is

positive definite, and L¥ is non-negative definite, we arrive at Remark 2.1.
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New stability conditions

Define A(v,w) := (A%) 1 (vA(w) — iL’).

Here, vA(w) — iL” is a complex valued Hermitan matrix.

Stability Condition(GSC):

For any (u,v,w) € R x Ry x S*~1
Ker(ul + A(v,w)) N Ker(LF) = {0}

Kalman Rank Condition(GR):

For any (v,w) € Ry x S*°1
Lt
i
rank L .A(.z/,w) =m.
LEA(y, w)™ !
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Characterization for the strict dissipativity

Craftsmanship Condition(GK):

There exists K(v,w) € C(Ry x S™~1) with the following properties:

(i) K(v,—w) = —K(v,w). (i) Kv,w)* = -K(v,w).
(i) ICk s.t. |[K(v,w)|| < Ck for (v,w) € Ry x S L,
(iv) ek st

C V2
(LF + (K(v,w) A(v,w))Do, o) > ﬁuc(y,w)aﬁ

for (v,w,0) € Ry x §" 1 x §™~1, where ™! := {0 € C™; |o| = 1}.

Theorem 2.2 (Characterization for the strict dissipativity,U(2018))
The following conditions are equivalent.

(i) Condition(GSC). (ii) Condition(GR).
(iv) ReA(r,w) <0 for r >0, w € S" ! (called Strictly dissipative).

(iii) Condition(GK).

y
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Characterization for the strict dissipativity

Theorem 2.3 (Characterization for the strict dissipativity,U(2021))

Let n = 1. The following condition is equivalent to (i)—(iv).

(v) ReA(r,w) < —cr2(m_1)/(1 + r2)2(m_1) for w e S71
(called Uniformly dissipative).

Let n > 2. Suppose that Ker(L*G(((A%) "t A(w)), (—i(A°%)~1L?)k=*))
does not depend on w € S"~L. The conditions (i)—(v) are equivalent.

For matrices X and Y, we define (X +Y)¥ = 212:0 G(X* YR, where
G(X*,Y*=%) denotes a polynomial of X and Y, which degrees of X and
Y are £ and k — ¢, respectively. Then A(r,w)* is represented by

A(r,w)k = (}(CAO)*l(rA(w) —iL")"
= G((A) T Aw))", (—i(A%)TLL)Rh),
=0
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Decay estimate

Corollary 2.4 (Decay estimate, U(2021))

Under the condition (v) in Theorem 2.3, the solutions to (SHS) satisfy the
pointwise estimate

. _cp(&)b) 1 j20m—)
[a(€, )| < Ce™ S ag(§)l,  p(€) =

(T + [P
Namely, we obtain

n £
u(t L2 < C(l+t) 4m-1) up|| 1 +C(1+1t) 2m-1) 8KU0 L2, 14 > 0.
a

r T

' 0 0
-C| ReA(r,®)

Figure: Standard type
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The pointwise estimate in Corollary 4.4 might not be optimal.
(e.g. Timoshenko system is ReA(r,w) < —cr?/(1 +72)? but m = 4.

Outline of the proof of Theorems 2.2 and 2.3:
& Rel(r,w) < 0 <= Condition(GSC) <= Condition(GR)

(" Ccontradiction argument and the Celey-Hamilton theorem.)
& Condition(GR) = Condition(GK) = ReA(r,w) <0

Use the energy method.)
T2(m—1)

& Condition(GR) = ReA(r,) < ¢

= ReA(r,w) <0

(*.- Construct the Lyapunov function.)
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Lyapunov function

Let k be a small positive number. Then we chose k; such that

1
0=k < k1 <+ < Km, ﬁk—i(ﬁk—1+ﬁk+1)zﬁ>0-

Lemma 2.6 (Lyapunov function)

Define
La, LPA(JE],

w)

S e I LRA(E] )
& dh( ]
(@)1= (4°0,8) + Sh(j,) ) e Qe )P

for 6 > 0 and € > 0, where )
ILA(IE], W)l

M) = e )+ %) Tz

Then there exist 69 and sy such that

0 .. o2 o JLPA(E], w)Fa)
ag(u)‘FCO\L @l + c1h(|¢], w );5 TA(E], ) [ <0,

and c|u|> < E(0) < Cyla|? for § = 6o and 0 < € < &g.

November, 2023
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Energy estimate

Corollary 2.7

d
—€(@) + eD([¢],w, @) <0,
where
4 m—l 1
Trerr P Alel W P iAW) # 0,10 # 0,
k=0
o= 4 S aap if A '~ 0
Pt := | Tgp 2 1B if A@w) #0,1" = 0,
k=0
m—1
|Lﬁ(Lb)kA|2 . A(w) _ O’ Lb 7& o
\ k=0

Remark 2.8

When we prove Lemma 2.6, we do not use the conditions in Theorem 2.2.
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3. Optimality for the pointwise estimates
in Fourier space
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Analysis for the Low frequency part

In this section, we assume A° = I and consider

dr+AQa =0, AE) =il¢|Aw)+ L. (AE) =iA(¢],w) + LF)

Definition 3.1 (Orthogonal projections for the Low frequency part)

(1) Ps, : C™ — Ker (isol + L)
(2) Poysow : PoyC™ = Ker (511 + Poy A(w))[p,, cm)
(3) Pagyor,000 * Pon,0wC™ = Ker( (isa] + Poy oLy (50,6)) [pey g um )

where L(l)

low

(s0,w) = Py, A(w) (iso] + L(w)) \Pfsll()cmPéBA(w)\Psocm

Here the notation IF : Y — Z denotes that I is the orthogonal projection
from the subspace Y of C™ to the subspace Z of Y. We also denote by
F+ the orthogonal projection I|y — I, where I|y is the identity map on Y.
Each s; is a given real number and w € S"~1.

-—
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Definition 3.2 (Singular sets for the low frequency part)

Slow,0 = {so € R|Ran (P {0}}
Slow,1 = {(52751,505("}) S Rg gt | Ran (]PSQ,sl,so,w) # {0}}7
Slow,l = {(517807(‘)) € R2 X Sn_l | Vlow,l(slasoaw) 75 {0}}a

where
Viowl (s so,w) = Ran (Ps, s.0) N Ker (Lti (isol + L) \Hﬁ cm
50

Py A(w))

Ran (Ps, s, s9.0w) C f/low’l(sl, s0,w) C Ran (Ps,)

Theorem 3.4 (Maekawa-U(2021))
Letn=1 and a € {0,1}. Assume (GSC) holds.
) — {e @)} 5 satisfies (LowEst).

'Slow,a =
leT9)| < Cem™™, t>0,0<r<1, we S (LowEst)

November, 2023 21/42
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Theorem 3.5 (Maekawa-U(2021))

Assume (GSC) holds.
Siowo = 0 = {e )} satisfies (LowEst) with a = 0.

Theorem 3.6 (Maekawa-U(2021))

Assume (GSC) holds.
(i) or (ii) = {e ™(%)},5 satisfies (LowEst) with o = 1.

1) Slow 1= =0.

i) If Sjow,1 # 0 then both (a) and (b) hold for any (s1,50,w) € Siow.1:
a) {( Alw )hplsO(Cm,PSOC )}w'e gn—1 has no-splitting real eigenvalues.
b) Ran( s.51.500) = 10} for any so € R, that is, Sjpw1 = 0.

(
(
(
(

A
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(GSC) and Ker (L) = Ker (L!) = Sjouw1 =0 (Stability Cond.)

Theorem 3.8 (Maekawa-U(2021))
Let o € {0,1}. Assume (GSC) holds.
Stowa # 0 = {e %)}~ does not satisfy (LowEst).

Definition 3.9 (no-splitting condition)

Let {Z,},cgn—1 be a family of the subspaces of C™, and {M,} cgn-1,
M, : Z, — Z,, be a family of linear operators.

It is called that {(M., Z)},egn—1 has no-splitting real eigenvalues if the
following two conditions are satisfied.

(i) The map w + (M,Pz,,Pz,) € (C™™)? is continuous, where Py, is
the orthogonal projection from C™ to Z,,.

(ii) The numbers #0(M,,) and #(o(M.) NR) are independent of

w € 8" 1, where o(M,) is the set of the eigenvalues of M,,.
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Analysis for the High frequency part

Definition 3.10 (Orthogonal projections for the high frequency part)
(4) Qg : C™ — Ker (5o + A(w))
(5) Qs;,50,w : QspwC™ — Ker ((islf + QSO,wL)|QSO,ow)
(6) Qsz.51,50,0 * Qsy,50,0C™ = Ker (521 + Qsy,50,0 AN (50,w)) @y 5,0Cm)
where AW (59, w) 1= Qso,w LK (80, W) L* gy, Cm5

K(sog,w) := —(SOI + A(w)) \6;7WCmQ;7W
(7) Qss,50,51,50,0 : Qsz,51,50,0C™ —

. 1
Ker (('LS,‘}I + Q'sQ:Sl’sO’ngL’i)gh(sl’ 50, (A})) ‘QSQ,Sl,SO,ow)7
where

LI(’Lliz]h(sl’ S0, w) o= i51Q517507wLK(80, w)2L* |Q81,so,w(cm
+ Qsl,so,wG(sb S0, w)’@sl,so,wcm7
G(s1, 80,w) 1= A(l)(so,w)(islI + QSO,wL)@; oo i},so,wA(l)(SO’w)
— LK (sg,w)L*K(sg,w)L".

S —— T — S — e — T —
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Definition 3.11 (Singular sets for the high frequency part)

Shigho = {(s1,50,w) € R? x §" ' |Ran (Qs,,50w) # {0} },
Shigh,1 = {(537527517507‘*)) eR! x g*! | Ran (Q83,52781,807w) # {0}}7

Shigh,o = {(S(),LU) S R x S?’L*l ’ ‘N/high,O(SO’w) 7é {0}}7
S = {(s1,50,w) € RZ x ™1 | ViRLM (s 50, # {0}},

Sflf;h,l = {(82781,80’00) e R? x 5n! | Vhigh’l’@)(sm 81,80, W) # {0}},

where

V190 (55, w) = Ran (Qsy ) N Ker (LF),

Vhigh L) (51 50, w) = Ran (Qs,,50w) N Ker (LFK (s, w)L*),
Vhigh,l,(Q)(S%Sl’SO,w) = Ran (Qs, 51,50,0)N

NKer (L{(is1] + QeowD)lgl | on @5 004" (50,0) = K(s0,

w)L*}).

v
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Remark 3.12
(i) Vhighvl’(l)(sl,so,w) C Ran (Qs, spw) C Vhigh’o(so,w).
(i) Ran (Q33,52,51,50,w) - Vhigh’l’(2)(52» 51, 80,w) C Ran (@31,50,w)-

i) If LK (sg, w) L’ Qs C™ € QL _C™ holds for any sy € R, w € §71
0,

50,W
then V79m1.(2) (s, 51, 59,w) C VHIRLM) (51 55 w).

.

Theorem 3.13 (Maekawa-U(2021))
Letn=1 and g € {0,1}. Assume (GSC) holds.
Shighp = 0 = {e ®()},5 satisfies (HighEst).

le™ )| < Cem P, £>0, r>1, weS"L (HighEst)

V.

Theorem 3.14 (Maekawa-U(2021))

Let 5 € {0,1}. Assume (GSC) holds.
Shigh,p 0 = {e*tm(’"w)}tzo does not satisfy (HighEst).
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Theorem 3.15 (Maekawa-U(2021))
Assume (GSC) holds.
(i) or (ii) = {e ™w)},5 satisfies (HighEst) with 3 = 0.

1) Shzgh 0— =0.

ii) If Shigho 7 O then both (a) and (b) hold for any (so,w) € Shigh.o:
a) {(A(W'),C™)},egn-1 has no-splitting real eigenvalues.

(
(
(
(b) Ran (Qs, s9w) = {0} for any s1 € R, that is, Shigho = 0.

Remark 3.16

(GSC) and Ker (L) = Ker (L*) = Shigno =0 (Stability Cond.)
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Theorem 3.17 (Maekawa-U(2021))

Assume (GSC) holds. Also assume {(A(@),C™)}zegn—1 has no-splitting

real eigenvalues, and Shz ho # 0.
) or (i) = {e ®()Y,5 satisfies (HighEst) with § = 1.

(i
(i) Both (i-a) and (i-b) hold for any (s1, s0,w) € Shigho:

(i-8) ZAK (50(@), @)L Quo(@)oC™ C QL 5y 5C™ & € 5™,
(i-b) VhighL.()(s) 50, w) = O for any s1 € C, that is, S}%h,l = 0.
(ii) Both (ii-a) and (ii-b) hold for any (s1, s0,w) € Shigh0-

(i-a
(i
(i

ii-a) {(Qsp(@) 0L ) €™ Qso(@),0C™) baesn—1 has no-splitting real e.v.

ii-b) IfSthh 1 # 0 then (iii-bl), (iii-b2) hold for (s2, s1, s0,w) € S,(j)

has no-splitting real eigenvalues.
(ii-b2) Ran (Qsy,,51,50,0) = {0} for any s3 € R, that is, Spign,1 = 0.

Here s;(-) : S"~! — R is the conti. map s.t. sj(w) = s; and that each

sj(w) is an eigenvalue of —A(w) if j = 0, or Qs (w) wiLlQ, ., cm fi=1.

gh, 1°
1- bl){(Q51 (@),80(@),& SAU )(50( ) )’Qsl(w) so(@),aC aQs1 Cm)}wGS" 1
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Gearhart-Prlss type theorem

X : Hilbert space.

A:D(A) — X, densely defined closed operator in X with D(A) C X.
The operator A is called m-accretive if the left open half-plane is
contained in the resolvent set p(—A) with [|(Al + A) 7Y xx < 1/Re) for
A € C with ReA > 0. We denote by W(A) the pseudospectral bound of A:

W(4) = (sup A+ 4) ' xx)

Theorem 3.18 (Wei(2021))

Let A be an m-accretive operator in a Hilbert space X. Then

et | xox < e VT2 t>0.

& Since (GSC), 2(&) is an m-accretive operator.
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Resolvent analysis

We introduce ®(r,w) := supycg || (iM + irA(w) + L(w))_lH.

(¥(r,w) == ®(r,w) ! is a pseudospectral bound.)

Proposition 3.19

Suppose the same assumption as in Theorem 3.5. Then there exists C' > 0
such that

sup O(r,w) < C, 0<r<l1.
wesn—1

Proposition 3.20

Suppose the same assumption as in Theorem 3.6. Then there exists C' > 0
such that

| \

sup ®(r,w) < Cr2, 0<r<l. (%)
wesn—1

v

& Propositions 3.19 and 3.20 = Theorems 3.5 and 3.6. (*."Theorem3.18.)
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Outline of the proof of Proposition 3.20

The proof is based on the reduction argument (T.Kato)
and the contradiction argument.

Step 1: Set M = sup,,cgn-1(1 + [|A(w)| + || L]|). It is easy to see from
the Neumann series argument that

sup |(GAT + irA(w) + L)_1|| <C.
0<r<lweSn—1|\>M

So it suffices to consider the case |A| < M.

Step 2: Suppose that (x) does not hold. Then there exist a sequence
{rn, AN, wn, un} with 7y € (0,1], wy € "1, Ay € R with |A\y| < M,
and uy € C™ such that |uy| =1 and

lim 732 (IANT +iryA(wn) + L)uy =0.

N—o00
By taking a suitable subsequence if necessary, we may also assume

lim (T’N,)\N,CL)N,U,N) = (T'*, /\*,w*yu*)
N—oo

for some r, € [0,1], |\ < M, w, € S, u, € C™ with |u,| = 1.
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Then the limit u, € C™ \ {0} satisfies (iAol + irs A(ws) + L)u, = 0.

If ro. >0 = wu, =0 (.- (GSC)). This is a contradiction.
If r. =0 = wu, € Ker (i\,] + L) = Ran (Py,).

Step 3: Suppose the assumption in Theorem 3.6 holds.

Set fn = (iANI +iryA(wy) + L)uy, and this gives fy = o(r%;) .

Let us decompose uy = wy + wﬁ with wy := Py, uy and wﬁ = IP’iuN.
Then fy is also decomposed by fy =Py, fv + Py fx that

Py, fn = i(AN — A wy +irnPy, A(wn)uy = o(rk) ,
IP’f*fN = (i NI + L)\P**meﬁ + irN}P’iA(wN)uN =o(r%).
Here we have
wy = —iry (iIANI + L+ z'rN]P’tA((,uN))|]P,l CmIP’)\ A(wn)wy + o(r),

GANT+L+irnyPE A(wn)) o cm is invertible for large N.
" PL C
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Since limy 00 Wy = s # 0 and limpy 00 AN = A4, we find that
AN — M| < Cry and |wy| < Cry are satisfied for large N. Then we set
5\N=7)\N_)\*7 ﬁ)ﬁz—ﬁ7
TN TN
which are bounded uniformly in N. Thus by taking a subsequence if
necessary we may assume that limy_,oo Ay = A and limy_, o W3 = @3-

Since @y € Ran (Pi) we have ;- € Ran (Py), and we obtain

uy € Ker ((5\*1 + PA*A(W*))‘IP’A*CT”) )

NJ_ (Z)\ I —+ L)‘PL Cm]P’i‘*A(w*)u* .
Furthermore, using LWJ =0, we get
uy € Ker (LF(i\ I + L)|]P,L omPr A(W)).

As a summary, we arrive at u, # 0 and uy € Vl"“”l(j\*,)\*,w*).
Thus, this is a contradiction because of the condition (i) in Theorem 3.6,
that is, Slow,l = 0.
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In the case for 3;01071 # (), we start from

ANWN + Py, A(wn)wy

—iryPy, A(w )(z)\ I+ L)|1P>L CmPf\;A(WN)U)N = o(ry).
In virtue of (ii-a), there exists a continuous curve s1(-) : S*~1 — R such
that s1(w.) = A, and each s;(w) is the eigenvalue of Py, A(w)lp,, cm.
Then we have

(AN = 51(WN)) Py (won) Ae oy WN

s1(n) e on AlWN )@AA[+l»w§CmP{/“wN)wN::OwN).
Since [P, (wy )\ wy WN| Must be positive unlformly for large N,

- iTNP

Ny = (A — s1(wn))/rn is uniformly bounded in N. Then we may
assume that 5\IN converges to 5\; by taking a subsequence if necessary.
Thus we obtain

iNas + Py Alw) (AT + L)

and hence u, € Ran (}P’;, SN w*). Therfore, u, = 0 by the condition

pL (CWIP’A*A(w*)u* =0,

(ii-b) in Theorem 3.6, which is a contradiction. The proof is complete. [
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6. Application and weak dissipative
structure
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Applications

Cond.(GSC): A + (VA(w) —iLl?)p =0, ¢ € Ker(LF) = =0

Dissipative Timoshenko system:

0100 0 00 1
100 0 0 00 0
0 __ _ —
AT=1 Aw)=-wly oo 1] L 0 00 0
0010 10 0 1

Corollary 4.1

The Timoshenko system satisfies Condition(GSC). Namely, this system is
strictly dissipative.

Proof: For (p,v,w) € R x Ry x {—1,1} and ¢ = (1, 02, 3, 04) " € C*,

pp1 — vwp — ipg = 0,
pp2 — vwer =0,
pps — vwps = 0,
pps — vwes + i = 0, O

and @4 =0. == p =0.
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Corollary 4.2 (Low frequency part)

The solution operator to the Timoshenko system satisfies

le~ @) < ce~EPt, g <1,
Proof: We have
0 0
Yo 0
Poy = P. y= f
oy U3 ) solY 0 or $So 7é 07
0 0

where y = (y1,v2,3,%1) | € C* Hence we have S}, 0 = {0} # 0. This
means that the solution operator does not satisfy the exponential decay
estimate (*." Theorem 3.5).

Furthermore we have

Viowl(s 0,w) = Ker (LﬁL| ]P’(J)‘A(w)) NKer ((s11 +PoA(w))[p,c1),

-1
pi-C
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and this gives

0
0
~ low ys € C for s1 =0,
Vl ’I(Sl,O,W) = { Y3 | }
0
{0} for s1 #0.

Hence we obtain Slow,l = {(0,0,+1)} # 0, it suffices to consider the set
Viewl(sy.0,0,41). For y = (0,0,%3,0)T and s € R, we have
0

1 _ | —ays
IP:J.@ZLPO A(W)y - i32y3

0

i82y+POA( ) |

Thus, this gives
Ker ((isa] + PoA(w)L yPL LeaPo AW)) [pg oct) NVH0,0,w) = {0}

for all s, € R and w € {£1}. This implies Sjpy,1 = 0 and therefore the
condition (ii-b) in Theorem 3.6 is satisfied. O
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Dissipative Bresse system

Dissipative Bresse system: (¢ # 0)
Gt — (9o + U 4+ tw)y — L(wy — L) = 0,
it — Yua + (bz + 1 + lw) + 4 = 0, (BS)
Wy — (g — €d)y + U(de + ¢ + Lw) = 0.
& If £ =0, this system is reduced to the dissipative Timoshenko system.
Putting p = ¢ + ¢ +lw, v =1, 2 =Yz, Yy = Y1, ¢ = wy — LY, p = wy,
we obtain the symmetric hyperbolic system u; + Au, + Lu = 0, where

u=(p,v,29,q,p)" and

01 00O0O 000 -1 0 -4
100 00O 000 0 —¢£ 0
A 000 10O I— 000 0 0 O
001 0O0O0])" 100 1 0 O
000001 0O ¢0 0 0 O
00 0O0T1O0 ¢ 00 0 0 O
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New dissipative structure

Corollary 4.3

The Bresse system does not satisfy Condition(GSC). Namely, this system
is not strictly dissipative.

Proof: For (p,v,w) € R xRy x {—1,1} and ¢ = (p1,--- ,p6) " € CS,

(11 — vwps + s + ilpg = 0,
pp2 — vwpy + ilps = 0,
pps — vwpy =0,

‘ and =0 1
pps — vwes —ipr = 0, o 1)

pps — vwps — ilps = 0, )

\ e — vwps — il =0,

Let (u,v) = (0, |¢]), then

. -t -l -

v = (01,02, —zwal,(), —ZmUl, —ZMUQ)T
0

satisfy (1) for (o1, 09) € C2. ReA(r.of) |
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Decay estimate

Theorem 4.4 (Decay estimate, U(2022))

The solutions to (BS) satisfy the pointwise estimate

2 N2 )
(G(e,1)] < Ce@tag(e),  n(e) = e =D E+D

(1+&2)8
Namely, we obtain

1 _1
[u)ll2 < C(1+ 1) |uollpr + C(1 + )" % |uol| 1

Low?req. Midd;erfreq.
4
+O(L+t)"2||0%uol| g2,  £€>0.
Highvfreq.
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@ Can we derive the relationship between the known results??
& Duan-Kawashima-U(2012) :

2
Condition(S) + (K) = Re\ < —CL

(1+[¢?)?
(e.g. Timoshenko system, Euler-Maxwell system)

& Duan-Kawashima-U(2017) :
Craftsmanship Condition = ReA < —c¢

(1+[€2)?
(e.g. Timoshenko system with memory)

@ How about the asymptotic profile of the solution to the dissipative

Bresse system??

@ Can we apply these results to nonlinear problems??
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