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I. Introduction

Symmetric hyperbolic systems with relaxation:

A0ut +

n∑
j=1

Ajuxj + Lu = 0, (SHS)

where u = u(x, t): m-vector function of x = (x1, · · · , xn) ∈ Rn and t > 0.

Assume that

(a) A0 is symmetric and positive definite,

(b) Aj is symmetric for each j,

(c) L is symmetric and non-negative definite.

Applying the Fourier transform, we obtain

A0ût + i|ξ|A(ω)û+ Lû = 0,

where A(ω) =
∑n

j=1A
jωj , ω = ξ/|ξ| ∈ Sn−1.
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Eigenvalue problem

Eigenvalue problem:

λA0φ+ (i|ξ|A(ω) + L)φ = 0.

λ = λ(|ξ|, ω): Eigenvalue, φ = φ(|ξ|, ω): Eigenvector.

Jin-Xin model:
ρt + vx = 0,

vt + ρx + v = 0.

We rewrite Jin-Xin model that

ut +Aux + Lu = 0,

where

u =

(
ρ
v

)
, A =

(
0 1
1 0

)
, L =

(
0 0
0 1

)
.
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Stability conditions

Condition(SC): Shizuta & Kawashima (1985)

For any (µ, ω) ∈ R× Sn−1, Ker(µI +A(ω)) ∩Ker(L) = {0}.

Condition(R): Kalman,Ho & Narendra (1963), Beauchard & Zuazua (2011)

For any ω ∈ Sn−1,

rank


L

L(A0)−1A(ω)
...

L((A0)−1A(ω))m−1

 = m.

Condition(K): Umeda, Kawashima & Shizuta (1984)

There exists K(ω) with the following properties:

(i) K(−ω) = −K(ω). (ii) K(ω)A0 is skew-symmetric.

(iii) L+ (K(ω)A(ω))♯ is positive definite.

Here X♯ is the symmetric part of X.
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Characterization and decay estimate

Theorem 1.1 (Characterization for the dissipative structure)

The following conditions are equivalent.

(i) Condition(SC). (ii) Condition(R). (iii) Condition(K).

(iv) Reλ(|ξ|, ω) < 0 for |ξ| ̸= 0. (v) Reλ(|ξ|, ω) ≤ −c|ξ|2/(1+ |ξ|2).

Theorem 1.2 (Decay estimate)

Under Condition(K), the solutions to (SHS) satisfy the pointwise estimate

|û(ξ, t)| ≤ Ce−cρ(ξ)t|û0(ξ)|,

where ρ(ξ) = |ξ|2/(1 + |ξ|2). Namely, we obtain

∥∂kxu(t)∥L2 ≤ C(1 + t)−n/4−k/2∥u0∥L1 + Ce−ct∥∂kxu0∥L2 , k ≥ 0.

Q: Can we extend these conditions for (SHS) with non-symmetric L??
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Examples

Dissipative Timoshenko system(linear):

ϕtt − (ϕx − ψ)x = 0,

ψtt − ψxx − (ϕx − ψ) + ψt = 0.

Putting ρ = ϕx − ψ, v = ϕt, z = ψx, y = ψt, we obtain the symmetric

hyperbolic system

ut +Aux + Lu = 0,

where u = (ρ, v, z, y)⊤ and

A = −


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , L =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 1

 .
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2. General stability condition
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2. General stability condition

Symmetric hyperbolic systems with relaxation:

A0ut +

n∑
j=1

Ajuxj + Lu = 0. (SHS)

Assume that

(a) A0 is symmetric and positive definite,

(b) Aj is symmetric for each j,

(c) L♯ is non-negative definite (not necessary symmetric).

X♯ :=
1

2
(X +X∗), X♭ :=

1

2
(X −X∗), X∗ := X̄⊤

ODE in Fourier space:

A0ût + i|ξ|A(ω)û+ Lû = 0.

A(ω) =
∑n

j=1A
jωj , ω = ξ/|ξ| ∈ Sn−1.
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Eigenvalue problem

Eigenvalue problem:

λA0φ+ (irA(ω) + L)φ = 0. (EP)

λ = λ(r, ω): Eigenvalue, φ = φ(r, ω): Eigenvector.

Remark 2.1

Reλ(r, ω) ≤ 0 for r ≥ 0, ω ∈ Sn−1

Indeed, taking a Cm inner product (EP) with φ, and taking a real part for

the resultant equation, we obtain

Reλ⟨A0φ,φ⟩+ ⟨L♯φ,φ⟩ = 0.

Here, we used the symmetric property for A(ω). Therefore, since A0 is

positive definite, and L♯ is non-negative definite, we arrive at Remark 2.1.
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New stability conditions

Define A(ν, ω) := (A0)−1(νA(ω)− iL♭).

Here, νA(ω)− iL♭ is a complex valued Hermitan matrix.

Stability Condition(GSC):

For any (µ, ν, ω) ∈ R× R+ × Sn−1,

Ker(µI +A(ν, ω)) ∩Ker(L♯) = {0}

Kalman Rank Condition(GR):

For any (ν, ω) ∈ R+ × Sn−1,

rank


L♯

L♯A(ν, ω)
...

L♯A(ν, ω)m−1

 = m.
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Characterization for the strict dissipativity

Craftsmanship Condition(GK):

There exists K(ν, ω) ∈ C(R+ × Sn−1) with the following properties:

(i) K̄(ν,−ω) = −K(ν, ω). (ii) K(ν, ω)∗ = −K(ν, ω).

(iii) ∃CK s.t. ∥K(ν, ω)∥ ≤ CK for (ν, ω) ∈ R+ × Sn−1.

(iv) ∃cK s.t.

⟨(L♯ + (K(ν, ω)A(ν, ω))♯)σ, σ⟩ > cKν
2

1 + ν2
|K(ν, ω)σ|2

for (ν, ω, σ) ∈ R+ × Sn−1 × Sm−1, where Sm−1 := {σ ∈ Cm; |σ| = 1}.

Theorem 2.2 (Characterization for the strict dissipativity,U(2018))

The following conditions are equivalent.

(i) Condition(GSC). (ii) Condition(GR). (iii) Condition(GK).

(iv) Reλ(r, ω) < 0 for r > 0, ω ∈ Sn−1 (called Strictly dissipative).
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Characterization for the strict dissipativity

Theorem 2.3 (Characterization for the strict dissipativity,U(2021))

Let n = 1. The following condition is equivalent to (i)–(iv).

(v) Reλ(r, ω) ≤ −cr2(m−1)/(1 + r2)2(m−1) for ω ∈ Sn−1

(called Uniformly dissipative).

Let n ≥ 2. Suppose that Ker
(
L♯G

(
((A0)−1A(ω))ℓ, (−i(A0)−1L♭)k−ℓ

))
does not depend on ω ∈ Sn−1. The conditions (i)–(v) are equivalent.

For matrices X and Y , we define (X + Y )k =
∑k

ℓ=0G(X
ℓ, Y k−ℓ), where

G(Xℓ, Y k−ℓ) denotes a polynomial of X and Y , which degrees of X and

Y are ℓ and k − ℓ, respectively. Then A(r, ω)k is represented by

A(r, ω)k =
(
(A0)−1(rA(ω)− iL♭)

)k
=

k∑
ℓ=0

rℓG
(
((A0)−1A(ω))ℓ, (−i(A0)−1L♭)k−ℓ

)
.
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Decay estimate

Corollary 2.4 (Decay estimate, U(2021))

Under the condition (v) in Theorem 2.3, the solutions to (SHS) satisfy the
pointwise estimate

|û(ξ, t)| ≤ Ce−cρ(ξ)t|û0(ξ)|, ρ(ξ) =
|ξ|2(m−1)

(1 + |ξ|2)2(m−1)
.

Namely, we obtain

∥u(t)∥L2 ≤ C(1 + t)
− n

4(m−1) ∥u0∥L1 + C(1 + t)
− ℓ

2(m−1) ∥∂ℓxu0∥L2 , ℓ ≥ 0.

Reλ(r,ω)
0

r

-c

Figure: Standard type

Reλ(r,ω)
0

r

Figure: Regularity-loss type
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Remarks

Remark 2.5

The pointwise estimate in Corollary 4.4 might not be optimal.
(e.g. Timoshenko system is Reλ(r, ω) ≤ −cr2/(1 + r2)2 but m = 4.

Outline of the proof of Theorems 2.2 and 2.3:

♣ Reλ(r, ω) < 0 ⇐⇒ Condition(GSC) ⇐⇒ Condition(GR)

(∵ Ccontradiction argument and the Celey-Hamilton theorem.)

♣ Condition(GR) =⇒ Condition(GK) =⇒ Reλ(r, ω) < 0

(∵ Use the energy method.)

♣ Condition(GR) =⇒ Reλ(r, ω) ≤ −c r2(m−1)

(1 + r2)2(m−1)

=⇒ Reλ(r, ω) < 0

(∵ Construct the Lyapunov function.)
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Lyapunov function

Let κ be a small positive number. Then we chose κk such that

0 = κ0 < κ1 < · · · < κm, κk −
1

2
(κk−1 + κk+1) ≥ κ > 0.

Lemma 2.6 (Lyapunov function)

Define

E(û) := ⟨A0û, û⟩+ δh(|ξ|, ω)
m−1∑
k=1

εκk
Im⟨L♯A(|ξ|, ω)k−1û, L♯A(|ξ|, ω)kû⟩

∥A(|ξ|, ω)∥2k

for δ > 0 and ε > 0, where

h(|ξ|, ω) := ∥A(|ξ|, ω)∥2

(∥A(|ξ|, ω)∥+ ∥(A0)−1∥∥L♯∥)2
.

Then there exist δ0 and ε0 such that
∂

∂t
E(û) + c0|L♯û|2 + c1h(|ξ|, ω)

m−1∑
k=1

εκk
|L♯A(|ξ|, ω)kû|2

∥A(|ξ|, ω)∥2k
≤ 0,

and c∗|û|2 ≤ E(û) ≤ C∗|û|2 for δ = δ0 and 0 < ε < ε0.
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Energy estimate

Corollary 2.7

d

dt
E(û) + cD(|ξ|, ω, û) ≤ 0,

where

D(|ξ|, ω, û) :=



m−1∑
k=0

1

(1 + |ξ|2)k
|L♯A(|ξ|, ω)kû|2 if A(ω) ̸= O,L♭ ̸= O,

|ξ|2

1 + |ξ|2
m−1∑
k=0

|L♯A(ω)kû|2 if A(ω) ̸= O,L♭ = O,

m−1∑
k=0

|L♯(L♭)kû|2 if A(ω) = O,L♭ ̸= O.

Remark 2.8

When we prove Lemma 2.6, we do not use the conditions in Theorem 2.2.
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3. Optimality for the pointwise estimates
in Fourier space
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Analysis for the Low frequency part

In this section, we assume A0 = I and consider

ût + A(ξ)û = 0, A(ξ) := i|ξ|A(ω) + L. (A(ξ) = iA(|ξ|, ω) + L♯)

Definition 3.1 (Orthogonal projections for the Low frequency part)

(1) Ps0 : Cm → Ker (is0I + L)

(2) Ps1,s0,ω : Ps0Cm → Ker
(
(s1I + Ps0A(ω))|Ps0Cm

)
(3) Ps2,s1,s0,ω : Ps1,s0,ωCm → Ker

((
is2I + Ps1,s0,ωL

(1)
low(s0, ω)

)
|Ps1,s0,ωCm

)
,

where L
(1)
low(s0, ω) = Ps0A(ω)

(
is0I + L(ω)

)
|−1
P⊥
s0

CmP⊥
s0A(ω)|Ps0Cm

Here the notation F : Y → Z denotes that F is the orthogonal projection
from the subspace Y of Cm to the subspace Z of Y . We also denote by
F⊥ the orthogonal projection I|Y − F, where I|Y is the identity map on Y .
Each sj is a given real number and ω ∈ Sn−1.
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Definition 3.2 (Singular sets for the low frequency part)

Slow,0 =
{
s0 ∈ R |Ran (Ps0) ̸= {0}

}
,

Slow,1 =
{
(s2, s1, s0, ω) ∈ R3 × Sn−1 |Ran (Ps2,s1,s0,ω) ̸= {0}

}
,

S̃low,1 =
{
(s1, s0, ω) ∈ R2 × Sn−1 | Ṽ low,1(s1, s0, ω) ̸= {0}

}
,

where

Ṽ low,1(s1, s0, ω) = Ran (Ps1,s0,ω) ∩Ker
(
L♯

(
is0I + L

)
|−1
P⊥
s0

CmP⊥
s0A(ω)

)
Remark 3.3

Ran (Ps2,s1,s0,ω) ⊂ Ṽ low,1(s1, s0, ω) ⊂ Ran (Ps0)

Theorem 3.4 (Maekawa-U(2021))

Let n = 1 and α ∈ {0, 1}. Assume (GSC) holds.

Slow,α = ∅ ⇐⇒ {e−tA(rω)}t≥0 satisfies (LowEst).

∥e−tA(rω)∥ ≤ Ce−cr2αt, t ≥ 0, 0 < r ≤ 1, ω ∈ Sn−1. (LowEst)
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Theorem 3.5 (Maekawa-U(2021))

Assume (GSC) holds.

Slow,0 = ∅ =⇒ {e−tA(rω)}t≥0 satisfies (LowEst) with α = 0.

Theorem 3.6 (Maekawa-U(2021))

Assume (GSC) holds.

(i) or (ii) =⇒ {e−tA(rω)}t≥0 satisfies (LowEst) with α = 1.

(i) S̃low,1 = ∅.

(ii) If S̃low,1 ̸= ∅ then both (a) and (b) hold for any (s1, s0, ω) ∈ S̃low,1:

(a) {
(
Ps0A(ω

′)|Ps0Cm ,Ps0Cm
)
}ω′∈Sn−1 has no-splitting real eigenvalues.

(b) Ran (Ps2,s1,s0,ω) = {0} for any s2 ∈ R, that is, Slow,1 = ∅.
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Remark 3.7

(GSC) and Ker (L) = Ker (L♯) =⇒ S̃low,1 = ∅ (Stability Cond.)

Theorem 3.8 (Maekawa-U(2021))

Let α ∈ {0, 1}. Assume (GSC) holds.

Slow,α ̸= ∅ =⇒ {e−tA(rω)}t≥0 does not satisfy (LowEst).

Definition 3.9 (no-splitting condition)

Let {Zω}ω∈Sn−1 be a family of the subspaces of Cm, and {Mω}ω∈Sn−1 ,
Mω : Zω → Zω, be a family of linear operators.
It is called that {(Mω, Zω)}ω∈Sn−1 has no-splitting real eigenvalues if the
following two conditions are satisfied.
(i) The map ω 7→ (MωPZω ,PZω) ∈ (Cm×m)2 is continuous, where PZω is
the orthogonal projection from Cm to Zω.
(ii) The numbers #σ(Mω) and #

(
σ(Mω) ∩ R

)
are independent of

ω ∈ Sn−1, where σ(Mω) is the set of the eigenvalues of Mω.
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Analysis for the High frequency part

Definition 3.10 (Orthogonal projections for the high frequency part)

(4) Qs0,ω : Cm → Ker
(
s0I +A(ω)

)
(5) Qs1,s0,ω : Qs0,ωCm → Ker

(
(is1I +Qs0,ωL)|Qs0,ωCm

)
(6) Qs2,s1,s0,ω : Qs1,s0,ωCm → Ker

((
s2I +Qs1,s0,ωA

(1)(s0, ω)
)
|Qs1,s0,ωCm

)
,

where A(1)(s0, ω) := Qs0,ωLK(s0, ω)L
∗|Qs0,ωCm ,

K(s0, ω) := −
(
s0I +A(ω)

)
|−1
Q⊥

s0,ω
CmQ⊥

s0,ω

(7) Qs3,s2,s1,s0,ω : Qs2,s1,s0,ωCm →
Ker

((
is3I +Qs2,s1,s0,ωL

(1)
high(s1, s0, ω)

)
|Qs2,s1,s0,ωCm

)
,

where

L
(1)
high(s1, s0, ω) := is1Qs1,s0,ωLK(s0, ω)

2L∗|Qs1,s0,ωCm

+Qs1,s0,ωG(s1, s0, ω)|Qs1,s0,ωCm ,

G(s1, s0, ω) := A(1)(s0, ω)
(
is1I +Qs0,ωL

)
|−1
Q⊥

s1,s0,ω
Xω

Q⊥
s1,s0,ωA

(1)(s0, ω)

− LK(s0, ω)L
∗K(s0, ω)L

∗ .
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Definition 3.11 (Singular sets for the high frequency part)

Shigh,0 =
{
(s1, s0, ω) ∈ R2 × Sn−1 |Ran (Qs1,s0,ω) ̸= {0}

}
,

Shigh,1 =
{
(s3, s2, s1, s0, ω) ∈ R4 × Sn−1 |Ran (Qs3,s2,s1,s0,ω) ̸= {0}

}
,

S̃high,0 =
{
(s0, ω) ∈ R× Sn−1 | Ṽ high,0(s0, ω) ̸= {0}

}
,

S(1)
high,1 =

{
(s1, s0, ω) ∈ R2 × Sn−1 |V high,1,(1)(s1, s0, ω) ̸= {0}

}
,

S(2)
high,1 =

{
(s2, s1, s0, ω) ∈ R3 × Sn−1 |V high,1,(2)(s2, s1, s0, ω) ̸= {0}

}
,

where

Ṽ high,0(s0, ω) = Ran (Qs0,ω) ∩Ker (L♯),

V high,1,(1)(s1, s0, ω) = Ran (Qs1,s0,ω) ∩Ker
(
L♯K(s0, ω)L

∗),
V high,1,(2)(s2, s1, s0, ω) = Ran (Qs2,s1,s0,ω)∩
∩Ker

(
L♯

{
(is1I +Qs0,ωL)|−1

Q⊥
s1,s0,ω

CmQ⊥
s1,s0,ωA

(1)(s0, ω)−K(s0, ω)L
∗}).
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Remark 3.12

(i) V high,1,(1)(s1, s0, ω) ⊂ Ran (Qs1,s0,ω) ⊂ Ṽ high,0(s0, ω).

(ii) Ran (Qs3,s2,s1,s0,ω) ⊂ V high,1,(2)(s2, s1, s0, ω) ⊂ Ran (Qs1,s0,ω).

(iii) If L♯K(s0, ω)L
♭Qs0,ωCm ⊂ Q⊥

s0,ωC
m holds for any s0 ∈ R, ω ∈ Sn−1

then V high,1,(2)(s2, s1, s0, ω) ⊂ V high,1,(1)(s1, s0, ω).

Theorem 3.13 (Maekawa-U(2021))

Let n = 1 and β ∈ {0, 1}. Assume (GSC) holds.

Shigh,β = ∅ ⇐⇒ {e−tA(rω)}t≥0 satisfies (HighEst).

∥e−tA(rω)∥ ≤ Ce−cr−2βt, t ≥ 0, r ≥ 1, ω ∈ Sn−1. (HighEst)

Theorem 3.14 (Maekawa-U(2021))

Let β ∈ {0, 1}. Assume (GSC) holds.

Shigh,β ̸= ∅ =⇒ {e−tA(rω)}t≥0 does not satisfy (HighEst).

Yoshihiro Ueda (Kobe University) Stability theory for hyperbolic system November, 2023 26 / 42



Theorem 3.15 (Maekawa-U(2021))

Assume (GSC) holds.

(i) or (ii) =⇒ {e−tA(rω)}t≥0 satisfies (HighEst) with β = 0.

(i) S̃high,0 = ∅.

(ii) If S̃high,0 ̸= ∅ then both (a) and (b) hold for any (s0, ω) ∈ S̃high,0:

(a) {(A(ω′),Cm)}ω′∈Sn−1 has no-splitting real eigenvalues.

(b) Ran (Qs1,s0,ω) = {0} for any s1 ∈ R, that is, Shigh,0 = ∅.

Remark 3.16

(GSC) and Ker (L) = Ker (L♯) =⇒ S̃high,0 = ∅ (Stability Cond.)
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Theorem 3.17 (Maekawa-U(2021))

Assume (GSC) holds. Also assume {(A(ω̃),Cm)}ω̃∈Sn−1 has no-splitting
real eigenvalues, and Shigh,0 ̸= ∅.
(i) or (ii) =⇒ {e−tA(rω)}t≥0 satisfies (HighEst) with β = 1.

(i) Both (i-a) and (i-b) hold for any (s1, s0, ω) ∈ Shigh,0:

(i-a) L♯K(s0(ω̃), ω̃)L
♭Qs0(ω̃),ω̃Cm ⊂ Q⊥

s0(ω̃),ω̃
Cm, ω̃ ∈ Sn−1.

(i-b) V high,1,(1)(s1, s0, ω) = ∅ for any s1 ∈ C, that is, S(1)
high,1 = ∅.

(ii) Both (ii-a) and (ii-b) hold for any (s1, s0, ω) ∈ Shigh,0:

(ii-a){(Qs0(ω̃),ω̃iL|Qs0(ω̃),ω̃Cm ,Qs0(ω̃),ω̃Cm)}ω̃∈Sn−1 has no-splitting real e.v.

(ii-b) If S(2)
high,1 ̸= ∅ then (iii-b1), (iii-b2) hold for (s2, s1, s0, ω) ∈ S(2)

high,1:

(ii-b1){(Qs1(ω̃),s0(ω̃),ω̃A
(1)(s0(ω̃),ω̃)|Qs1(ω̃),s0(ω̃),ω̃Cm,Qs1(ω̃),s0(ω̃),ω̃Cm)}ω̃∈Sn−1

has no-splitting real eigenvalues.
(ii-b2) Ran (Qs3,s2,s1,s0,ω) = {0} for any s3 ∈ R, that is, Shigh,1 = ∅.

Here sj(·) : Sn−1 → R is the conti. map s.t. sj(ω) = sj and that each
sj(ω) is an eigenvalue of −A(ω) if j = 0, or Qs0(ω),ωiL|Qs0(ω),ωCm if j = 1.
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Gearhart-Prüss type theorem

X : Hilbert space.

A : D(A) → X, densely defined closed operator in X with D(A) ⊂ X.

The operator A is called m-accretive if the left open half-plane is

contained in the resolvent set ρ(−A) with ∥(λI +A)−1∥X→X ≤ 1/Reλ for

λ ∈ C with Reλ > 0. We denote by Ψ(A) the pseudospectral bound of A:

Ψ(A) =
(
sup
λ∈R

∥(iλI +A)−1∥X→X

)−1
.

Theorem 3.18 (Wei(2021))

Let A be an m-accretive operator in a Hilbert space X. Then

∥e−tA∥X→X ≤ e−tΨ(A)+π/2 , t > 0 .

♣ Since (GSC), A(ξ) is an m-accretive operator.
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Resolvent analysis

We introduce Φ(r, ω) := supλ∈R ∥
(
iλI + irA(ω) + L(ω)

)−1∥.(
Ψ(r, ω) := Φ(r, ω)−1 is a pseudospectral bound.

)
Proposition 3.19

Suppose the same assumption as in Theorem 3.5. Then there exists C > 0
such that

sup
ω∈Sn−1

Φ(r, ω) ≤ C, 0 < r ≤ 1.

Proposition 3.20

Suppose the same assumption as in Theorem 3.6. Then there exists C > 0
such that

sup
ω∈Sn−1

Φ(r, ω) ≤ Cr−2, 0 < r ≤ 1. (∗)

♣ Propositions 3.19 and 3.20 =⇒Theorems 3.5 and 3.6. (∵Theorem3.18.)
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Outline of the proof of Proposition 3.20

The proof is based on the reduction argument (T.Kato)

and the contradiction argument.

Step 1: Set M = supω∈Sn−1(1 + ∥A(ω)∥+ ∥L∥). It is easy to see from

the Neumann series argument that

sup
0<r≤1,ω∈Sn−1,|λ|≥M

∥(iλI + irA(ω) + L)−1∥ ≤ C.

So it suffices to consider the case |λ| ≤M .

Step 2: Suppose that (∗) does not hold. Then there exist a sequence

{rN , λN , ωN , uN} with rN ∈ (0, 1], ωN ∈ Sn−1, λN ∈ R with |λN | ≤M ,

and uN ∈ Cm such that |uN | = 1 and

lim
N→∞

r−2
N (iλNI + irNA(ωN ) + L)uN = 0 .

By taking a suitable subsequence if necessary, we may also assume

lim
N→∞

(rN , λN , ωN , uN ) = (r∗, λ∗, ω∗, u∗)

for some r∗ ∈ [0, 1], |λ∗| ≤M , ω∗ ∈ Sn−1, u∗ ∈ Cm with |u∗| = 1.
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Then the limit u∗ ∈ Cm \ {0} satisfies (iλ∗I + ir∗A(ω∗) + L)u∗ = 0.

If r∗ > 0 =⇒ u∗ = 0 (∵ (GSC)). This is a contradiction.

If r∗ = 0 =⇒ u∗ ∈ Ker (iλ∗I + L) = Ran (Pλ∗).

Step 3: Suppose the assumption in Theorem 3.6 holds.

Set fN = (iλNI + irNA(ωN ) + L)uN , and this gives fN = o(r2N ) .

Let us decompose uN = wN + w⊥
N with wN := Pλ∗uN and w⊥

N := P⊥
λ∗
uN .

Then fN is also decomposed by fN = Pλ∗fN + P⊥
λ∗
fN that

Pλ∗fN = i(λN − λ∗)wN + irNPλ∗A(ωN )uN = o(r2N ) ,

P⊥
λ∗fN = (iλNI + L)|P⊥

λ∗C
mw⊥

N + irNP⊥
λ∗A(ωN )uN = o(r2N ) .

Here we have

w⊥
N = −irN

(
iλNI + L+ irNP⊥

λ∗A(ωN )
)
|−1
P⊥
λ∗C

mP⊥
λ∗A(ωN )wN + o(r2N ),(

∵ (iλNI+L+irNP⊥
λ∗
A(ωN ))|P⊥

λ∗C
m is invertible for large N .

)
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Since limN→∞wN = u∗ ̸= 0 and limN→∞ λN = λ∗, we find that

|λN − λ∗| ≤ CrN and |w⊥
N | ≤ CrN are satisfied for large N . Then we set

λ̃N =
λN − λ∗
rN

, w̃⊥
N =

w⊥
N

rN
,

which are bounded uniformly in N . Thus by taking a subsequence if

necessary we may assume that limN→∞ λ̃N = λ̃∗ and limN→∞ w̃⊥
N = w̃⊥

∗ .

Since w̃⊥
N ∈ Ran (P⊥

λ∗
) we have w̃⊥

∗ ∈ Ran (P⊥
λ∗
), and we obtain

u∗ ∈ Ker
(
(λ̃∗I + Pλ∗A(ω∗))|Pλ∗Cm

)
,

w̃⊥
∗ = −i(iλ∗I + L)|−1

P⊥
λ∗C

mP⊥
λ∗A(ω∗)u∗ .

Furthermore, using L♯w̃⊥
∗ = 0, we get

u∗ ∈ Ker (L♯(iλ∗I + L)|−1
P⊥
λ∗C

mP⊥
λ∗A(ω∗)).

As a summary, we arrive at u∗ ≠ 0 and u∗ ∈ Ṽ low,1(λ̃∗, λ∗, ω∗).

Thus, this is a contradiction because of the condition (i) in Theorem 3.6,

that is, S̃low,1 = ∅.
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In the case for S̃low,1 ̸= ∅, we start from

λ̃NwN + Pλ∗A(ωN )wN

− irNPλ∗A(ωN )
(
iλ∗I + L

)
|−1
P⊥
λ∗C

mP⊥
λ∗A(ωN )wN = o(rN ).

In virtue of (ii-a), there exists a continuous curve s1(·) : Sn−1 → R such

that s1(ω∗) = λ̃∗ and each s1(ω) is the eigenvalue of Pλ∗A(ω)|Pλ∗Cm .

Then we have

(λ̃N − s1(ωN ))Ps1(ωN ),λ∗,ωN
wN

− irNPs1(ωN ),λ∗,ωN
A(ωN )(iλ∗I + L)|−1

P⊥
λ∗C

mP⊥
λ∗A(ωN )wN = o(rN ) .

Since |Ps1(ωN ),λ∗,ωN
wN | must be positive uniformly for large N ,

λ̃′N = (λ̃N − s1(ωN ))/rN is uniformly bounded in N . Then we may

assume that λ̃
′
N converges to λ̃

′
∗ by taking a subsequence if necessary.

Thus we obtain

iλ̃
′
∗u∗ + Pλ̃∗,λ∗,ω∗

A(ω∗)(iλ∗I + L)|−1
P⊥
λ∗C

mP⊥
λ∗A(ω∗)u∗ = 0,

and hence u∗ ∈ Ran (Pλ̃′
∗,λ̃∗,λ∗,ω∗

). Therfore, u∗ = 0 by the condition

(ii-b) in Theorem 3.6, which is a contradiction. The proof is complete.
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6. Application and weak dissipative
structure
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Applications

Cond.(GSC): µA0φ+ (νA(ω)− iL♭)φ = 0, φ ∈ Ker(L♯) =⇒ φ = 0

Dissipative Timoshenko system:

A0 = I, A(ω) = −ω


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , L =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 1

 .

Corollary 4.1

The Timoshenko system satisfies Condition(GSC). Namely, this system is
strictly dissipative.

Proof: For (µ, ν, ω) ∈ R×R+ × {−1, 1} and φ = (φ1, φ2, φ3, φ4)
⊤ ∈ C4,

µφ1 − νωφ2 − iφ4 = 0,

µφ2 − νωφ1 = 0,

µφ3 − νωφ4 = 0,

µφ4 − νωφ3 + iφ1 = 0,

and φ4 = 0. =⇒ φ = 0.
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Corollary 4.2 (Low frequency part)

The solution operator to the Timoshenko system satisfies

∥e−tA(ξ)∥ ≤ Ce−c|ξ|2t, |ξ| ≤ 1,

Proof: We have

P0y =


0
y2
y3
0

 , Ps0y =


0
0
0
0

 for s0 ̸= 0,

where y = (y1, y2, y3, y4)
⊤ ∈ C4. Hence we have Slow,0 = {0} ̸= ∅. This

means that the solution operator does not satisfy the exponential decay

estimate (∵ Theorem 3.5).

Furthermore we have

Ṽ low,1(s1, 0, ω) = Ker
(
L♯L|−1

P⊥
0 C4P⊥

0 A(ω)
)
∩Ker

(
(s1I + P0A(ω))|P0C4

)
,
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and this gives

Ṽ low,1(s1, 0, ω) =


{


0

0

y3

0

 | y3 ∈ C
}

for s1 = 0,

{0} for s1 ̸= 0.

Hence we obtain S̃low,1 = {(0, 0,±1)} ̸= ∅, it suffices to consider the set

V low,1(s2, 0, 0,±1). For y = (0, 0, y3, 0)
⊤ and s2 ∈ R, we have

is2y + P0A(ω)L|−1
P⊥
0 C4P⊥

0 A(ω)y =


0

−ay3
is2y3
0

 .

Thus, this gives

Ker
((
is2I + P0A(ω)L|−1

P⊥
0 C4P⊥

0 A(ω)
)
|P0,0,ωC4

)
∩ Ṽ low,1(0, 0, ω) = {0}

for all s2 ∈ R and ω ∈ {±1}. This implies Slow,1 = ∅ and therefore the

condition (ii-b) in Theorem 3.6 is satisfied.
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Dissipative Bresse system

Dissipative Bresse system: (ℓ ̸= 0)

ϕtt − (ϕx + ψ + ℓw)x − ℓ(wx − ℓϕ) = 0,

ψtt − ψxx + (ϕx + ψ + ℓw) + ψt = 0,

wtt − (wx − ℓϕ)x + ℓ(ϕx + ψ + ℓw) = 0.

(BS)

♣ If ℓ = 0, this system is reduced to the dissipative Timoshenko system.

Putting ρ = ϕx + ψ + ℓw, v = ϕt, z = ψx, y = ψt, q = wx − ℓϕ, p = wt,

we obtain the symmetric hyperbolic system ut +Aux + Lu = 0, where

u = (ρ, v, z, y, q, p)T and

A = −



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 , L =



0 0 0 −1 0 −ℓ
0 0 0 0 −ℓ 0
0 0 0 0 0 0
1 0 0 1 0 0
0 ℓ 0 0 0 0
ℓ 0 0 0 0 0

 .
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New dissipative structure

Corollary 4.3

The Bresse system does not satisfy Condition(GSC). Namely, this system
is not strictly dissipative.

Proof: For (µ, ν, ω) ∈ R× R+ × {−1, 1} and φ = (φ1, · · · , φ6)
⊤∈ C6,

µφ1 − νωφ2 + iφ4 + iℓφ6 = 0,

µφ2 − νωφ1 + iℓφ5 = 0,

µφ3 − νωφ4 = 0,

µφ4 − νωφ3 − iφ1 = 0,

µφ5 − νωφ6 − iℓφ2 = 0,

µφ6 − νωφ5 − iℓφ1 = 0,

and φ4 = 0. (1)

Let (µ, ν) = (0, |ℓ|), then

φ = (σ1, σ2,−i
1

|ℓ|
σ1, 0,−i

ℓ

|ℓ|
σ1,−i

ℓ

|ℓ|
σ2)

T

satisfy (1) for (σ1, σ2) ∈ C2. Reλ(r,ω)
0

r

ℓ
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Decay estimate

Theorem 4.4 (Decay estimate, U(2022))

The solutions to (BS) satisfy the pointwise estimate

|û(ξ, t)| ≤ Ce−cη(ξ)t|û0(ξ)|, η(ξ) =
ξ2(ξ − ℓ)2(ξ + ℓ)2

(1 + ξ2)8
.

Namely, we obtain

∥u(t)∥L2 ≤ C(1 + t)−
1
4 ∥u0∥L1︸ ︷︷ ︸

Low freq.

+C(1 + t)−
1
4 ∥u0∥L1︸ ︷︷ ︸

Middle freq.

+ C(1 + t)−
ℓ
2 ∥∂ℓxu0∥L2︸ ︷︷ ︸

High freq.

, ℓ ≥ 0.
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Future Works

Can we derive the relationship between the known results??

♣ Duan-Kawashima-U(2012) :

Condition(S) + (K) =⇒ Reλ ≤ −c |ξ|2

(1 + |ξ|2)2
(e.g. Timoshenko system, Euler-Maxwell system)

♣ Duan-Kawashima-U(2017) :

Craftsmanship Condition =⇒ Reλ ≤ −c |ξ|4

(1 + |ξ|2)3
(e.g. Timoshenko system with memory)

How about the asymptotic profile of the solution to the dissipative

Bresse system??

Can we apply these results to nonlinear problems??
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