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Abstract

In this paper we derive an Ellipsoidal Statistical BGK model for a polyatomic gas
that is based on a general framework introduced in [10]. The distribution function
of the polyatomic gas depends on its velocity and a general internal energy function,
that can be discrete or continuous. We solve the minimization problem of Boltzmann
entropy under suitable moments and we determine the transport coefficients (Prandtl
number, first and second viscosity) in the hydrodynamic limit. At the end we obtain
an ES-BGK model for a general framework covering in particular the non polytropic
case.

1 Introduction

In the context of high altitude aerodynamics, it is necessary to use a kinetic description
since the Knudsen number is of order 1. Since the atmosphere has a more complex struc-
ture, containing monatomic gases such as O,N and NO and polyatomic gases such as O2

and N2, interest has shifted to the study of kinetic models concerning mixtures of mono
and polyatomic gases. A kinetic description for polyatomic gas involves a distribution
function f(t, x, v, I) that represents the density number of gas molecules and depends on
time t, space x, velocity v and internal energy I. Polyatomic models can be split into
two categories: those that assume continuous internal energy and those that consider
discrete internal energy. In [9] the authors develop a microscopic model in which a cer-
tain fraction of the total energy is shared with translational and internal energy. At the
mesoscopic level, tractable collisionnal models models involving energy transfers between
translational and internal modes have been introduced. In [19] a kinetic model for a
single polyatomic gas with continuous internal energy I presents the measure ψ(I) = Iα

for some α ≥ 0, that is crucial to get the energy laws of polytropic gases. The generaliza-
tion of the collision operator for a polyatomic gas mixture is performed in [20] together
with the derivation of a polyatomic compressible Euler system. In [5] a Navier-Stokes
system for any mixture of mono and polyatomic gases is derived from a Boltzmann model
([20]), providing explicit transport coefficients for Maxwell molecules. In ([17], [18]), the
authors show that the linearized Boltzmann operator satisfies a Fredholm property. The
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closure problem of a Boltzmann model for a polyatomic gas is resolved in [29], using the
maximum entropy principle.

In [22] a polyatomic gas has been interpreted as a mixture of monatomic gases, each
of which has a discrete energy level. So, a reagent mixture of polyatomic gases is dealt
with associating to each molecule the velocity of the center of mass and a discrete variable
representing internal energy that can take on a set of quantized energy levels.

In order to generalize the previous models ([11]), Borsoni and al. [10] proposed a new
collisional model for a single polyatomic gas, in which each molecule is defined by position,
velocity and an internal state variable ζ, which varies in a measure space (E ,A, ω) and
an energy function ε(ζ), which associates an energy value to each internal state. So,
depending on whether the space of the internal states is assumed to be N or R, the
model returns the case of discrete or continuous internal energy respectively. In the case
of continuous internal energy the number of degrees of freedom of internal energy does
not depend on temperature, while the discrete internal energy makes this dependence.
In particular, the degrees of freedom depend on the macroscopic temperature and this
model encompasses non polytropic gases. This collisional model has been generalized in
([7]) to the situation of reacting gas mixtures. In ([27]), the authors developped kinetic
models including translational, vibrational and rotational internal energies for reactive
gas mixtures. Several scalings depending on fast and slow processes are considered and
fluid systems are derived.

Another strategy for studying gases is represented by BGK models in which the
Boltzmann collision operator is replaced by a relaxation term, while keeping physical
and mathematical properties like conservation laws and H Theorem [8]. A BGK model
for mixture of monatomic gases is defined in [1], where the interactions between particles
are performed by fictitious macroscopic quantities, in order to recover conservation laws.
A drawback of these BGK models is that do not provide in the hydrodynamic limit
the right transport coefficients. The Ellipsoidal statistical or Gaussian model (ES-BGK)
introduced by Holway ([23]) for polyatomic gases overcomes the criticality and manages
to reach a Prandtl number that varies in [2

3 , 1[, as proved in [2] and in [16]. Hence we
aim in this paper to derive an ES-BGK model from an entropy minimization principle
by using the framework developped in [10]. Entropy minimization principles as well as
the idea of using different relaxation terms have been first considred by Levermore in the
context of monoatomic gases ([26]). But this works leads to different models that can only
reach Prandtl numbers larger than 1. In ([15], [16]) the authors proposed a derivation of
the ES-BGK model in that is based on the introduction of relaxation coefficients and the
resolution of an entropy minimization problem. By using the same strategy, the authors
construct in ([13], [14]) a BGK model that is able to reproduce the Fick matrix. In
([32]), this operator is generalized to reacting gas mixtures by considering the operator
as a sum for respectively mechnical and chemical processes. The energy variable is based
on the formalism developped in ([21]). The question wheher this problem this problem
admits a solution or not is subjected to the values of the relaxtion rates and the so-
called realizability moments problem ([24], [26], [31]). This approach is next generalized
to polyatomic gas mixtures ([12, 13]). Another investigation to do is to compare the
asymptotic limit of the BGK models with the phenomenological results of Extended
Thermodynamics, where the two kind of internal energy, rotational and vibrational are
assumed both continuous [4, 6, 30].
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In ([16], [12]) the ES-BGK is considered for a specific heat at constant volume Cv and
a specific heat at constant pressure Cp constant. Such a gas is called a polytropic gas

in the literature. However, as pointed out in ([25]), Cp, Cv and γ =
Cp
Cv

should depend
on temperature in order to be physically more realistic. In ([3], [25]), the authors have
presented an ES-BGK model for the non polytropic case when the internal energy is a
continous variable. The goal of the present paper, is to derive an ES-BGK model for
the formalism developped in [10]. The method of derivation is based on the approach
developped in ([15], [16]) and mentionned before.

The paper is organized as follows. In section 2 we introduce the framework and its
assumptions. In section 3 we construct the Ellipsoidal Statistical model and solve the
variational problem regarding the minimization of the entropy functional under suitable
constraints. Then we compute the hydrodynamical limit of the model to recover proper
transport coefficients and the Prandtl number. Section 4 is devoted to comparison of
the present model with other models. In particular we show that we can recover some
existing models. Finally, section 5 is devoted to conclusions and perspectives.

2 General setting

The aim of this paper is to construct a model based on the framework proposed by
Borsoni and al. in [10]. A polyatomic gas is given with molecular mass m ∈ R+ and
each of its molecules is defined by its velocity v and an internal state ζ that it varies in
a measure space

(E ,A, ω)

where E is the space of internal states of ζ, A is a σ−algebra on E and ω(E) is a non
negative, σ−finite measure on (E ,A). We indicate with Bor(R) the set of Borelians of
R. Let the (A, Bor(R)) measurable function

ε : E → R

the internal energy that associates to each internal state ζ a energy value ε(ζ). We denote
by the grounded internal energy function

ε̄ = ε− ε0

where
ε0 := inf essω{ε} = sup{R ∈ R s.t. ω(ε < R) = 0}

is the fundamental energy of configuration of the molecules.

2.1 Partition function

We define the partition function Z for the molecular internal mode of the polyatomic gas

Z(β) :=

∫
E
e−βε̄(ζ)dω(ζ) <∞, (1)

for all β > 0.
Let us now consider two particular situations.

If we consider the continuous energy space E = R+, ([11]) the set of the Borelians of R+,
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A and the measure dω(I) = ψ(I)dI, where ψ(I) = Iα with α > −1 and the internal
energy ε(I) = I, the partition function takes the form

Z

(
1

kBT

)
=

∫
E

exp

(
− I

kBT

)
IαdI.

Instead if we consider the discrete space E = {0, 1, . . . , N}, together with A = P(E) and
ε(n) = εn for n = 0, . . . , N . In that case, the partition function (1) reads

Z

(
1

kBT

)
=

N∑
i=0

ai exp

(
− εi
kBT

)
, (2)

where ai are defined in ([21]) as the degenaracy of the ith quantum energy shell.
It holds the following result, the demonstration of which is in [10]:

Proposition 2.1. Z is C∞ on R∗+ and its derivatives are given by

(∀ k > 0), Z(k)(β) =

∫
E
(−ε̄(ζ))ke−βε̄(ζ)dω(ζ).

We indicate with f(t, x, v, ζ) the distribution function, such that f(t, x, v, ζ)dxdvdζ
expresses the probability of funding a gas molecule, within the space (x, x + dx) with
velocity in the range (v, v + dv) and internal state in (ζ, ζ + dζ) at a time t. We suppose
that f is non negative and

∀ (t, x) f(t, x, ·, ·) ∈ L1(R3 × E , dv dω(ζ)).

2.2 Hydrodynamic quantities

Mass density ρ, velocity u and total energy density E are defined as

ρ(t, x) :=

∫
E

∫
R3

mf(t, x, v, ζ)dvdω(ζ),

u(t, x) :=
1

ρ(t, x)

∫
E

∫
R3

mvf(t, x, v, ζ)dvdω(ζ),

E(t, x) :=
1

ρ(t, x)

∫
E

∫
R3

(
m

2
|v|2 + ε(ζ)

)
f(t, x, v, ζ)dvdω(ζ).

We denote by δ(T ) the number of internal degrees of freedom

δ(T ) :=
2

kBT

(∫
E ε̄(ζ) exp

(
− ε̄(ζ)
kBT

)
dω(ζ)∫

E exp
(
− ε̄(ζ)
kBT

)
dω(ζ)

)
, (3)

where kB is the Boltzmann constant and T the temperature of the gas. We define
the specific heat at constant volume

cV (T ) :=
3 +D(T )

2
(4)
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where

D(T ) :=
d(Tδ(T ))

dT

for all T > 0. It is important to underline that here δ(T ) depends on the temperature,
contrary to what it turns out in [2].
The total energy density E at collision equilibrium is expressed by

E(u, T ) =
m

2
|u|2 + ε0 +

3 + δ(T )

2
kBT.

The choice of setting ε̄ in place of ε and various mathematical properties of δ(T ), that
make its formulation physically valid, are exposed in [10]. The specific internal energy
e(t, x) = 1

ρ(t,x)E(t, x)− 1
2 |u|

2 is splitted into two parts, the internal energy of translational

motion etr(t, x) and the energy associated with the internal structure eint(t, x) :

e(t, x) = etr(t, x) + eint(t, x), (5)

etr(t, x) =
1

ρ(t, x)

∫
E

∫
R3

m

2
|c|2f(t, x, v, ζ)dvdω(ζ), (6)

eint(t, x) =
1

ρ(t, x)

∫
E

∫
R3

ε̄(ζ)f(t, x, v, ζ)dvdω(ζ), (7)

where c = v − u is the relative velocity. These energies are associated to the corre-
sponding temperatures T (t, x), Ttr(t, x), Tint(t, x)

e(t, x) =
3 + δ(T )

2
kBT (t, x),

etr(t, x) =
3

2
kBTtr(t, x),

eint(t, x) =
δ(T )

2
kBTint(t, x).

We denote by Θ(t, x) the stress tensor s.t.

ρ(t, x)Θ(t, x) :=

∫
E

∫
R3

mc⊗ cf(t, x, v, ζ)dvdω(ζ).

We define the Boltzmann entropy as∫
R3

∫
E
H(f)dvdω, (8)

where H(f) = f(ln f − 1).
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3 Construction of the model

We propose to construct a BGK model whose relaxation term is of the form

R(f) = λ(G − f).

More precisely, we aim to provide a BGK model that satisfies the conservation laws
and main properties of the Boltzmann model and to determine the parameter λ and
the Gaussian function G in such a way that the transport coefficients can be recovered.
The strategy to obtain this model is to proceed as in ([12], [13], [15], [16]) through the
mimimization of the entropy functional under moments constraints.

We will proceed in the folling way. We firstly have to choose a set of moments an
thus define a set of constraints. Next, we have to compute the argmin of the entropy of
the set of constraints. And the last step consists in defining relaxation parameters from
the computation of the hydrodynamic limit and the comparison with the Navier-Stokes
system.

3.1 Set of constraints

So, following the paper by Brull and Schneider [16], we set the variational problem:

Let f be a non negative function given, find G solution to the minimization problem

G = S(ρ, u, T ) = arg min
g∈Kf

∫
R3

∫
E
H(g)dvdω (9)

where Kf is the set of functions g ≥ 0 that satisfy the constraints

∫
R3

∫
E

(
m,mv,

1

2
mv2 + ε̄(ζ)

)
g dvdω =

∫
R3

∫
E

(
m,mv,

1

2
mv2 + ε̄(ζ)

)
f dvdω, (10)∫

R3

∫
E
m

(
c⊗ c− 1

3
c2Id

)
λ(g − f) dvdω = −λ1

∫
R3

∫
E
m

(
c⊗ c− 1

3
c2Id

)
f dvdω, (11)

∫
R3

∫
E

(
1

3
mc2 − 2

3 + δ(T )

(
1

2
mc2 + ε̄(ζ)

))
λ(g − f) dv dω =

−λ2

∫
R3

∫
E

(
1

3
mc2 − 2

3 + δ(T )

(
1

2
mc2 + ε̄(ζ)

))
f dv dω, (12)

with λ1 and λ2 positive relaxation coefficients and Id identical matrix in R3.
We observe that (10) are the conservation laws of mass, momentum and energy while

(11) and (12) are suitable constraints that guarantee to find transport coefficients. Using
the conservation law for the specific energy∫

R3

∫
E

(
1

2
mc2 + ε̄(ζ)

)
g dvdω =

∫
R3

∫
E

(
1

2
mc2 + ε̄(ζ)

)
f dvdω,
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into (12), we easily get∫
R3

∫
E

1

3
m|c|2g dvdω = (1− θ)

∫
R3

∫
E

1

3
m|c|2f dvdω + θρkBT (13)

where θ = λ2
λ . Using (13) and setting

λ1

λ
= 1− ν(1− θ), (14)

with ν generic parameter, it is easily to turn (11) into∫
R3

∫
E
mc⊗ cg dvdω = (1− θ)ρ

(
(1− ν)kBTtrId + νΘ

)
+ θρkBT Id = ρT , (15)

where T is a tensor that can be regarded as linear combination of the stress tensor Θ
and of the isotropic stress tensors kBTtrId and kBTId.

3.2 Minimization problem

This section is devoted to the resolution of the minimization problem (9). As we consider
a general mesure for the internal energy variable, the entropy minimization problem
cannot be solved like in ([16])

Theorem 3.1. For symmetric positive definite tensor Θ, −1
2 ≤ ν < 1 and 0 < θ < 1 we

have

(i) the tensor T defined in (15) is symmetric positive definite and the set Kf is not
empty;

(ii) the unique solution of the minimization problem (9) is the Gaussian function

G(v, ε̄) =
ρ

m
√
det(2πT )

exp

(
−1

2

〈
(v − u)T −1, (v − u)

〉
− ε̄(ζ)

kBTrel

)
Z

(
1

kBTrel

)−1

(16)
where Trel = θT + (1− θ)Tint.

Proof. (i) We prove the definite positivity of the matrix A = ρ
(
(1− ν)kBTtrId + νΘ

)
In fact this implies that the matrix T is positive definite as a convex combination
of positive definite matrices since 0 ≤ θ < 1. If we consider a basis of eigenvectors
of Θ, the tensor A is diagonal

Ai =
1− ν

3
(θ1 + θ2 + θ3) + νθi, i = 1, 2 or 3.

Since −1
2 ≤ ν < 1 the matrix A is positive definite. The definite positivity of the

matrix T guarantees that the set Kf is not empty (see for more details [16]).
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(ii) Here we proceed as in [2]. Since the functional H is strictly convex, we can infer that
for all g ≥ 0, with g 6= G, with G, given by 16, the following relation holds

H(g) > H(G) +H′(G)(g − G).

Invoking the Lagrange multiplier

α =

(
ln

ρ

m
√
det(2πkBT )

Z−1

(
1

kBTrel

)
− 1

2
uT −1u, T −1u,−1

2
T −1,− 1

kBTrel

)
,

we can express
H′(G) = lnG = α.m(v), (17)

where
m(v) = (1, v, v ⊗ v, ε̄(ζ))T .

So, we deduce from (17) and from the fact that g ∈ Kf , with g 6= G, that∫
R3

∫
E
H(G)dvdω <

∫
R3

∫
E
H(g)dvdω.

3.3 H Theorem

Now we prove that the ES-BGK model satisfies the H theorem.

Theorem 3.2. Let Gν,θ the Gaussian function, provided by (16), ∀ ν ∈ [−1
2 , 1] and

θ ∈ [0, 1]. Hence, the entropy dissipation satisfies

D(f) =

∫
R3

∫
E
(Gν,θ − f) ln fdv dω ≤ 0,

D(f) = 0 iff f =Mf

∀ ν ∈
[
−1

2 , 1
)

and θ ∈ (0, 1), where

Mf =
ρ

m
exp

(
−m(v − u)2

2kBT
− ε̄(ζ)

kBT

)(
2πkBT

m

)− 3
2

Z

(
1

kBT

)−1

(18)

is the Maxwellian corresponding to the equilibrium states of the collision operator [10].

Proof. We follow the proof developed by Andries et al [2]. Thanks to the convexity of
the entropy function, we can derive the inequality∫

R3

∫
E
(Gν,θ − f) ln fdvdω ≤

∫
R3

∫
E
Gν,θ lnGν,θdv dω −

∫
R3

∫
E
f ln fdvdω.

The problem of minimizing of the entropy functional in the case ν = 1 and θ = 0 provides∫
R3

∫
E
G1,0 lnG1,0dvdω ≤

∫
R3

∫
E
H(f)dvdω,
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because the functions that belong to the set Kf when ν = 1 and θ = 0 satisfy the same
constrains of the function f. So, we have that∫

R3

∫
E
(Gν,θ − f) ln fdvdω ≤

∫
R3

∫
E
Gν,θ lnGν,θdvdω −

∫
R3

∫
E
G1,0 lnG1,0dvdω.

It is derived from computations that∫
R3

∫
E
Gν,θ lnGν,θdvdω = ln

[
ρ

m
√
det(2πkBT )

Z−1

(
1

kBTrel

)]
− ρ

2
(1 + δ(T )).

So, we recover

∫
R3

∫
E
(Gν,θ − f) ln fdvdω ≤ ρ ln

√
detΘ

detT

Z−1
(

1
kBTrel

)
Z−1

(
1

kBTint

) . (19)

Using analitical arguments on general convex combinations of matrix, as in [2], it is
proved that detT ≥ detΘ and hence the entropy dissipation is non positive. Finally,
when D(f) = 0, it has

f = Gν,θ = G1,0,

from which we derive

detT = detΘ =

(
kB
m
T

)3

.

This directly proves that f =Mf .

3.4 Definition of λ1, λ2 and λ

This section is devoted to the derivation of the hydrodynamic limit of the equation

∂tf(t, x, v, ζ) + v · ∇xf(t, x, v, ζ) =
λ

τ
(G − f), (20)

where τ is the Knudsen number. The aim is to determine the relaxation coefficients
λ1, λ2 and λ in order to obtain the right transport coefficients.

In the Chapman-Enskog expansion we let τ → 0 and we expand f and G w.r.t τ
around the Maxwellian function defined in (18).

So, we obtain

f =Mf + τf (1) +O(τ2),

G =Mf + τG(1) +O(τ2).

Since f and G have the same moments the orthogonality relation holds∫
R3

∫
E

(
m,mv,

1

2
mv2 + ε̄(ζ)

)
f (1) dvdω =

∫
R3

∫
E

(
m,mv,

1

2
mv2 + ε̄(ζ)

)
G(1) dvdω = 0.

(21)
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By considering the scaled Boltzmann equation (20) at order 0 we get(
∂

∂t
+ v · ∇

)
Mf = λ(G(1) − f1).

If we multiply the previous equation with the collision invariants and integrate it over
v and ε, we derive as in [10] the compressible Euler system, that we can recast in the
following form,

∂ρ

∂t
= −ρ∇ · u−∇ρ · u, (22)

∂u

∂t
= −u · ∇u− kB

ρm
∇ρT − kB

m
∇T, (23)

∂T

∂t
= −∇T · u− T∇ · u

cV (T )
. (24)

Next, by using (22, 23, 24) in order to eliminate temporal derivatives, we get

(∂t + v · ∇x)Mf

Mf
=

m

kB

(
V ⊗ V − 1

3
V 2Id

)
: ∇u

+

(
1

3

m

kB
V 2 − 1− mV 2

2kBcV (T )
− ε̄

kBTcV (T )
+

3

2cV (T )
+

δ(T )

2cV (T )

)
∇ · u

+

(
−5

2
− δ(T )

2
+
mV 2

2kB
+

ε̄

kBT

)
V · ∇T√

T
(25)

where we adopted the substitution V = v−u√
T

. We point out the particularities of the

previous formula. The term involving the divergence of velocity, ∇ · u characterizes non
polytropic gases by the presence of cV (T ) that depends non linearly on temperature,
while the last term involving the gradient of temperature ∇T has a form that depends
on the monatomic or polyatomic nature of gas. We proceed to determine the dissipative
terms in the system of Navier Stokes equations by considering Chapman expansion at
first order. We write down the compressible Navier Stokes equations, neglecting terms
of order ε2 in (20), then we multiply it by the collision invariants and integrate it on v
and ε. So we obtain the following form,

∂t

∫
R3

∫
E
mMf dvdω +∇ ·

∫
R3

∫
E
mvMf dvdω = 0

∂t

∫
R3

∫
E
mvMf dvdω +∇ ·

∫
R3

∫
E
mv ⊗ vMf dvdω

= −τ∇ ·
∫
R3

∫
E
mv ⊗ vf1 dvdω

∂t

∫
R3

∫
E

(
1

2
mv2 + ε̄(ζ)

)
Mf dvdω +∇ ·

∫
R3

∫
E

(
1

2
mv2 + ε̄(ζ)

)
vMf dvdω

= −τ∇ ·
∫
R3

∫
E

(
1

2
mv2 + ε̄(ζ)

)
vf1 dvdω.
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After some intermediate computations, we are able to derive Navier Stokes equations,

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇P = τ∇ · P
[
(∇u+∇uT )− 2Λ(T )∇ · u Id

]
∂t

(
1

2
ρ|u|2 +

ρ

m
e

)
+∇ ·

(
1

2
ρ|u|2u+

ρ

m
eu+ Pu

)
=

τ∇ · P
[
(∇u+∇uT )− 2Λ(T )∇ · u Id

]
· u+ τ∇ · 5 +D(T )

2
P
kB
m
∇T

with

P = ρ
kB
m
T, Λ(T ) =

1

2cV (T )
, D(T ) =

d(Tδ(T ))

dT
.

We recognize stress tensor and heat flux

Π = P
[
(∇u+∇uT )− 2Λ(T )∇ · u Id

]
(26)

q = −5 +D(T )

2
P
kB
m
∇T, (27)

that will be used in the identification of transport coefficients λ1, λ2 and λ, taking into
account their generic formulations

Π = µ(∇u+∇uT )− αµ∇ · u Id, (28)

q = −κ∇T , (29)

where µ is the first viscosity, µα the second viscosity and κ the heat conductivity. We
firstly compute ∫

R3

∫
E
v ⊗ v(∂t + v∂x)Mf dvdω = Π (30)

in order to compare it with the conditions (11)-(12) to find the transport coefficients λ1

and λ2.
So, Chapman-Enskog expansion of (12) at first order, together with (21), provides∫

R3

∫
E
|c|2f (1)dvdω = − 1

λ2

∫
R3

∫
E
v ⊗ v(∂t + v∂x)Mfdvdω (31)

and comparison with (30) gives∫
R3

∫
E
|c|2f (1)dvdω =

P

λ2
Λ(T )∇ · u.

Finally, from comparison with the trace of the stress tensor (28), we find

λ2(T ) =
2PΛ(T )

(2− 3α)µ
.

Similarly the Chapman-Enskog expansion of the relation (11) at first order, taking into
account (30), provides ∫

R3

∫
E
c⊗ cf (1)dvdω =

P

λ1
(∇u+∇uT )
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and comparing this relation with the part without trace of the stress tensor (28), one has

λ1 =
P

µ
. (32)

Since the polynomials in (25) are orthogonal to P, we get∫
R3

∫
E

(
−5

2
− δ(T )

2
+
mV 2

2kB
+

ε̄

kBT

)
V (G(1) − f (1))dV dω =

1

λ
[Π · u− q]

and from comparison with (29), we find the last coefficient

λ(T ) =
(5 +D(T ))PkB

2mκ
.

We are now able to define the relaxation type term of the Ellipsoidal Statistical BGK
model

R(f) = λ(G − f),

in which G is the Gaussian function, derived by Theorem 3.1 and λ, using relation (14)
and (32), is given by

λ =
P

µ(1− ν + θν)
.

Finally, we provide the expression of Prandtl number

Pr =
λ

λ1
=

5 +D(T )

2

kBµ

mκ
. (33)

4 Comparison with other models

In this section we show how we can recover some existing models from the present
formalism. More precisely, by assigning parameters to space (E ,A, ω) and energy ε, the
model allows to study various cases, such as monatomic gas, polyatomic gas with discrete
energy and polyatomic gas with continuous energy.

4.1 Monatomic case

The behavior of monatomic gases is described by a distribution function f(t, x, v) that
depends only on time, space and velocity of the gas. Therefore we set E = {0},A = P(E)
and ω({0}) = 1 and we recover the following expression for the Gaussian function that
solves the minimization problem (9),

G[ρ, u, T ](v) =
ρ

m
√
det(2πT )

exp

(
−1

2

〈
(v − u)T −1, (v − u)

〉)
.

We notice that the Gaussian for the monatomic gases we have determined coincides with
that obtained by Andries et al. in [2]. In the case of monatomic gases only elastic
collision occur, so the conservation law of momentum and the conservation law of energy
hold. We observe that the number of internal degrees of freedom δ = 0, according to
the fact that a monatomic gas can only translate in the three directions of space and we
determine the heat capacity at constant volume cV = 3

2 . Moreover if we set θ = 0 and
ν = −1

2 , we recover the correct value of Prandtl number for monatomic gas, Pr = 2
3 .
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4.2 Polyatomic case with continuous internal energy

In a polyatomic gas the macroscopic internal energy is given by two contributions: the
translational energy due to the fact that the molecule translates in the three directions
of space and the energy associated with other degrees of freedom, which are rotation
and vibration. Monatomic gases have only internal energy translation, which is linked
to the trace of stress tensor. In the case of polyatomic gases, it is only the translational
component of internal energy that is related to the stress tensor trace. To take into
account the additional degrees of freedom of a polyatomic gas, expressed by δ(T ), the
state of a polyatomic gas at the microscopic level is defined not only by its velocity but
also by a function, the microscopic internal energy I, that can be continuous or discrete.
In the model of polyatomic gases with continuous internal energy, it is necessary to
introduce a weight function ψ(I) built ad hoc, in order to obtain the caloric law of
energy at the equilibrium,

e = cV
kB
m
T, (34)

where e and T are the internal energy density and the temperature. So the space in
which the distribution function f(t, x, v, I) is defined is of the type L1(ψ(I)dωdv). We
determine the caloric law of energy for polyatomic gas as it is developed in [28]. First of
all, by computing the internal macroscopic energy at the kinetic level, we obtain

ρe =
3

2
nkBT − n

Z ′( 1
kBT

)

Z
(

1
kBT

) (35)

where

Z

(
1

kBT

)
=

∫
R+

e
− 1
kBT

I
ψ(I)dI (36)

is determined from the partition function (1) by setting E = R+, ε = I and dµ = ψ(I)dI.
We observe also that the term

Z ′( 1
kBT

)

Z( 1
kBT

)
= δ(T )kB

T

2
(37)

is related to the internal degrees of freedom according to (3). It is easy to recover the
following formula if we define the notation τ = 1

kBT
,

Z ′
(

1
kBT

)
Z
(

1
kBT

) = −
dZ(τ)
dτ

Z(τ)
= − d

dτ
logZ(τ).

Since we aim that the two equations (34) and (35) are equivalent, we deduce that

− d

dτ
logZ(τ) = λ

1

τ

with λ a generic constant. The previous relation is a ODE that yields the solution
Z(τ) = τ−λ. Observing from (36) that Z(τ) is the Laplace transform of ψ(I), we can
conclude that

ψ(I) = L−1(τ−λ) =
Iλ−1

Γ(λ)

13



with Γ(λ) the Gamma function. We here refer to the simpler formula, defined by Desvil-
lettes and al. in [20],

ψ(I) = Iα (38)

with α > −1.
Following Prop. 6.1 in the work [10] with the formula of the weight function (38) we

compute that the number of internal degrees of freedom δ is constant and yields

δ = 2(α+ 1) (39)

and accordingly

cV =
5

2
+ α.

So the caloric equation for internal energy (35) together with (39) and (37) assumes
the formula (34) as we wanted. We recover in that case the situation of a polytropic gas.
Summing up, for a polyatomic gas with continuous internal energy we set E = R+, A the
set of the Borelians of R+, dµ(I) = ψ(I)dI, where ψ(I) = Iα with α > −1 and ε(I) = I.
We obtain that the Gaussian (16) takes the form

G[ρ, u, T, T ](v, I) =
ρ

m
√
det(2πT )

exp

(
−1

2

〈
(v − u)T −1, (v − u)

〉
− I

KBT

)
Z

(
1

kBT

)−1

.

In this case we recover the Ellipsoidal Statistical Model that has been developed in
[2, 16]. This model recovers values of Prandtl number less than 1. In fact if we consider
a diatomic gas, the formula of the Prandtl number (33) returns the experimental value
of 5

7 setting θ = 1
5 and ν = −1

2 .

4.3 Polyatomic case with discrete internal energy

Groppi and Spiga in [22] provided a model for a polyatomic gas with discrete internal
energy in order to focus on the vibrational motions of molecules. The internal energy
varies in a set of discrete values ε0, ε1, . . . , εN , with N ∈ N. So the microscopic state of
a molecule is described by (v, n) ∈ R3 × [0, N ] and to each internal state n a value of
microscopic internal energy εn ∈ R3 is associated.

Setting E = {0, 1, . . . , N}, A = P(E) and ε(n) = εn for n = 0, . . . , N, we obtain that
the partition function Z defined in (1) takes the form (2). The number of internal degrees
of freedom writes from (3) as

δ(T ) =
2

kBT

∑N
n=0(εn − ε0) exp

(
− (εn−ε0)

kBT

)
∑N

n=0 exp
(
− (εn−ε0)

kBT

)
while the heat capacity at constant volume from (27) is

cV =
3

2
− δ(T )2

4
+

2

k2
BT

2

∑N
n=0(εn − ε0)2 exp

(
− (εn−ε0)

kBT

)
[∑N

n=0 exp
(
− (εn−ε0)

kBT

)]2 .
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4.4 Polyatomic case with discrete and continuous parts of internal en-
ergy

Let us consider a model in which the microscopic internal energy takes into account
both contributions: the rotational part represented by a continuous variable and the
vibrational part expressed by a discrete variable. We assume that the measure space is

(E ,A, dω) = (R+ × [0, N ], Bor(R+)⊗ P([0, N ]), ψ(I)dI × 1),

where 1 represents the counting measure. So the Gaussian function (16) takes the form

G[ρ, u, T, T ](v, I, i) =
ρ

m
√
det(2πT )

exp

(
−1

2

〈
(v − u)T −1, (v − u)

〉
− εi − ε0

kBT
− I

kBT

)

Zc

(
1

kBT

)−1

Zd

(
1

kBT

)−1

where

Zc

(
1

kBT

)
=

∫
R+

e
− I
kBT IαdI, Zd

(
1

kBT

)
=

N∑
n=0

e
− εn−ε

0

kBT .

Regarding the number of degrees of freedom and the heat capacity, there are two contri-
butions due to the two rotational and vibrational effects, as follows

δ(T ) = δc(T ) + δd(T ) = 2(α+ 1) +
2

kBT

∑N
n=0(εn − ε0) exp

(
− (εn−ε0)

kBT

)
∑N

n=0 exp
(
− (εn−ε0)

kBT

) ,

cV = ccV + cdV =
5

2
+ α+

3

2
− δd(T )2

4
+

2

k2
BT

2

∑N
n=0(εn − ε0)2 exp

(
− (εn−ε0)

kBT

)
[∑N

n=0 exp
(
− (εn−ε0)

kBT

)]2 .

In that case, δc does not depend on temperature. The advantage of this model is that
it allows to investigate separately the rotational internal energy and on the vibrational
internal energy.

5 Conclusion and perspectives

We have constructed an Ellipsoidal Statistical Model for mono and polyatomic gases,
in which each molecule is characterized by an internal state ζ that varies in a generic
measure space (E , A, ω) and the non translational degrees of freedom are outlined by an
energy function that depends on the internal state variable ε(ζ). We proved the mini-
mization problem of the entropy functional under moment constraints and we recovered
the Maxwellian equilibria. The model is consistent with conservation laws and it verifies
H Theorem. We determined the coefficients of transport (first viscosity, second viscos-
ity and thermal conductivity) and we derived the analytical expression of the Prandtl
number that provides consistent values for mono and polyatomic gases. We have also
studied the number of internal degrees of freedom and derived the fluid-dynamic Navier-
Stokes equations. The peculiarity of this model is that recovers usual models, i.e. the
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monatomic gas, the continuous internal description and the discrete one for polyatomic
gas, fitting appropriately the measure space of internal states and the internal energy
function.

The next step in the research is to construct a BGK-model for mixture of polyatomic
gases within the framework of [10]. In particular, a generalization of the papers ([13],
[12]) in the non polytropic case based on the present framework is postponed to future
papers.
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