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A DISCRETE VELOCITY NUMERICAL SCHEME FOR THE 2D
BITEMPERATURE EULER SYSTEM*

DENISE AREGBA-DRIOLLET!, STEPHANE BRULL!, AND CORENTIN. PRIGENT *#

Abstract. This paper is devoted to the numerical approximation of the bidimensional bitem-
perature Euler system. This model is a nonconservative hyperbolic system describing an out of
equilibrium plasma in a quasi-neutral regime, with applications in Inertial Confinment Fusion (ICF).
One main difficulty here is to handle shock solutions involving the product of the velocity by pressure
gradients. We develop a second order numerical scheme by using a discrete BGK relaxation model.
The second order extension is based on a subdivision of each cartesian cell into four triangles to
perform affine reconstructions of the solution. Such ideas have been developed in the litterature for
systems of conservation laws. We show here how they can be used in our nonconservative setting.
The numerical method is implemented and tested in the last part of the paper.

Key words. nonconservative hyperbolic system, Euler type model for plasmas, discrete BGK
approximation, second order
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1. Introduction. This paper is devoted to the numerical resolution of the two
dimensional bitemperature Euler system by using a relaxation model under the form
of a discrete BGK type approximation.

The bitemperature Euler system is a nonconservative hyperbolic system with a
source term. It describes a mixture of electrons and ions in a quasi-neutral regime
and in a thermal nonequilibrium. This system is constituted by two conservative
equations for mass and momentum and two nonconservative equations on electronic
and ionic energies. The non-conservativity is due to source-terms but also to the
presence of products of the velocity by pressure gradients. Those products make
delicate the definition of weak solutions. Dal Maso, Le Floc’h and Murat developed
a general theory to define shocks in such a context, by using families of paths ([18]).
This point of view has been considered in a numerical framework ([24]). However
even if the path can be theoretically computed, finding the path numerically remains
difficult ([1]). In [17], the model is supposed to be isentropic on the electrons and
the system is transformed into a conservative form. The same viewpoint is adopted
in [20]. In [30], the authors introduce a small parameter representing the mass ratio
between electrons and ions. They obtain an hyperbolic system on ions and a parabolic
regularisation on electrons.

In the present paper, we generalize a discrete BGK scheme presented in [8]. In
this article, the bitemperature Euler system was derived as a fluid limit starting
from a Vlasov-BGK model coupled with Ampeére and Poisson equations in a quasi-
neutral regime when the inter species collisions are dominant. In particular, the
nonconservative terms were recovered from the generalized Ohm’s law giving the
electric field. Entropy dissipation properties were proved. Several numerical schemes
were proposed and compared. The approach of the present article was previously
validated in one space dimension and first order by comparison with the numerical
results of the underlying Vlasov-Maxwell system discretized at the fluid level ([8]) and
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2 D. AREGBA-DRIOLLET, S. BRULL, AND C. PRIGENT

then at the kinetic level by a DVM method ([13]). Then in [2], a Chapman-Engskog
expansion was performed where diffusive terms are computed and are shown to be
compatible with the entropy of the bitemperature Euler system. The resulting model
is a generalization of the system considered in [15]. This underlying Vlasov-BGK
model has been extended in order to take into account transverse magnetic fields in
[12].

Discrete BGK models have been introduced in a conservative setting in [23] for
the approximation of scalar conservation laws. The method was next generalized for
systems in [6], (see also [7]) in the degenerate parabolic case. Entropy properties are
studied in [10]. In [8], those models are generalized in order to handle the nonconser-
vative terms of the 1D bitemperature Euler system. In particular, the electric force is
integrated in the discrete BGK model. Those terms also make difficult the extension
to second order. The ideas of [25], [26] necessitate some adaptation to preserve the
properties of the first order scheme.

This paper is organised as follows. In section 2, the bitemperature model is
introduced with the discrete BGK model that is associated. In section 3, a first order
scheme is presented. It is a generalization of the numerical method of [8]. In section
4, the numerical scheme is extended to second order. Finally the last part is dedicated
to numerical tests.

2. Underlying discrete BGK model for a nonconservative Euler system.

2.1. The bitemperature Euler system. Superscripts e and i respectively de-
note electronic and ionic quantities. We denote by p¢ and p’ the electronic and ionic
densities, p = p® + p’ the total density, m® and m’ the related masses, ¢® and ¢’ the
mass fractions. These variables satisfy

(2.1) P =mnt =cp, pl=mn'=cp, m¢>0, m >0, +c =1

Quasineutrality is assumed, so that the ionization ratio Z = n¢/n’ is a constant. This
implies that the electronic and ionic mass fractions are constant and given by

(2.2) cezﬂ ci:L
’ mt + Zme’ mi + Zme’

Electronic and ionic velocities u¢, u’ are assumed to be in thermodynamic equilibrium
in the model. Hence, u® = u* = u, where u denotes mixture velocity. The pressure of
each species satisfies a gamma-law with its own v exponent :

(2.3) p° = (7 =1)p%e® =nkpT*, p'= (' -1)p'e’ =n'kpT", 7 >1, 4" >1,
where kp is the Boltzmann constant (kg > 0), e* and T represent respectively the
internal specific energy and the temperature of species « for a = e, i.

Denoting by | - | the euclidean norm in R” the total energies for the particles are
defined by

1 1
(2.4) EY = p%e* + 5p”‘|u|2 =c” (ps”‘ + 5p\u|2), a=e,i.

We denote by v > 0 the interaction coefficient between the electronic and ionic tem-
peratures. The model consists of two conservative equations for mass and momentum
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DISCRETE BGK SCHEME FOR THE 2D BITEMPERATURE EULER SYSTEM 3

and two nonconservative equations for each energy:

Op + div(pu) =0,

B (pu) + div(pu @ u+ (p° +p")I) = 0,

QEC + div(u(E® + %)) —u-V ('p® — cp') = v (T" = T°),
KE' +div(u(E' +p")) +u-V (c'p® — ¢p') = —v(T" — T°),

(2.5)

where I represents the identity matrix in RP. In the following we denote
(2.6) U= (p,pu, &, U™ = (c"p,cpu,E).

The system (2.5) is hyperbolic, diagonalisable and owns 3 eigenvalues A_, Ay (with
multiplicity D + 1 where D is the space dimension), A, :

AL =u-w-—a, Ao =U-w, Ay =u-w+a

where

(2.7) a= /Z'g

is the sound velocity. The fields related to A+ are genuinely nonlinear, while the field
related to Ag is linearly degenerate.

Defining the total energy £ = £° + &' and the total pressure p = p® + p’, one
can note that if I/ is a solution of system (2.5) then (p, pu, &) satisfies the following
conservative system:

Op + div(pu) = 0,
(2.8) ¢ (pu) + div(pu ® u + pl) =0,
0,€ + div(u(€ 4 p)) = 0.

If v¢ = ~* this is the wellknown monotemperature Euler system. But even in this case,
one has to deal with one more equation to determine electronic and ionic temperatures.
If v¢ # ~% system (2.8) is not closed. We want to underline the fact that in both
cases, the solutions of system (2.5) are to be defined in the context of nonconservative
equations were the product of a possibly discontinuous function with a Dirac measure
appears. To give a sense to such solutions, one has to bring more physical information.
In [8] we obtain solutions of (2.5) as hydrodynamic limits of solutions of an underlying,
physically realistic BGK model. The entropy-entropy flux of species a being defined
as

(29) n*(U*) = P~ FCW_W%I

) +c] QU = (U,

S me(ye - 1) (po)"
the total entropy-entropy flux pair for (2.5) is
(2.10) nU) =n°(U) +1'U"),  QU) =nU)u
and we proved the following entropy inequality for these hydrodynamic limits:
Vei )
2.11 o) +divQU) < —————(T" — T°)*.
(211) U) + divQ(U) < e (T = T°)

We then defined an admissible solution of (2.5) as a solution satisfying this inequality.

We now introduce for numerical purpose a relaxing “BGK type” approximation
of system (2.5) in the spirit of [6]. It should be noted that this approximation differs
from the underlying BGK system mentioned just above, despite a formal resemblance.

This manuscript is for review purposes only.
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4 D. AREGBA-DRIOLLET, S. BRULL, AND C. PRIGENT

2.2. A BGK-type kinetic model for a system of conservation laws. In
order for the article to be self-contained we briefly recall the formalism for a system
of conservation laws

D
(2.12) U+ 0y, Fa(U) =0,
d=1

where U(z,t) € Q, Q C RE convex, and F' = (F}, ..., Fp) is a smooth function defined
on Q with values in (R¥)P. In [5], [6] we constructed relaxation approximations of
such a system as a set of transport equations with source term:

D

(2.13) O+ 3 Made I = - (M(PF) — ),
d=1

with

(2.14)

fE=(ff o f2), fo(xt) € RFYE, Ay =diag (vailk, .. varlk), vig €R,

P e L(RF)E,RE), and M = (M, ..., M), a function defined on  with values in
(RE)E. Equivalently we can write

D
1
(215) O+ vaadhu I = < (MIPF?) — 7). 1<I<L
d=1

The compatibility between systems (2.12) and (2.13) is insured by the following con-
ditions:

(2.16) YU €Q, PMU)=U  PAMU))=FyU), d=1,...,D.

By analogy with the gas kinetic theory, we called (2.13) a discrete BGK system, M
being the maxwellian function and P being the moment operator. By applying the
moment operator P to (2.13) one has

D

O(Pf)+ Y 05, P(Aaf?) = 0.

d=1

Moreover, if f¢ — f then f = M(Pf). Therefore, formally, U = Pf is a solution of
(2.12).

In the present article we use the following model, written for D = 2 for the sake
of clarity. We set L = 4, define P as

4
(2.17) Vie RS, Pr=> f.
=1

Let AT, AT, A3, A5 € R be such that A\{ > AT and A\ > A\, . We define the discrete
velocities V; = (v1,,v2,) as

(218) Vi = (>‘1_a0)7 Vo = (07>‘2_)7 Vs = ()‘Tvo)a V= (Oa)‘;r)

This manuscript is for review purposes only.
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DISCRETE BGK SCHEME FOR THE 2D BITEMPERATURE EULER SYSTEM 5

and the maxwellians functions

1 Af

o (30-R0)
1 S

Mo 2R
1 <—>\1

A=A L2

(-

PR - 2

(2.19)

U+ Fl(U)>

U+ FQ(U)>

System (2.13) is a relaxation system for the “macroscopic” system (2.12), in the sense
of [22], [16]. As already shown by these authors, the waves of the relaxation system
(2.13) must be faster than the waves of system (2.12), that is the subcharacteristic
condition. Here we need for the following condition (see [6]):

(2.20) VU €Q, o(FyU)) C ] Zd

which is equivalent to

(2.21) YU €Q, Vie{l,...,L}, o(M(U))c]o,+oc.

It implies entropy properties that are detailed below.

2.3. BGK model for the bitemperature Euler system. In this section, we
use the model above for the development of a numerical method for the bitemper-
ature Euler system, generalizing the procedure in [8]. We restrict ourselves to the
bidimensional case, but the procedure is avalaible in any space dimension.

2.3.1. Construction of the model. For a € {e,i} we denote F¥(U?*) =
(p%u®, p*u® @ u® + p°Lu*(E* + p®)) the flux of the conservative Euler system with
the v pressure law. The set of admissible states Q% = {U* € R*, p* > 0, &* > 0}
is convex. We consider the model (2.13) with (2.14), (2.18), (2.19) for each species:
we have K = 4, L = 4 and we denote M the related maxwellian function defined by
(2.19). The characteristic speeds A are the same for a = e and « = i.

In order to approximate the nonconservative products, let us introduce a force
term linked to the electric field E(x,t) € R?:

Vo = (1,92, 03) € R x R? x R, N(E)p=—(0,01E, ¢ E).

For all U® = (p*, p®u®, £*) € R* one has

4
ST (N(B)MEU®)) = NEJU* = (0,0 F, p*u - F).
=1

(2.22)

This manuscript is for review purposes only.
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6 D. AREGBA-DRIOLLET, S. BRULL, AND C. PRIGENT

Denoting U* = P f*¢, the discrete BGK system for (2.5) is as follows (1 <1 < 4):
(2.23)

2
(o e, qe 15 €,g 1 e e,E e,e el €, ZE
Ol +Z”d,13xdfz’ +ﬁN(E )i Zg(Mz (USS) = f7°) + B (5, f°),

i 1 ; ) )
+Zvdzaxdf N(E) S = - (M) = £7) + BiE(es, 1),
g
d=1
1 i
0,E° — _2( peauewczipz,aum) ’
) m

1 e i
aives =4 (;{Lp i gﬂ,pw) .

¢° = —e and ¢ = Ze are respectively the electronic and ionic charges. The source
terms B*? model the interactions between ions and electrons, see [8]. They are such
that if € — 0 then

(2.24) PB*® - (0,0,0,0°%(T° — T%)).

When ¢ tends to 0, if a limit (f¢, f!, F) exists, then, denoting Pf®¢ = U%¢ and
Pfe =U%, we have formally:
. qe qi .
u® =u' = u, %pe—ﬁ—ﬁplzo, fe= MU, a=e,i.

Consequently, quasineutrality is achieved: p® = pc® and p’ = pc’ and c°, ¢ are the
constants defined in relations (2.2). Therefore £¢ and £’ are given by (2.4) and if
we set U = (p, pu, ¢, EY), then U, U® and U’ are linked by (2.6). By applying the
moment operator P to the two first set of equations of (2.23) and taking the limit
€ — 0, it comes, for a = e, :

(2.25a) Op™ + div(p“u) = 0,

(2.25b) O (p“u) + div(p“u @ u) + Vp* — %Epa =0,
(2.25¢) 0EC + div(u(EC + p%)) — ¢*m Epu = v (T" — T°),
(2.25d) OE" 4+ div(u(E' +pY)) — ¢'m' Ep'u = —v* (T — T°).

By taking into account the fact that ¢, and ¢; are constant, the first equation is just
the global mass conservation, that is the first equation in (2.5). By multiplying the
moment equation (2.25b) for electrons by ¢; and the same equation for ions by c., we
obtain a generalized Ohm’s law for E:

piqi _ peqe
P

= —'Vp© + V'

Moreover, by adding equations (2.25b) for electrons and ions the force term vanishes
and we obtain the second equation in (2.5). Hence U = (p, pu, £¢,E?) is solution to
the bitemperature Euler system (2.5).

Remark 2.1. The above considerations can be recast in a more general framework
including continuous and discrete velocities, see [8], [4], [3] for one-dimensional cases.
Here only the specific model that has been used numerically in the present article is
developed.

This manuscript is for review purposes only.
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DISCRETE BGK SCHEME FOR THE 2D BITEMPERATURE EULER SYSTEM 7

2.3.2. Solutions admissibility. Let us now turn to the admissibility of solu-
tions for the discrete velocity system (2.23). In that aim, we impose the subcharac-
teristic condition (2.21) for electrons and ions, namely, using notation (2.6):

A AT
(2.26) YU € Q, 7d<ud—a°‘<ud+aa<7d, a=ei, d=1,2
QO
where a® = i f is the sound velocity of each species.
P

Remark 2.2. The condition (2.26) does not involve the global sound speed a de-
fined in (2.7). Actually a® < a (resp. a’ < a) if and only if v¢(v¢ —1)e® < ~/(y* —1)&
(resp. v°(7y° —1)e® > ~*(v* — 1)e*). Hence if condition (2.26) is satisfied then one has
also that

AL Ad :
YU € Q 7<ud—a<ud+a<7, a=-ei, d=1,2.
Note that the Maxwellian functions M*(U) can be written as linear combinations of
U® and Fo(U*):
(2.27)  MpU®) =00+ QFF(U") +xi b3 (U?),  1<1<4, a=ei

where 6;, ¢; and x; are real constants. Using the fact that (Q%) (U) = (n®)'(U) o
(F)'(U), it is easy to prove the following result:

LEMMA 2.3. For ao=e,i and 1 <1< L let Gi* be the function defined by
(2.28) YU € Q% GIFU) =0m*(U) + QT (U) + x:Q5 (U).
Then one has
(2.29) YU €, (GP)(U) = (") (U)o (M) (U).

Our entropy result is based on the following proposition.

PROPOSITION 2.4. ([28], [10]) Let n*, Q% be the entropy pair defined in (2.9).
Suppose that the subcharacteristic condition (2.26) is satisfied. Then M is bijective
and one can define the kinetic entropies, for 1 <1 <4 and a = e,1,:

(2.30) HE(f) = GR((MP) )

The kinetic entropies enjoy the following properties:
o forl=1,..,4, the function H is convex. (E0)

-émmwwmzwww (51)
. ; VHE(ME(U™) = Qo(U).  (E2)

4 4
o for all f, by denoting Uy = P(f), one has Y H}(MMUy)) < > H}(fi)-
=1 =1

(E3)
Such kinetic entropies are said to be entropies compatible with the macroscopic
entropy n*.

This manuscript is for review purposes only.
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8 D. AREGBA-DRIOLLET, S. BRULL, AND C. PRIGENT

Then U is an admissible solution of the bitemperature Euler system, that is the
following theorem can be stated:

THEOREM 2.5. Suppose that the subcharacteristic condition (2.26) is satisfied and
that U*=, U € Q, for alle > 0, o € {e,i}. Let U be a solution of bitemperature
Euler system (2.5) obtained by passing to the limit in (2.23). Then, U satisfies the
following entropy inequality:

el

v

kpTiTe

(2.31) InU) +divQU) < — (T" —T°)2.

Proof. First, in (2.23), take the scalar product of the equation over f* by the
gradient (Hf)'(f7), and sum over . The following equation is obtained, where o, 8 €

{e,i} and a # 3:

4 o 4
O <ZHZOL( >+Z‘/I %Z (E) loz,s
=

=1

'S

9

4

1

72Hl Ml (Uae _ oza +Z asBa6< 7fl 5)_
=1

By convexity of Hf* (property (EO0)) and property (E3), the first term of the right-
hand-side satisfies the following inequality:

4 4
Z NMPFUE) — Z (HP (M (U**) = H{ (7)) < 0.
=1 =1

Hence, one gets:

<ZHl >+V V. (H,

=1

Z (E) la,s

(2.32) =t

(HPY (F7) BEP (5 7).

M% %\Q

1

By passing formally to the limit ¢ — 0, one has f* = M*(U®) and thanks to prop-
erties (E1) and (E2), the inequality (2.32) becomes:

4
O (U) + divQe (U%) + LS (HRY (M (U) N (B) My ()
(2.33) =t

(M (U) B (M (U®), M (UP)).

M‘k

l=1

Note that applying lemma 2.3 gives
(2.34) Vie{1,2,3,4}, (H) (MFUY))=0n"(U*)
and by a straightforward computation :

(2.35) (1) (U*)N(E)U = 0.

This manuscript is for review purposes only.
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DISCRETE BGK SCHEME FOR THE 2D BITEMPERATURE EULER SYSTEM 9
Hence, it comes that the third term of the left-hand-side of equation (2.33) is equal

to zero. Moreover, we have

ana( oy = _ 1
o0&« B kT

(2.36)

so by using again equations (2.34) and (2.24), one finds:

4 el
S (HRY (MR (U®) BE (M (U®), M (U)) = (1% — T).
= k’BTa
By summing over «, we obtain estimate (2.31). d

3. A first order numerical scheme for the bitemperature Euler system.
In this section, we use the discrete BGK model presented in the previous section
to design a finite volume scheme for system (2.5), following the ideas in [8]. We
restrict ourselves to a cartesian grid. Denote Axz; and Azs the space steps, At
the time step, and j = (ji,j2) € Z2. Denoting e; = (1,0), es = (0,1), and for
any unknown v(z1,xs,t), v denotes its approximate value at time ¢" in cell C; =
]xl,jlféwfgl,jﬁr%[X]x2,j27%7x2,j2+%['

An approximate solution (U}')jezz of (2.5) at time ¢, being known we set

(3.1) U™ = (cpj, c*pjuf, E5"), JETL?* a=e,i.

We then approximate the discrete kinetic system (2.23).
First step: we set the f"" as
(3.2) = MU, jez?, a=e,i.
2
Second step: we solve the linear set of transport equations 9, f* + Z ANgOy, fO =0
by the upwind scheme and apply the moment operator P. With thed;slual notation
VAER, A" =max()\,0), A =max(—\,0), Af = diag(vilI)lglsL,
we define Vj € Z2,

2
an+3  an At a,n a,n an A+ pan
B3) £ =5 =) a (o g ’%%d)v Wieg = Aa f77" — Mg fike, -
d=1

Then we define U;WJF% as U;-WH_% = P(f]q’n+%). Therefore

Fj+‘"7d = ‘Fd (U] ?U]g+zd)

F(U,V) = PATM(U) — PA; M(V)

which, by the compatibility conditions (2.16), is consistent with F'*.
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10 D. AREGBA-DRIOLLET, S. BRULL, AND C. PRIGENT

In the case of the model (2.17), (2.18), (2.19) we find

If 0<A; <\f, FS(U,V)=F3U),

If Ay <Aj <0, FHU.V)=F(V),

M FU) = A Fg(V) | A (V =U)
M= Ag 20 = Ag)

(3.4)

If A, <0<\, FJUV)=

which corresponds to the classical HLL scheme for conservation laws [29]. We recall
that this scheme preserves the positivity of density and temperature under appropriate
CFL conditions, see [19].

Remark 3.1. Tt is easy to see that Fjo‘”;d = c*F"

n where F'™ is as fol-
+301 J+4a it

lows.

If 0<A; <AL, FJa " 1= = pjug

If Ay <Aj <0, Fjojlr%’l = PitesUdjreq
I A7 <0<\, FOn— Ad Pl _+)‘JP§L_+ed“2L,j+ed A AL (P, - py)
I3l Aj — A, 2005 = A)
Hence pa nth c p;”r? with
ntl 2 At
(3:5) pj t=pj - ;fxd (Fj+%d,1 —Ff—%d,l)-

Our formalism allows us to prove a discrete entropy inequality. Still for model (2.17),
(2.18), (2.19), the upwind scheme (3.3) is monotone if and only if

At
(3.6) vd € {1,2}, Adm <1 with g =max(|]A;[,[AS]).

If conditions (2.26) and (3.6) are satisfied then there exist discrete entropy fluxes

gj_"_ed . le(fjl IS +edl) for d = 1,2 such that
an+i 9 a,n a,n
He( £ 3 Hp go g‘_L
(3.7) l(fj,l ) (f]l )+Z J+g .l j gJSO.
At Azyg

d=1

Namely, consistently with the exact entropy flux V,H}*:

gg,l(sz ’f+edl) “lel (fjl ) — 'Ulel (f]+ed ), d=1,2.
We have then

LEMMA 3.2. We consider the model (2.17), (2.18), (2.19) and we suppose that
conditions (2.26) and (3.6) are satisfied. Then the following discrete entropy inequality
holds:

a,n+i a,n a,n a,n
U (Uj 2)—77”‘(%’ ) A — Qe
. T T o
B2 A R T
where
4 J—
(3.9) QN = G (MP(UF™), MM (UML) = QaU] U y)
J+=
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Proof. Sum equation (3.7) over [ and over a. Thanks to properties (E3) and (E1),
it comes:

Lo ()= o (s (L)) = (7).

which gives the conclusion. O

Third step: we take into account the force terms and the source terms. For all
jE€Z% a,B € {e,i} and B # «a, we define
(3.10)

3 an+i ¢ a,n « a,n n
f;zl,n+4 :fji +3 —Atq N(EJnJrl)f +1+AtB B(f +1,f6 +1)7 1<i1<4
) ) me
and
a,n+3
(3.11) Ut = P(fT),

One obtains the following equations for a, 8 € {e,i} and a # S, p?Jr% being defined

n (3.5):

1
(3.12) p?’"“ = co‘p;H_ 2

2
At At g~
a,n+1 an-l—l a,n an a,n a,n n+1 a,n+1
Pj U =Py Z Azy (F +4,2 F -4 2) + me E57p;

1 an a,n
gxntl — E ( s~ F.e )
J A.’lﬁd J+ 33 i—43t3

At g* )
n+1 n+1 a,n+1 et B,n+1 a,n+1
+ BT ] o P + Atv (T - T ).

Subsequently, it is necessary to ensure that the quasineutrality constraints are satis-
fied, which correspond to Maxwell-Gauss and Maxwell-Ampere equations in the limit
e —0:

e i e 7
q e,n+1 q in+l 0 q e,n+1 en+l q i,n+l int+l _ 0
—p. + —p. =0, —p; U + —p. U, = 0.
me'J me'J me' 7 J mt"I J

1
By remark 3.1 the first condition is satisfied and p;H' = pe Y pl el p;,”r?
The second condition is equivalent to u; ol = uj’"“ = uj . As a consequence if

Z/{"‘”'1 (p?“, ;H'l ntl ,EF mt 5Z "*1) then Uy "+ and Uz 1 satisfy (3.1), so our

notatlon is con31stent By applymg these propertles to equatlon (3.12) for a = e, 1,
one gets:

Fe,n ) + At q En+1 e n+1
. - . Ed
Jt+5,2 Jj—=,2 me Pj

. At ¢t .
_ thed,2> m? E;L+1pz’n+l.

g2 Ti-% i
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324  Hence, by multiplying the first equation by ¢’ and the second equation by c°, and
325 then by substracting one to the other, one obtains, analoguously to the continuous
326 case, the discrete generalized Ohm law:
14 it +14° 11 21
BT I d n 2,1 — n 1 €, _ n _ s
327 Ej ﬁp‘] = E] me,Oj - Z Al’d (6]4’_%1 6]‘_%1)’
d=1
328 where nonconservative products ?Jr <, are defined by:
2
ac n _ _apen e i,n 2
329 6j+%d_ ch+%d’2+ch+%d72€R.

330 Remark that this approximation of nonconservative products is consistent:

331 5;:_%1 = 0a(Uj" Uy ,)s SUU) = (—c'p® + cp")L.
332 Finally, the numerical scheme for the total bitemperature Euler system writes:
(3.13)
2
At
n+l _ n _ n _
Pj = Pj Z Y (Fj-i-%dJ FJ—%‘%l) )
d=1
At
n+l n+l _ n,n n n
Py = pjuy - ; Ary (Fj+%d,2 - ij%d,z) ;
2 At
e,n+1 e,n n _ n
& =&~ Z Azy Fj+%d,3 Fg—%d,s)
333 d=1 ,
.y AL (6 c0 = 07 e ) + AT - TP
R 2 A AR I I ’
2 At
i,n+1 Lwn n _n
& =£ Azy (FJ+67d74 FJ—%dA)
d=1
2 At :
un+1 7(511 R (N ) o Atl/ei T7;,n+1 _ Tg,n+1 ’
+ J ot A.]?d j+7‘l ]—Td ( i 7 )

334 with F;:_ 4 ; defined in Remark 3.1 and

e
2

335 F7 .

_ o,n n _ pemn n _ imn
TP S F' o = F%",  F".  =F"

) J+4.3 j+.3’ J+34 Jj+33

%

o)

a=e,i
336 More precisely:
(—Cip;fed + cep;’fed) edf A, < AT <0,

(—cl-p?’" + cep;’”) eaif 0< A, <Af,

AL . )
d 1. €e,mn e_i,n
(_C Djteq tc pj-‘red) €d

if A, <0< AL,

w
w
~
(%)
-3
o
s
Il

i+ )\(‘i" ) )
—Cl €7ﬂ+ce 1Y
<A$A;( b <R A=A
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Consequently, equations over partial energies can be rewritten:

en+l _ pcen n _ n
gj 5 ZAxd( j+4.3 ij‘—d3>

2
n+1 n n et 1 ,n+1 e,n+1
-t A S (87, g = 07 g ) + AT e,
=1
i,n+1 7, n n o ,m
Ej Z Axy ( J+ 54 ij%dA)
+ Zun-‘rl At 5" . —_m _ Atuei(Ti,n-‘rl _ Te,n+1)
di Agg\ itsd  Ti-Sd J J )
=1
By using the following expression for temperature,
1 1 & kp
Ta = =5\ 75 2 | Ca = a1\ € ) } )
o () ey acled

. . . . .. . 1 i nd1
one obtains an explicit expression of electronic and ionic energies &5 mtl S;’"Jr as
the solution of a linear 2 x 2 system which determinant is:

el 1 1
L+ Atv <p67n+106 + pz n+lcl> 7&0

J v J

Remark 3.3. By summing the expressions for 5?"“ and S;’"H we observe that

the approximation of (p, pu,& = ¢ + &) is conservative, and in the case v¢ = 7* it
coincides with the HLL scheme. As a consequence the positivity of p and of the total

ZTe +T°
Z+1
THEOREM 3.4. We suppose that conditions (2.26) and (3.6) are satisfied. The

are preserved ([19]).

numerical scheme (3.13) is entropy dissipative: with the notation (3.9)

(3.14)

n+1 n 2 on ., _On i

n(uj " ) — n(uj ) Qﬂ’% Qj*%l v i,n+1 e,n+1\2

+ < - i,n+1-men+1 (T TJ ) :
At = Azq kpT;" Ty
Proof. We have
a,n+1 +1 n a,n+1 « ;n+1 a,n+1

O T At —N(EP US4 AR (TP mn ey

with e4 = (0,0,0,1). Multiply this equation by (na)’(U;"”H). (n®)’ being a convex
function, one gets:

« v,n+1 a/pronti « n+1 n+1 an+3
(3.15) (U = (U7 < ) (U = U7,
Using properties (2.35) and (2.36) and summing equation (3.15) over «, it comes:
a,n+1 a,n+3 ;
na(U' ’ ) _na(U' 2) v i,n+1 e,n+1\2
(3.16) > J J < e (T T,
- At kel T;

Finally, by combining (3.8) and (3.16), and using the fact that U;’"H and U;’"H
satisfy (3.1), discrete entropy inequality (3.14) is obtained. d
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14 D. AREGBA-DRIOLLET, S. BRULL, AND C. PRIGENT

4. Second-order extension. In this section, we extend our scheme to the sec-
ond order. The second order in time is reached by Heun’s method. We focus our
attention to second order in space. Like in [27], a piecewise affine reconstruction is
used to determine intermediate values in subcells, but here this viewpoint leads to
practical computations that are not required in the conservative case. Let us first
recall the viewpoint for a one-dimensional system of conservation laws

U + 0, F(U) = 0.

Assume that a first-order conservative scheme has been chosen:

At
n+l _ 7 = n _
Uim =07 — (Fj+% Fj—%)
with F],"Jr% = F (U}, U} ,) and F(U,U) = F(U). Define a piecewise affine reconstruc-
tion:
n n n 1
(4.1) Vo € Cj =la;_1,2;,1], U'(z) =U+o}(z—xj), x;= i(xj_%—I-ijr%).

Once the reconstruction has been chosen, the values at the interfaces are

(4.2)
U;Zr% =U (mj+%))+: j+1_Uj+17a Uj+% =U (mj+%)) =U}+o0; 5

Then modify the first-order scheme in the following manner:

At
ntl _ pm _ 20 - + 0y _ - +
(4.3) Uptt = Up - = (FWUL 0 Uf) - FUZLL U )) -
The stability properties of the first order scheme, such as positivity preservation, are
satisfied by (4.3) under a half-CFL condition. This is due to the fact that this scheme
can be interpreted as a first-order scheme defined on half-cells C';° :]xjfé,xj[ and

Cj+ =]aj, ;1 1], see [27] and also [11]: taking U;r_% in €} and UJ;% in C;r as initial

values at time t,,, one gets:

2At
n+l,— _ 4 4820 4 _ _ _ n
Ut =y - (PO UL - FOL UL )
2At
n+1,+ _ 77— [ — + _ + _
Uptt =, - Ry (PG UL - UL UL).

Then, the scheme (4.3) is obtained by

1 n+1,— n+1
Uf+1:§<Uj+ ; +Uj+ ,+>.
This procedure is extended in the case of a two-dimensional triangular mesh in [27].
More developments, particularly on the limitation procedure can be found in [25], [9],
[14]. Tt is important to note that the effective computation of the numerical fluxes at
the interface of two subcells is not needed in the conservative case. It is just useful
to interpretate the scheme as a combination of first order schemes. One can also
add others subcells in order to realize positivity requirements, but without additional
computational cost, see [9].
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395 To treat the nonconservative case, we want to use the same ideas. We treat
396 directly the case of the two-dimensional cartesian grid. Contrarily to the conserva-
397 tive case, this algorithm necessitates the computation of the numerical fluxes at the
398 interface of two subcells. This is a key point that leads us to detail our procedure.

399 Each cell C; is divided into four subcells, according to figure 1.
4
1 3
2

FiG. 1. For each cell Cj: subdivision into 4 triangles Tj(i) (i € {1,2,3,4}), and corresponding
unit normal vectors.

400 Let (U}); be the approximate solution at time ™. U™ is reconstructed to second-
101 order by using slopes o7 = (a7 ;,0% ), j € Z*:

402 Vo e Cj, Ux) =U + (v —x5) - o]

103 Then, we define four constant states:

(1) n Az, n (2) n Az n
uj —L{j— 9 "L uj —LIJ— 9 2.5
404 Ax " Ay
3) _mn 1 n n n
UJ —U] +To—1’j7 UJ fuj +TO’2J
405 The state Z/IJ@ is the initial value at time t,, in the subcell Tj(i) of C;. We apply a

)
)6 first-order scheme to this new triangular mesh. We follow the same lines as in section
)77 3 except that we need to use the upwind scheme on triangles instead of rectangles.
108 The positivity and entropy properties of this first order approximation are the same
)

409 as in the rectangular case.
. _ () _ /@ .
110 We denote T), =T}, U, =U; . We set
411 U™ = (pp,cpuy, E5"), ™ = MY(UF™),  a€{ei}.
2
112 Then we solve the linear transport set of transport equations 9, f + Z ANgOy, f* =0
d=1

413 by the upwind scheme. For a triangle T),, the adjacent triangles are denoted T},,, T},,,
414 Ty, , the outward unit normal vector from 7}, to T}, is denoted ny, the edge between

3o
415 T, and T}, is denoted I'y. The upwind scheme then writes as
(4.4)
X a,n+% a,n At + rn —
416 fu,l :fp,l _mz<(wnk) u,l_(w'nk) fp,k,l) ‘Fk‘v 16{1727374}
k=1
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16 D. AREGBA-DRIOLLET, S. BRULL, AND C. PRIGENT

which can be rewritten

a,n-i— a n a n
fHJ ? = — At E ‘ikl Hl , klvnk),

where for f,g € R* and n € R?,

Tk

er(fg:m) = ((Vi-n)*f = (Vi-m)"g) o

LEMMA 4.1. Let Ay and Ay be defined in (3.6). The upwind scheme (4.4) is
monotone if and only if the following CFL condition holds:

(4.5) At max — <

Proof. For a given triangle T}, with edges I';, and outward unit normal vectors ny,
we have to satisfy the condition

3
At
vl e {1,2,3,4}, TZ Vi)t Tk < 1.
k=1

It is necessary to compute the quantities G = Ig’“‘lV ng, for each type of interface.
In the setting chosen here, there exist four types of edges:
. V1,1
e Vertical edges (n =e;1): G = =,
8 ( 1) Z&xl
e Horizontal edges (n = eq): G = 2l
AZL’Q

e Diagonal edges similar to the ones between subcells 1 and 2 on figure 1:
U1, V2,1
G=2 - — ).
(Al’l A(ﬂg)
e Diagonal edges similar to the ones between subcells 1 and 4 on figure 1:

G:2(U1’l T U”).

Ax 1 AIEQ
The result is then achieved straightforwardly. 0

The remaining steps for the subcell T, are the same as in the cartesian case, in
particular the homogeneity property of remark 3.1 is still available. Macroscopic
fluxes for species « can be defined as

Y(U,V) € RY, LU Vi) Z% Lu(MP(U), M (V), i)
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and we obtain

3
it =P = ALY Fiu
k=1
3
ottt = o = ALY Fi o,
k=1
3 3
ELTL = E0M — ALY TP+ Atul TN TS 4 A (T - T,
k=1 k=1
3 3
Eml =g — ALY CFR = At o — At (T - T,
k=1 k=1
where

Pt Zf et (U UG ), T = Zfz?,u,z U Ui )

]:k,u,?) = ]:k,u,ii(Uﬁn uptn ) ]:k

Hk’

.7:,2’“’3((]1 n UZ ,n )

wd T i o T

and

Sp = —C T oUS™ US" ng) + ¢ Fp o (UL UL ny) € R,

Computation of partial energies is similar to the first-order scheme, by the resolution
of 2 x 2 system.

()

Z/IJ@’”H the value obtained in subcell number Tj

Finally, denoting , solution at

time t"*! is defined by:
¢ (4)
n+1 i)+l
U = 1 E U; .

Again if v = ~¢, the positivity of p and of the total temperature are preserved under
appropriate reconstruction and CFL condition.

5. Numerical results. In this section, the second-order method developed pre-
viously is validated by a series of test cases: 1D Riemann problem extended to 2D,
2D Riemann problem with four states and an implosion test case.

For all test cases, the following physical parameters are fixed: Boltzmann constant
kp = 1.3807 x 10723 J.K~!, electronic particular mass m® = 9,1094 x 10~3! kg, ionic
particular mass m* = 1.6726 x 10727 kg and elementary electric charge e = —¢° =
q* = 1.6022 x 1012 C. Ionization rate Z is fixed at 1.

The first problem we have to deal with is the choice of the velocities )\f. As
a matter of fact, due to the physical values involved: high temperatures, strong
differences between electronic and ionic masses, the theoretical condition (2.26) largely
overestimates the needed values. Hence the computed solutions are highly diffusive,
even for refined grids. This is due to the fact that there is a high difference between
the electronic and ionic sound velocities. Consequently we choose to use the global
sound velocity:

Ad Ad
(5.1) YU € (), 7<ud—a<ud+a<7, d=1,2
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where «a is defined in (2.7).

5.1. 1D to 2D. The goal of our first test case is to establish the consistency of
the 2D code with already obtained 1D results. In [8] and [13] the one-dimensional first
order version of the scheme presented here is compared to other first order schemes.
It is noticed that in the presence of shocks, that is when the nonconservative products
- V(¢ipe — cepi) are not well defined, the values of ionic and electronic temperatures
are sensitive to the choice of the discretisation method. In particular, the 1D first
order version of the scheme presented here is in good agreement with the DVM and
the kinetic relaxed method, with physically meaningful results. In the present work,
we want to verify that the values of discontinuous temperatures remain the same when
1D and 2D versions of the the scheme are applied, and also when we move from first
to second order. The second order 1D scheme is constructed with the same ideas as
the 2D one.

Let (p,pu, &, &) € R* a solution of the 1D bitemperature Euler system. For
w = (cos ,sin @) fixed, we define for (z,t) € R? x R:

p(l‘,t) :ﬁ(x'w,t), U(I,t) :ﬂ(x-w,t)w, ga(xat) :E/’a(:zz-w,t), a=e,i.

This defines a solution of the 2D system (2.5).

All quantities are in SI units. In order to prove that «; and -, are allowed to be
distinct we choose v, = 5/3, v; = 7/5. We set p(z,0) = 1, u(z,0) = 0, and electronic
and ionic initial temperatures are:

_ 1
Te(z,0) =23 x 10° if 2 < 3 T¢(2,0) = 2.3 x 107 else,

— —
Ti(x,0) = 1.7406 x 10° if =z < 3 Ti(x,0) = 1.7406 x 107 else.

The rotation angle is § = —m/12. Final simulation time is set equal to ¢ = 4.0901 x
10~7. In this test case, we set v = 4 x 10°, so that the ionic and electronic tem-
peratures remain distinct. The 1D test is performed on a 800 points uniform mesh of
[0,1], while the 2D test is performed on a 800 x 800 uniform mesh of [0, 1] x [0, 1].

In figure 2 we present the total 2D density p (left) and electronic temperature
(right) for the second order scheme. Then we compare 1D results with 2D values on
a segment along the propagation direction w = (cos,sin ) passing by the center of
the unit square. We focus on the electronic and ionic temperatures. The first order
and second order 1D plateaux are identical, see figures 3 left (electronic) and right
(ionic). The 1D and 2D results also coincide, see figures 4 left (electronic) and right
(ionic).

5.2. Four interfaces Riemann problem. For this second test case, consider,
on domain [0,1] x [0,1], a partition in four quadrants of identical size. A constant
state is chosen as initial data on each quadrant. Initial velocity is equal to zero over
the whole domain and initial densities are as follows:

p(x1,29,0) =1 kgm ™2, if 21 < 0.5 and o < 0.5,

p(x1,22,0) = 0.125 kgm ™3, if 21 < 0.5 and x5 > 0.5,

p(x1,22,0) = 0.125 kg.me, if z1 > 0.5 and x5 < 0.5,
( 0)

p(x1,x2,0) =1 kg.m_3, if 1 > 0.5 and 25 > 0.5,
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F1G. 2. Shock tube test case with v = 4 x 10°, 800 by 800 points. Left: total density, right :
electronic temperature.

25007 18x107
Te 1D order 1 Ti1D order 1
Te 1D order 2 TP 1D order 2

16x107
200
Lax107

123107
153107
107
8x10°
10’
6x10°

6
ax10
5x10°

2a0°

0 0

FIG. 3. Shock tube test case with v =4 x 10°, 800 by 800 points. 1D results. Left: electronic
temperature, right: ionic temperature.

509 and initial electronic and ionic temperatures are defined by:

T¢(x1,22,0) =293 K ,T%(x1,22,0) =273 K , if 21 < 0.5 and z2 < 0.5,
- T¢(x1,22,0) =220 K ,T’:(xl,xg,O) =200 K, if x;1 < 0.5 and o > 0.5,
' T°(z1,22,0) =220 K , T"(x1, 22,0) = 200 K , if 21 > 0.5 and 25 < 0.5,
. T¢(z1,72,0) =293 K ,T%(x1,72,0) = 273 K , if 21 > 0.5 and x5 > 0.5.
512 Here v¢ = o' = 5/3.
513 We compute the solution on a 2000 x 2000 grid. Final time is ¢ = 0.0001. More-
514 over, we set v* = 100 s~!. Electronic temperature is presented in figure 5.
515 We proceed to cut the solution displayed on figure 5 along two different axis. The

516 first one is along axis x; = 0.05 and is displayed on figure 6 (left). The second one
517 is made along the axis x5 = 0.95 and is visible on figure 6 (right). We retrieve the
518 solutions of the associate one-dimensional Riemann problems.

519 5.3. Implosion test case. In this test case, consider an implosion-type problem,
520 introduced in [20]. The physical domain is the square [—1,1] x [-1,1]. We set ¢ =
521« = 5/3. Initial data for this Riemann problem is as follows: p = 1 kgm™3, u =0
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25007 180107

Te 1D order 2 Ti1D order2 ——

Te 2D order 1 -+ Ti2D order 1 -~
T

Te 2D order 2 2D order 2 -

160107

.
240 1.4x10"
1.2x10"

15x107
10"

8x10°
110"

6x10°
4x10°

5x10°

240°

° L L L L ° L L L L
o 02 04 06 08 1 o 02 04 06 08 1

F1G. 4. Shock tube test case with v¢* =4 x 109, 800 by 800 points. 1D Vs 2D results along the
propagation direction. Left: electronic temperature, right: ionic temperature.

Preudocolor
ar.Te.
4770 0-90

—391.0
.80
304.1

272

130.3
Max: 4779
Min: 130.3

¥-Axis

- F1c. 5. Electronic temperature at time t = 0.0001s for a four interfaces Riemann problem with
ve =100 s~ 1, with a grid of 2000 by 2000 points.

Temperature
Temperature

Fic. 6. Electronic and ionic temperatures at time ¢ = 0.0001s for a four interfaces Riemann
problem with v* = 100 s~1, with a grid of 2000 by 2000 points along axis x1 = 0.05 (left) and along
azis x2 = 0.95 (right).
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nnnnn
Mo 2665
Wins 0727

0.60

% o0

F1G. 7. Total density (left) and electronic temperature (right) at time t = 4.0901 x 10~ 7s for a
implosion test case with v given by the NRL formula with a grid of 500 by 500 points.

m.s~! and temperatures are given by:

T¢(x1,72,0) = 2,3 x 10°K, T'(21,22,0) = 1.7406 x 10°K  if (z1)? + (22)* <

)

=

T¢(21,22,0) = 2,3 x 10K, T'(x1,12,0) = 1.7406 x 10’ K otherwise.

The relaxation frequency v is chosen realistically, according to the formulae given
by the NRL formulary [21].

Thanks to symmetry properties of the problem, it is only necessary to solve it
on the quarter domain [0, 1] x [0, 1], equipped with suitable boundary conditions. On
figure 7, are given the isovalues of the total density and of the electronic temperature
at time t = 4.0901 x 1077 s.

We compare our results to the ones in [20], pages 48-52, which have been obtained
by replacing the nonconservative bitemperature Euler system by a conservative one
with the hypothesis that the electrons have an isentropic behaviour. Qualitatively, the
results are similar, including the numerical values taken by densities, velocities and
temperatures. The difference lies only on the velocity of propagation of the waves. In
order to clarify this point we write the system in polar coordinates for such a solution:
the velocity is a scalar function v(r) multiplied by the radial vector (cosf,siné) so
that |u| = |v|. One has

p(z,t) =p(r,t), u(z,t) =v(r,t)(cos,sind), E*(z,t)=E(r,t)

satisfying the following system:
1
op + 0y (pv) = —;ﬁv
0¢(pv) + O (ﬁvQ +p° +pl) = —;ﬁzﬂ

KE® + 0, (v(E + 7)) + 00, (P — 7)) = ——0(E +77) + va(T7 - Te)

0F + 0, (o + 7)) — vy (77 — ) =~ 0(E 4 7) + va(TF ~ ).

This one-dimensional system can be viewed as the 1D cartesian system with a source
term, so we compute the solution by using a slight modification of the 1D cartesian
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50000
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o

FiG. 8. Total density (left) and velocity (right) along the first bisector at time t = 4.0901 X 107 7s
for an implosion test case with ve* given by the NRL formula with a grid of 500 by 500 points.
Comparison with a 1D computation in polar coordinates.
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FI1G. 9. Electronic and ionic temperatures along the first bisector at time ¢t = 4.0901 X 107 7s
for an implosion test case with v¢* given by the NRL formula with a grid of 500 by 500 points.
Comparison with a 1D computation in polar coordinates.

scheme. We find the same results as the 2D computation, as shown on figures 8, 9
where a cut along the first bisector is provided: the total density and the components
of the velocity are displayed on figure 8. On figure 9 on can observe that at final
time, electronic and ionic temperatures have completely relaxed towards equilibrium
: T* = T°. The discrepancy with the results of [20] can be due, either to the change
of model, or, more probably to an error on the value of the final time of computation
by those authors.

Finally we observe the peak of density at time ¢ = 8.798 x 10~ "sec, see figure 10.

6. Conclusion. In this article, a BGK-type discrete velocity underlying kinetic
system for the 2D bitemperature Euler system has been constructed in order to ap-
proximate the bitemperature Euler system. It takes into account the force term
induced by the electric field and it owns entropy dissipation properties that allow to
prove that the numerical scheme is also entropy dissipative and therefore admissible
in the sense defined in [8].

At first order and if v¢ = +*, we have shown that the total density, the velocity
and the total energy provided by our scheme coincide with those provided by the HLL
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F1G. 10. Implosion test case with v¢* given by the NRL formula with a grid of 500 by 500 points.
Left: density along the first bisector at 3 different times: the peak occurs for t = 8.798 x 10~ 7 sec.
Right: isovalues of the density when the peak occurs.

scheme. Consequently positivity of density and internal total energy are preserved un-
der suitable conditions. The novelty lies in the approximation of the nonconservative
terms via a discrete Ohm’s law for the ionic and electronic energies.

Due to the special structure of the system, we had to develop a new procedure
to obtain a second order extension of this scheme able to preserve the positivity
properties, along with the conservation of the density, momentum and total energy.
The Euler bitemperature system was introduced in the context of Inertial Confinment
Fusion, where high densities and temperatures are involved. During this work we did
not have problems of non positivity, so we did not investigate the effective way to
preserve these properties. This will be done in a forthcoming work.

Several test cases have been performed in order to show the good behaviour of the
method in different situations. We proved that the 2D results are in perfect agreement
with the one-dimensional known ones, validated in [8]. Moreover, for the implosion
test, we compared our results with the ones obtained in [20] with a simplified conser-
vative model. A discrepancy appeared, which led us to perform 1D computations in
polar coordinates which seem to confirm our results.

In order to go towards more realistic applications, we aim to integrate magnetic
fields in the bitemperature Euler model. In [12], starting from a kinetic system coupled
with the Maxwell system in the transverse magnetic configuration, we have derived
a bitemperature system and developed a Suliciu relaxation scheme. Hence we shall
address the discrete BGK model including magnetic fields in a forthcoming paper.
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