The Stationary Boltzmann equation for a two
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Abstract

The stationary Boltzmann equation for hard forces in the context
of a two component gas is considered in the slab. An L' existence
theorem is proved when one component satisfies a given indata profile
and the other component satisfies diffuse reflection at the boundaries.
Weak L' compactness is extracted from the control of the entropy
production term. Trace at the boundaries are also controled.
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1 Introduction.

Consider the stationary Boltzmann problem in a slab for a two component
gas

€5 Fa(2,0) = QUn, fa + )0, (1.1

5 Folw,0) = Qs fa + fo)(.0), (1.2
€[-1,1],v € R3.

The collision operator @ is the Boltzmann operator

QUf.g)(x,v) = /R / (0= 00 ) [f'g. — fou]dwdvs,



where QT (f,g) — Q™ (f,g) is the splitting into gain and loss term,
f*:f(l"v*)u f/:f($7vl)7 f;:f/(xav*)
vV =v— (0= v, ww, v =0+ (v— vy, w)w.

For a more general introduction to the Boltzmann equation for multicom-
ponent gases see ([6]).

The velocity component in the z-direction is denoted by &, and (v—v,,w)
denotes the Euclidean inner product in R3. Let w be represented by the polar
angle (with polar axis along v —v,) and the azimutal angle ¢. The function
B(v — vy, w) is the kernel of the collision operator @ taken for hard forces
as v — v.|?b(0), with

0<pB<2, belLl(o,2n]), bO)>c>0 ae.
The boundary condition for the A component is the given indata profile

fa(=1,v) =kM_(v),£ > 0, fa(l,v) =kMy(v),€ <0, (1.3)

for some positive k.
The boundary condition for the B component is of diffuse reflection type

f5(~1,0) = ( / €1 f(~1,0) )M (1), € >0, (1.4)

¢<0

fe(1,v) = ( ¢ fp(1,0")dv" )My (v), € <O0.
&'>0

My and M_ are given normalized Maxwellians

M_(v) = ——e = and M, (v)

Denote the collision frequency by
v(z,v) = / B(v — vy, w) f(x, vy)dvedw.
R3, xS

In the case of two component gases, for the BGK equation, some results
are obtained in ([9],[10]) from a numerical point of view, when k = 1. The
physical context is described in those papers. f4 represents the density of a



vapor and fp the density of a noncondensable gas. The case of multicom-
ponent gases for the Boltzmann operator in the slab is investigated in ([11],
[12], [13]), when the noncondensable gas becomes negligible. It is proved
that the noncondensable gas accumulates in a thin Knudsen layer at the
boundary.

In this paper, weak solutions (f4, fp) to the stationary problem in the sense
of Definition 1.1 will be considered.

Definition 1.1. Let M4 and Mp be given nonnegative real numbers. (fa, fB)
is a weak solution to the stationary Boltzmann problem with the B-norms
My and Mp, if fa and fg € L, ((—1,1) x R3), v € L} ((—1,1) x R3),
[+ [0])? fa(w,v)dzdv = My, [(1+4 |v))?fp(x,v)dzdv = Mg, and there is
a constant k > 0 such that for every test function ¢ € CL([~1,1] x R3) such
that @ vanishes in a neiborhood of € = 0, and on {(—1,v); £ < 0}U{(1,v); & >

0},
1 8(70
/ /(fan+Q(fA,fA+fB)90)(x,v)dxdv
—1Jrs T
= k/IR3,§<0 £M+(v)@(1,v)dv—k:/Rg7£>o EM_(v)p(—1,v)dv,
/1/ (&f %JrQ(f fa+ fB)y)(x,v)dzdv
_1JR3 Bax B, JA B)¥ s s

- /g M @) v)do( [ € (1))

£>0

- /£/>0 gM—(U)(P(_l,U)dU( glfB(_l,U/)dq}/),

£'<0
The main result of this paper is the following

Theorem 1.1. Given 8 with 0 < 3 < 2, there is a weak solution to the
stationary problem with B-norms equal to one.

In the case of one component, an analogous theorem with boundary con-
ditions of type (1.3) is proved in [1]. In the case of boundary conditions
of type (1.4), an analogous theorem is also shown in [2]. The case of the
Povzner equation for a one component gas with diffuse-reflection boundary
in the case of hard and soft forces is investigated in ([14]).

For diffuse-reflection boundary conditions in n dimensions, the biting lemma
is used in [8] to obtain (1.4). In the simpler one-dimensional frame of this
paper, (1.4) is obtained by a weak L!'compactness argument from a control
of the entropy outflow.



The second section of this paper is devoted to a construction of approximate
solutions to the problem with a modified non symmetric collision operator.
The proofs are performed by monotonicity arguments which give the unique-
ness of the successive approximate solutions. In the third section, the sym-
metry of the collision operator is re-introduced. The weak compactness in
L' is used in this step by noticing that the sum of the two components sat-
isfies the stationary Boltzmann equation in the slab. Section 3 performs the
passage to the limit in the traces. In section 4, some extensions of Theorem
1.1 are made, in particular, the case where M4 and Mp have any positive
values.

2 Approximations with fixed total masses

Let » > 0,m € N*, up > 0, > 0,5 € N*. Here x"™ is a C3° function with
range [0, 1] invariant under the collision transformation J, where

J(v, v, w) = (V, 0], —w),
with x™™ also invariant under the exchange of v and v, and such that
X"Movew) =1, min([€], & €] 16]) = 1,

1
and Xnm(vav*’w) =0 5 ma:r(|£\, |£*’7 |£,|7 ‘&”) <r-— %

The modified collision kernel B, 5, ,, is a positive C°° function approximating
min(B, ), when

- 1 - 1
v2+vf<@,and|v U cw| > —, and|v O ‘wl<1l——
2 v — vy m |v — vy m
By nu(v,v5,w) =0, if
— 1 — 1
v2+vf>\/ﬁor|v U*~w]<—,or|v U*-w\>1——
[v — vy 2m [v — vy 2m

The functions ¢; are mollifiers in the xz-variable defined by ¢;(z) := lo(lz),
where
1

o€ C(RY), support(p) C (—1,1), >0, / p(x)dz = 1.
—1

In order to use a fixed point theorem, consider the closed and convex subset
of L}&—([ilv 1] X ng))a

K={feIl(-1,1] x K, /[1 RGO 0)?) £ (2, v)dado = 2.

4



A non negative function f € K and 6 € [0, 1] being given, let us construct
the solutions F4 and Fp of the boundary value problem

Fy

1+ FAJJF%FB (7, v,)dvsdw

(z,0")

0
aF'y + gaiFA = / Xr’mBm,n,M
Z R3 xS

—FA/ X”’mBmm#Lff(az,v*)dv*dw, (z,v) € (=1,1) x R3, (2.1)
R3 xS 14 T(’D
Fa(=Lv)=AM_(v), £>0, Fa(l,v)=AMi(v) , £<0,

and

F *
B (’/)f('p

T,V x,v; dv.dw
1+ FA}-FB ( )

0
afFp + gaiFB = / XhmBm,mM
€z R3 xS

_FB/ Xntmamlthf(x7v*)dv*dw’ (x,v) S (_17 1) X R?}’ (2‘2)
R3 xS 1+ £22

J
Fp(—1,0) = 0AM_(v), €>0, Fg(l,0)=(1—0)AM.(v), &<O.

The number A > 0 will be fixed in (2.13). Let us prove that the solution to
(2.1, 2.2) is the monotone L!—limit of the sequences (FYy)ieny and (Fb)ien
defined by

F} =0,

14 Latfe 14

0 /
aF T 4 fa—fo‘l = / X" B (x,v,)dvidw

R3 xS

—FAH/ X”"’mBm,n,HLff(x,v*)dv*dw, (x,v) € [-1,1] x Rg*, (2.3)
Rg*xs 1+ Tw

FA(—LU) = )‘M—(U)a §>0, F}4(1,1}) = )\M+(U>, § <0,

and
Fp =0,
0 Fy fro
I+1 Yol rm B ,
aFB +§axFB - /RE XSQX Bm,n,# M(w,v)l n f;ﬂ(x,v*)dv*dw
" i
_Fé—i-l Xr,mBmmef(x,v*)dv*dw, (x,v) € [-1,1] x Rg, (2.4)
R3 xS2 1+ JC]J

FEY (=1,0) =6 AM_(v), £>0, Fg'(1L,v)=(1-6)AM(v), £<O0.



The sequences (F!y);en and (F%)en are well defined, since they solve linear
equations. They are nonnegative , for [ > 1. Let F! = Ff4 + F]lg. It satisfies

F% =0,

) F! [xp !
Rl / "B —(z,?) (,v,)dvidw
RS_ xS B 1+ L2

—FZ'H/ XT’man#&(ﬂv,v*)dvdw, (z,v) € [-1,1] x R3, (2.5)

FH_I(_LU) = (0l + 1)>\M*(U)7£ > O> FH_I(LU) = (2 - Ql))‘M+(v)7£ <0.

First F'! > 0. Write the equation (2.5) in the exponential form,

1 0
—a%—f_ 1ta fR%* 5 X" Bmn,u 1_:& (x+7E€,v4)dvsdwdr

FH = (14 6)AM_(v)e ¢ 7

0 7o¢sff80 fR%* s X" B 1{& (z47&,v4 ) dvsdwdT
+ 7

€ (2.6)
€

X""B L(az + s&,0") fro (z + s&,v))dvidodwds, € >0
RS xS mvnaﬂl + E ) 1 f*‘P s Uk * ) .

J

And so,

/0 7a57f50 fR%* s X" B 1f& (247,04 ) dvsdwdT
J

mmpB ( F (v + s&,0') — L(m + s v’)) (2.7)
R3_ xS X B E ’ 1+ Fljfl ’ '

(x + s&, v, )dvidwds, & > 0.

<]

[y
1+ L2
J

It follows that (F');cy is a nondecreasing sequence for & > 0. Moreover,
By n,, being compactly supported because of the truncation for v? 402 >
Vv, (FY)en is a bounded sequence. Hence, (F!');cy converges a.e to some
F in a nondecreasing way. Passing to the limit in the equation (2.7) when



[ — +o0,

1 0 *
70[%7‘[‘,14% fR%* s X" B, 1ff:¥ (z47&,v4)dvsdwdT
J

F(z,v) =1+ 6)AM_(v)e

0 _ _ 0 r,m fxp « «
+/ . as— [ fR%*XSx Bm,n,u Hf};_v (z+7&,v4)dvsdwdT (2‘8)
_l4z
3
F f*e
M B ——(x + s&,0 x + s&,v))dv,dvdwds, > 0.
[ X Bl ot Tt ¢

For the same reasons,

— 0
_alTx—flgz fR%* «S xr,mBm,n,u&(x-ﬁ-Tf,v*)dv*dwdT

F(z,v) = (2—-0)AMy(v)e
/O 70187‘[90 fR% w5 X" Bmnpu 1:};18 (z+7€,vs ) dvsdwdT
+ *
1

e 7 (2.9)

F fxo
rmp N 7 / ’ Ndv.dod ds. ol
/I%S*XSX m,n:ﬂl_i_?(ﬁﬂ—i—é’f ’U)1+f*ﬁ0($—|—s£ vl)dv.dvdwds, €

Let us show that FA is a converging sequence. Consider QfH defined by

F fxe
A+ : B , /
Ql - /R3 XSXTmBmJLuU«l + E(x + 8577-7)1 m(l"F Sg,v*)dv*dvdw.
* ] ‘7

By using that F4 < F and a convolution with respect to the v variable ([2],
[7]), it holds that wa is strongly compact in L'. So, (F!)en converges
to some Fy in L'. For the same reasons, (ng)leN converges to some Fpg.
Passing to the limit in (??), we find that there are F4 and Fp solutions to
(2.1) and (2.2).

Lemma 2.1. The equations (2.1) and (2.2) each has a unique solution which
18 strictly positive.

Proof of Lemma 2.1. Let F)4 and G4 be two solutions to the equation
(2.1). Consider 1., the approximation of the sign function, and ¢. defined
by ¢-(x) = Ve + 22 a primitive of 1).. Subtract the equation satisfied by
G 4 to the equation satisfied by F4, multiply by . (Fa(x,v) — Ga(x,v)) and




integrate on [—1,1],

1
/1 a[FA - GA](?/’ v)%(y, U)dy + ¢£(FA(17 U) - GA(L U))
[Fa — G4l fxe

1
S/‘/m X B FA+F, e W) *
1 Jms, (14 £atF)(1 4 Catln) 1+ L2

(y, v,)dv,dwdy

xS
' rim fre
_/ Ve[Faly,v) — GA(y,U)]/ X" Bmm,uifw(y,v*)dv*dwdy. (2.10)
-1 R3 xS 1+ ==

J

Passing to the limit when ¢ tends to 0, in (2.10),

1
/ ollFs — Gal(y, 0)ldy + €|[Fa — Gal(1, v)|

-1

1 ‘FA — GA’ f * Q@ ’
< "M B ! , U, )dvudwd
_[I/R%*XSQX mvnvl’«(l_'_FA;FB)(l_’_GA?GB)(y’U)l_i_f;@(y U*) Vxaway
' ram fxe
_ [[Fa — Gal(y,v)]| X" Bmﬂ’uifw(y, vy )dvdwdy.  (2.11)
-1 R3, xR3xS2 1+ =*

J

Integrating (2.11) on R3,

1
/ / ol[Fa — Gal(y, v)|dydv + / €|[Fa — Gal(1,0)[do
R3J—1 R3

! |[Fa — Gal fxe )
< M B v , U, )dvdwdydv
! fxe
—/ |[Fa — Gal(y,v)| XT’mBm7n7M7f* (y, v )dv,dwdydu. (2.12)
-1 R3, xR3x S 1+ 4552
As,

[Fa — Ga|
(14 £adFe)(1 4 Gatln)

HFA—GA](?/?UN > (y,?)),

the right-hand side of the equation (2.12) is negative. Then, for £ > 0,

1
/ / a|[Fa — G al(y,v)|dydvdydv < 0.
~1Jr3

Analogously, the same result holds for £ < 0. So, Fl4 = G 4. Similarly, the
equation (2.2) has a unique solution. This proves Lemma 2.1. [



Let

fa= Fa
4T fmin(u, (1 + |v])P)Fa(x,v)dxdv’
fB s

= Tmin(g, (L1 [0)P) Fp(x, v)dzdo’

The functions f4 and fp are well defined since F4 and Fp strictly positive.
Indeed, writing the equations (2.1) and (2.2) in the exponential form,

1 0 .
- 'Ex e A fR%* %52 X" Bim,n,u 1-f?i¢ (478,04 )dvsdwdr

Fa(z,v) > AM_(v)e ¢ 7 , £>0,
,a%ff?_% fR%* 2 Xr,mBm’n,MIf%(x+7§,v*)dv*d¢ud7

7 , £<O.

Fy(xz,v) > AMy(v)e

So using that fil(a +v(z,v))dx <24 2pu,

Fa(zx,v) > XMy (v)e &, £<0.
Analogously,
_242p
Fp(x,v) > 0AM_(v)e ¢ , £>0,
242
Fp(z,v) > (1 - 0AM ()e” &, £<0.

Let X\ be defined by

. 1
A = min( : —r
Jeo M_(0)min(u, (1+ o)) P)e € do
1
242 .
My (v)ymin(u, (1 + |v|)P)e” e do
£<0
And so,

/min(u, (1 + [v))?)Fa(z,v)dzdy > 1



and
/min(u, (1 + |v))?)Fp(z,v)dzdv > 1.

The functions f4 and fp are solutions to

0 rm fA / f*SO /
Ay - B A (o) L (0 vy
afA+§8fo \/R% ><S2X m,n,ul_i_g(x?v)l_i_ f?p (.I',’U*) Vs QW

—fA/ XT’mBmm’Hf*i(p(a:,v*)dv*dw, (z,v) € (—1,1) x Ri, (2.13)

R3 xS2 1—|—f*7~(p
Vs i
A
-1 = M_ >0
TACL ) = G, (4 o)) (e, e ) o €20
A

fall o) = Jmian(p, (1+ |v\)ﬁ)FA(x,v)d1:de+(v) &0,

and

0 /
afB+§8SUfB:/ Xr’mBm,n,M(vvv*vw) fBF (‘ravl) f*so (wav*)dv*dw

R3, xS? 1+ £ 1+ L
—fB(x,v)/ XT’man#M(ZU,’U*)d’U*dw, (z,v) € (—1,1) x R3, (2.14)
R3, x52 T+ f%“p
A
“1,0) = oM _(v) . £>0,
J8(=1v) [ min(u, (14 |v])?)Fp(x,v)dxdv ) ¢

A
fB(1,v) = fmm(,u, (1+ ‘v|)ﬁ)FB(:p,U)dmdv

Recall that F' is solution to

(1-0M(v) , £<O0.

3 F f * ’
F+§6—F= "M B v T, v, )dvidw
« +£8x /I‘R%*Xs?X m,n,ul_i_lj.r(w’u)l_'_fji( *)

Ixp
J

F(~1,0) = (0+DAM_(v), €>0, F(1,v)=(2—0AM (v), &<O0.

A fixed point argument will now be used in order to solve (2.13, 2.14) with
f=/fa+ f. Define T on K x [0,1] by T(f,0) = (fa + fB,0) with

f§<o €| fp(—1,v)dv
fg<o 1€ fB(—1,v)dv + f£>0 ¢fp(1,v)dv

_F/ Xntm,n,uM(x,U*)dv*dwa (z,v) € (-1,1) X Ri, (2.15)
R3, xS? 1

i— (2.16)

10



where (fa, fp) is solution to (2.13, 2.14).
Lemma 2.2. T is a continuous and compact map from K x [0, 1] into itself.

Proof of Lemma 2.2. Tt is clear that 7" maps K x [0,1] into itself. Let
T, T, and T respectively map f € K into fa, fg, F solutions to (2.13),
(2.14, (2.17). First, T is compact in L'. Indeed, let f' be a bounded
sequence in L'([—1,1] x R? ). Using the following exponential form of F"
and F' = T(fY),

_qltz 01 f rmp fli(gH»va Ydrdvsdw
F ) 14e R%*stx LRI S Yok *
FZ(CL‘,U) g )\(]_ + el)M,(/U)e ¢ B
l
0 704121 ffso f]R<3 «§2 XT’mBm,n,M%(zJFTg:U*)dev*dw
Vg 1414 %@ +
L J Qe+ s v)ds, — (2:17)
T
&> 0,
with

F! Sl
Ql+ (:I:a /U) = / XTymBm7n7u Fl (I’ ’U/) flf ("E, ’U;)dv*dw-
R3_xS? 1+ 5 1+ T@

Because of the convolution of f! by ¢ in the z—variable,

( X" B — (2 + 7€, vy)dTdv,dw)
R3, xS? 1+ L2

is strongly compact in L. Using a convolution by a mollifier in the v—variable([7],
[2]) , the gain term Q;" is strongly compact in L'. Hence, F' is strongly
compact in L' and so Tis a compact map.

Let us show that T is a continuous map. Let f' be a converging sequence in
L'([=1,1] x R?). Then, f!is a bounded sequence in L'. By compactness of

T, F! has a subsequence still denoted F' converging to some F. F! satisfies

0 F! flxo

l l_ ,m !
aF! + éiﬁmF / X BmJW1 T (z,v )1 T
J J

R3, xS?

(x, v;)dv*dw

l
—FZ/ XT’manufi*;p(x,v*)dv*dw, (z,v) € (=1,1) x R3,  (2.18)
R3 xS? B f]ﬂ
FAO(—1,0) = (O + DAM_(v),  €>0,
FPO(1,0) = (2= 0)AM(v), € <0.

11



Writing (2.18) in the exponential form,

1+ 0 : £l
! R S 1?6 fR%* xs2 X" mBm,n,uHTi(ﬂchvav*)dv*deT
F' = (1 + QZ)AM,(U) J
1
0 ,QS,fSO ng w52 X" Bm,n,u f " (z47&,0+ ) dvsdwdr
Vs 14L%
. / . Le (2.19)
_ 14z

r,m F! / fl*gp /
X" By —r (@ 4 8§, v") ————(x + s, v, )dvidvdwds, € > 0.
R3_xS2 Y 1+% 1—|—f]ﬂ

Furthermore, F?®) — F and f*O « o — f ¢ in L'([-1,1] x R3). So,
there is a subsequence to F®(") still denoted by F?!) converging a.e. to F.
Furthermore,

r,m F! / fl * @
X’ Bm,n,u(vav*vw) & (y,v)

Ft flxp
14+ L 1+ L2

(ya ) < JQXTmanu('U v*,w)

So, by the Lebegue theorem applied to (2.19), F' is solution to

8 N rm F ’ f * QD ’
aF + fa—%F = /R%*XSQ X Bm’n,“1 n g(:r;,v )1 n f;k—,‘p (x,v,)dvdw,
—F/ XT’mBm,n,,uif*(fmU*)dU*dwa (ZL‘,U) € (_L 1) X Rga (2'20)
R3. xS2 1+ T‘p
F(-1,v) =@+ 1)AM_(v), £€>0, F(l,v)=(2-0)AM(v), £<0.

Reasoning as in the proof of Lemma 2.1, (2.20) is proved to have a unique
solution. Then, the whole sequence (F');cn converges to the solution to the
equation (2.20). This proves that T is continuous. For analogous reasons, T4
and Tp are continuous and compact maps. Therefore, the first component
of T, T4y + Tp, is a compact and continuous map. It is clear that the
second component of 7' is compact. So, it remains to show its continuity.
Consider f! converging to f in L' and let us show that 6; converges to 6.
Recall that 0 is defined in (2.16). Thanks to the truncation in the & variable
(ng €2 f'(z,v)dv) is uniformly bounded in z. And so, Q;(f%, f!) converges

to Q(fp, f) in L'. Consider a continuously differentiable function ¢ defined
[—1,1] with values in [0, 1] such that ¢(—1) = 0 and ¢(1) = 1. fL satisfies

12



the equation (2.14),
1 o 1
| &gl = fat@oe@lds = [ (@b )= Qs Npla)da

-1

1
+ [ (-t o) ela)ds

1
- a / (= fo)(w.0)pla)de.

Since ¢ and ¢’ are bounded, it follows that

1
/ (L (L) — fe(Lo)lde < / / QY. ') — QUfs. f)ldrdo
R3 r2 J_1
1
o [ Wb fa)aldeds
1
T /R I/_ll(fé—fB)(x,v)ld:vdv-

Q(f]g,fl) and f]lg converge respectively to Q(fg, f) and fp in L'([—1,1] x
R3). So, fL(1,.) tends to fg(1,.) in L'. Analogously, f5(—1,.) tends to
fe(—1,.) in L'. Then, f£>0 £fL(1,v)dv tends to f£>0 ¢fp(1,v)dv. In the
same way, f£<0 |£|ffg(—1,v)dv tends to f£<0 |€|fB(—1,v)dv. Hence, the se-

quence (6;) converges to . Finally, T is a compact and continuous map
from the convex closed set K x [0, 1] into itself. [J
It follows from the Schauder fixed point theorem that there is (f,#) with

f=fa+fB

fg<o €1 fB(—1,v)dv

0=
f5>0 ng(la ’U)d’U + f§<0 |£|fB(_1a ’U)d’U

that satisfy

9 _ r,m fA / f*(/)l !
afA+§afo—/R% ><S2X Bm,n,u1+g(m,v)l_k%(m,v*)dv*dw

s X" By s f* o (z,0,)dvedw, (z,0) € (—=1,1) x R3, (2.21)
R3, x? Ty b

fA(_LU) :k'AM*(’U)a £>0a fA(lvv) :kAMJr(U)v £<0

with

13



A

ha = [ min(u, (14 |v])B3)Fa(z,v)dzdo

and

9 _ r,m fB / f*(Pl /
afp +§8$fB_/Rg xS2X Bm,n,ul+§(x,v)1+%(:p,v*)dv*dw

fB/ XT’mBm,nyuf*iwl(x,v*)dv*dw, (x,v) € (—1,1) x Rg,

Jeco [€lFB(=1,v)dv
f§>0 ffB(L U)dv + f5<0 ‘£|fB(_17 U)dU
Jeso l€1B(1, v)dv
Jeso &fB(L0)dv + [, €] f(=1,v)dv

fB(=1,v) = N( YM_(v) , £>0,

fB(1,v) = X( JMi(v) , §<0,

with
A

N fmin(,u, (1+|v|)?)Fp(z,v)dzdv’

)\/

Keeping, I, j, r, m, p1 fixed, denote f7®Lmm:# by £ and study the passage to
the limit when « tends to 0. Writing the equations (2.21, 2.20) in exponential
form and using the averaging lemmas together with a convolution with a
mollifier ([2],[7]) give that f¢ and F® are strongly compact in L!([—1,1] x
R3). Denote by f4 and F the limits of f¢ and F'*. The passage to the limit
when « tends to 0 in the equation (2.21) yields

9 / fa N /
Zfa = M. T, x, v, )dvidw
r f * Q]
_fA /R3 ><SX vam,n,um(l‘,U*)dv*dw, ($,U) S (—1, 1) X R%,
* J
A
—-1lv) = M_ >0 2.22
) = i PP Fate oz €70 B2
A
fA(lvv)_ M (U) ) £<0>

~ [min(u, (1+ [v])8)Fa(z,v)dedo™ ©

with

/min(u, (1 + [v))?) fae,v)dzdv = 1.
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For the same reasons, the limit fp of f3 satisfies

9 r,m fB / f*(aol /
5@]03 = /RS xS?X Bm,n,ul n E(x,v )1 n M(w,v*)dv*dw
Vs J j

_fB/ Xr,mBm’nyulf*;ffm(x’U*)dU*dw’ (w,0) € (-1,1) x R3,  (2.23)
R3, xS? + ==

fe(=1Lv)=c(-1)NM_(v), £>0, fp(l,v)=0c()NMi(v), £<0,

with

/min(u, (1 + | fa(x,v)dedv = 1,

where
oel) = Jeco l€175(=1, 0)du
Jeso§FB(Lv)dv + [¢ o [l fB(=1,v)dv’
o(l) = Jeso &m0l 0)
Jeso6FB(Lv)dv + [e €] (=1, v)dv
and \
\

- [ min(p, (1 + |v|)8)Fp(z,v)dzdv’
The passage to the limit in (2.22) and in (2.23), when [ tends to oo is similar
and implies that the limits f4 and fg of f,l4 and ffg are solutions to

0 JA / J !
—f4= " Brn T,V z, v, )dv.dw
gafo /%*XSZX , ,/11 ép( )1 i( )

J

—fa X’“’manuL(x,v*)dv*dw, (z,v) € (—1,1) x R, (2.24)
R3, xS2 | —|—§

fA(_laU) = ]CAM_(’U), §>0, fA(lvv) = kAM—i—(U)v §<0,
with
[ mintin (40 fate o)dzdo = 1.
where k4 is defined in (2.21) before passing to the limit and

9 m /B N[ '
= fp= rmp B L (z,0))dv.d
§a$fB /IR{%*xSQX myn’“l—l—?(‘r’v)l—l—%(l’v)v w

—fB/ X’"’mBmm,MLf(x,v*)dv*dw, (x,v) € (—1,1) x Rf’,, (2.25)
R3 xS2 1+ 7

fe(=1v)=o(-1)NM_(v), £>0, fp(l,v)=0c(1)NMi(v), <0,
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/min(u, (1+ [v))?) fp(z,v)dzdv = 1,

with,
o - Jewo €15 (=1, 0)do
Jeso&f(L,v)dv + [ €l fB(=1,v)dv’
o(1) = f§>0§fB(17U)dU
Jeso&fB(Lv)dv + [ o€l fp(—1,v)dv’
and

F = Fo+Fp, with Fy and Fp defined by (2.1, 2.2) after passing to the limit.

We are going to pass to the limit when j tends to the infinity (2.24, 2.25).
The sequences of solutions (f%) and (f}) to (2.24) and (2.25) are weakly
compact in L'([—1,1] x R3). Indeed, f/ = fﬁl + ffé satisfies the Boltzmann
equation for a one component gas. By using the entropy production term
([2]), we find that f7 is weakly compact in L'([~1,1] x R3). The weak
L' compactness of f,jal and fé follows from 0 < fﬁl < fiand 0 < f]jg <
f7. Denote by fa and fp the limits of fﬁx and fé, up to subsequences.
Furthermore, Q;r(fj, f7) and Q;(fj, f7) are weakly compact in L*([—1, 1] x
R?) ([2]). So, by the inequalities

QN (FA 1) < QF(F, 1), QF (fh. 1)) < QF (7, 1),

Q7 (f4 1) < Q5 (f7,£7) and Q5 (fh, £7) < Q7 (£, f7),
the collision terms Qj(fé,fj),Q;(fi, fj), Qj_(fi‘,fj) and Qj_(f{g,fj) are
weakly compact in L'([~1,1] x R}). So, f} and fj satisfying (2.24, 2.25),

¢2 f) and €2 f1 are weakly compact in L'([—1,1] x R3). Pass to the limit
when j — +o0 in the weak formulation of (2.25),

[ eelw) fhadado + / " B, 0)
[-1,1]xR3 353 [-1,1]xR3 JR3 ><82

Ih n—t’ ! e dv, dwdzd
(1+F]+FJ (x,U)l—'_J;j(x,U) fB(x U)1+];J($ ’U*)) Vs AWATAV (226)
- /5 e [ er-1op-1 o
—aj(—m'/ EM_(0)p(—1,0)dv + T (N [ My (v)(1, v)do,

£>0 £<0
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where
Jeco [ELFB(=1,v)dv
Jeco lEl B (=1, 0)dv + [ &fh(1,0)dv’
f5>0 §ff§(1,v)dv
Jeco lElFB(=1,0)dv + [ g & fh(1,v)dv”

and ¢ is a test function belonging to CL([—1,1] x R?). First,

] J
lim/ / X" B up(x,v) J;? 3 (z,0) / 7 (z,v))drdvdv,dw
I J[-1,1]xR3 JR3 xS2 1+ Attp 1—1—7
J

J—00

= lim /[ - /RS SXT’mBmm,Mgo(:z:,v')f{?(a:,v)fj(x,v*)dxdvdv*dw.
— 1,1 XIRg s X

X" By, being bounded, f7 and & 8% 17 being weakly compact in
LY([-1,1] x R?_ x S), an averaging lemma applies, so that

(fR;U,* s X" By (2, v:) (2, 0" )dvsdw) jen converges to

fR% w52 X" B f (2, 04) (2, v")dvgdw in LY([—1,1] x R?). Furthermore,
because of the truncation in the &, variable for small velocities, this sequence
is bounded. f} and 58%f133 being weakly compact in L!([-1,1] x R3), using
once more an averaging lemma

(/[ - /R3 SXT’mBm,n,Mfé(:c,v)fj(x,v*)cp(x,v/)dv*dwdxdv)jeN
—1,1]xR3 5 X
converges to

/[11} o /R3 . X" B B(2,0) f (@, v:) (2, ") dvedwdzdo.
—1,1]xR3 L X

So, Qj(f]g, f7) converges to Q(fg, f) in L'. Hence, reasoning as in the proof
of Lemma 2.2, we find that ¢/ (—1) (resp 0/(1)) tends to o(—1) ( resp o(1)),
when j tends to infinity. By passing to the limit when j tends to infinity in
(2.26), it holds that there is f5" solution to

9 ’
éaifgu = / Xntm,n,M gﬂ (x, U/)fr”u ((E, v*)dv*dw
T R3 xS

A [ X B e 0o de, (o0) € ((L1) X BY, - (22)
R2 xS?

5 (=Lv) =o(-1)NM_(v), £>0, [fg"(1,v)=0c()NMi(v), £<0,
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with
/min(,u, (1+ )P ft (z,v)dzdo = 1.

Here,
O'(—l) _ f§<0 |£’f§u(_177))d7)
Jeso €5 (Lv)dv + [o o €l f5" (=1, v)dv
and
o(1) = Jeso&15" (1, v)dv
Jeso €15 (L v)dv + oo [E1F5" (=1, 0)dv’
Moreover,
[ enranan- [ en-1oa=o
R3 R3
so that,

[ el [ jer-tom =y,
§>0 £<0
Hence, the boundary conditions in (2.27) write
Pt = [ L @) L €0
£<0
B = [ o) L e<o
>

The passage to the limit when m — 400 and n — 400 in the equation
(2.27) is performed as before and implies that there is f5" satisfying,

e i = [ Bl — o) 0
T R3 xS?
— g“/ X Bu(v — v, w) fH (@, v)dvedw,  (z,v) € (=1,1) x RS,
R3, xS?
P10 = M) [ Lod >0 @)
£<0
B0 = Mu) [ e L €<
£>0

with

18



/min(,u, (1+ )P ft (z,v)dzdo = 1.

For the same reasons, there is f;" satisfying,

0 r r T T !
el = [ X Bulo = ) i) ) o
2 X

— [t X"Bu(v — vy, w) [ (z, v )dvgdw,  (z,v) € (=1,1) x R3,

R3 xS?2

f,q#(_lav) = k'AM—(U)7f > Oa fgu(Lv) = kAM+(v)7§ < 07 (229)

with
[ mintie (14 o)) 75 G o)dodo = 1,

where k4 is defined in the equation (2.21) before passing to the limit.

3 End of the proof of the main theorem

Let (rj)jen with lim; oo r; = 0 and () jen with limj.4 o0 p1j = 400,

A= fi{" and f} = f3"". The passage to the limit when j — 400 is now
performed in the weak formulations satisfied by le and fé. A positive num-
ber § being fixed, let ¢ be a test function vanishing for [§| < § and for [v] > 3.

Since f/ = f% + f% satisfies the Boltzmann equation for a one component
gas, using the entropy production term ([1]), f7, Qj_(fj, f7) and Qj(fj, )
are weakly compact in L'([—1,1] x {v € R% |¢| > 6, |v| < $})). The weak
compactness of £, f, Q7 (f4, 1), QF (£, £), Q; (3, £7) and Q7 (f}, )

follows from the inequalities

0<fF<H, 0<fFL<f, Qi (fF)<Qr (. f),
QI (fL ) <RI, 1), Q (fh ) <Q;(f,f)
and QF (5, 1)) < QF (£, ).
Denote by f4 and fp the limits of fix and fé, up to subsequences. As in

([1),2)), |
i [1Q7 (7 )~ @ (fa. lpdade =0 (3.1)

J—00
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Next, performing the change of variable (v, v, w) — (v/, v}, —w), the same

property is obtained for the gain term,
1 o 1
lim / / Q;r(fﬁl,fj)gpdmdv :/ Q" (fa, fpdzdy.
“1JR3 ~1JRr3

j—Foo

Analogously, the same result holds for fp. It remains to pass to the limit in
the boundary terms (1.4) i.e to prove the weak convergence in '

LY({v e R3¢ > 0}) (resp L1({v € R3, & < 0})) of f5(1,.) (resp. fo(—1,.))
to fp(L,.) (resp. fp(—1,.)). First, the fluxes [._, £f%(1,v)dv and

f§<0 \ﬁ\fé(—l, v)dv are controled in the following way. From (2.28) written
in the exponential form, it holds that

' ; [ 0ha fas o X B I (256,00 dvaduds 1
fhlaw) = fh(-Lo)e TE L E>5 ks,

) —fo,z Jp3 w5 XI BI fI(z+5E,0x ) dvsdwds 1
fé(fﬂ,v) 2 fé(lvv)e 1T R%* * 9 £< 757 |U’ S 2.

Recall that,
Vi (z,v) = / X' B {7 (z, v,)dv,dw.
R3_xS2

For v satisfying |v| < 2 with £ > % or £ < —%, _11 V]fg"v) dz is uniformly

bounded from above. Hence, using the definition of the boundary conditions
(1.4) in (3.2),

fhle) = M) [ eIfpLod e g <2

; 1
cM (v) fp(Lv)de , < —5, Ju[ <2
£>0 2

fh(z,0)

v

So,

c/ [z, v)dzdv
{€> 5. vI<2}U{e<—3,|v[<2}

> [ efhv)do+ /E Jelfh(-1 v
<

&0

f% being non negative,

1 .
e [ ] mintu, (U o)) o o)deds
—1.Jr3

> [ e o) + /§<0\€!fé(—1,v>dv.

€0
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Since f_ll s min(u, (14 |v])?) f4 (2, v)dzdv = 1, the fluxes Jeso £fL(1,v)dv

and f£<0 |§\f{3(—1, v)dv are bounded uniformly w.r.t j.
Furthermore, the energy fluxes are controlled. Indeed, by conservation of
the energy for f7,

§v2f£(1,v)dv—|—/ ]§|v2ff§(—1,v)dv
£<0

£>0

< [ erprom [ (g

§>0 £<0
By definition of the boundary conditions (2.29) and (2.28),
& (oot [ gt r(-1,0)ds

£>0 £<0

sW+/ €11 )d) [ € M_(v)dv (3.3)
£'<0 £>0

i+ [ e [ g
£>0 £<0

The right-hand side of (3.3) being bounded,

56*%@@@+Lom#gewasQ
>0 <

Finally, the entropy fluxes are controled. Indeed, f/ = fi + fé satisfies the
following equation

€5 (7 (1og() ~ 1)) = Q7. Plog (). (3.4

Using a Green’s formula and an entropy estimate in (3.4), leads to

Uymm%@amm+/ E175(—1,0) log fiy(—1, v)dv
£>0 £<0

<(f €0 + k)
&'>0

[ @tog M | €L+ 4
([ 11 + 1)
£'<0
[ M )osM_)( [ (€181’ + K)o
£>0 £'<0
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By the Dunford-Pettis criterion ([5]), fé(l, .) is weakly compact in

L'({v € R3,¢ > 0}). Let one of its subsequence still denoted by fé(l, ),
converging weakly to some g, in L'({v € R3, ¢ > 0}). It remains to prove
that g+ = fp(1,.). Consider a test function ¢ vanishing on

{1¢] < 6} U{|v] > L} and satisfying ¢(z,v) = ¢1(2)¢p2(v) with ¢1 =1 in a
neighborhood of 1. Recall that the trace fp(1,v) can be defined by

fe(1, —hm/ fB(1—e€,v)de ([4]).

0—0 €g

(pf 133) satisfies the equation

J
I8 _ %% 1y s e (35

Integrating (3.5) on [1—¢,1] x R3 and using a Green’s formula, it holds that

1 € . ‘
“ /R | b0 = 01 = e oppateydvad
L[ Yo g
< 60/0 /R% /150 1Q;(fg: [7) (@, v)p(x,v)|drdvde (3.6)

L[ . i dxdvd
+— z,v)é=—p(z,v)|drdvde.
= /R | bt o)

Let 7 > 0 be given. By the weak compactness of f]é and Qj(ffé,fj) in
LY ([-1,1] x {v € R3,[¢] = 6,|v| < }}), there exists €y > 0 such that for
€p < €p, uniformly w.r.t j,

1 o
/R% /1_60 Qi (fL, ) (, v)p(x,v)|dadv < g

' j 0 .
&3 1o ‘fB<$,v)§%<p(x,v)\dxdv < >

So the inequality (3.6) gives, for ¢y < €p, uniformly w.r.t j,
1 €0 . .
= [ e - b cv)patodeds| < . (37)
€0 Jr3 Jo

By the weak compactness of fé in LY([-1,1] x {v € R3,|¢| > 6, |v] < 1}),
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/R% /0 0 ffé(l —€,0)p2(v)dvde — /R% /o ’ fB(1 — €, v)p2(v)dvde

when j tends to infinity. Passing to the limit when j tends to infinity in the
inequality (3.7), implies that

1 “
S ] o - fat = eo)eato)dode] <,
€ Jrs Jo
Next, passing to the limit when ¢ tends to 0,
[ €lar1.0) = fa(10)ga(w)de] < 1. 3.

The inequality (3.8) being true for all n > 0, g4+ and fp(1,.) are equal on
the sets {v € R3,|¢| > 6, |v| < 4} for all § > 0 and so a.e. The same result
holds for fg(—1,.). Therefore, we can pass to the limit in (2.28, 2.29). This
ends the proof of Theorem 1.1. [J

4 Some extensions
Theorem 1.1 can be generalized to the case of any values of the G-norms,
My and Mp.

Corollary 4.1. Given 8 with 0 < 8 <2, Ma > 0 and Mp > 0, there is a
weak solution to the stationary problem with G-norms M and Mp.

Proof of Corollary 4.1. Define M = M4 + Mp. In the first part of the
proof of Theorem 1.1, choose X satisfying,

My
Jeso M- (@)min(u, (1+ o)D) € du
: Ma
) _ 2+ M
Jeco M (@)min(u, (1 + [o])?)e & do

A > min(

and
Mp
2+ M
Jeso M—(0)min(p, (1 4 [o])#)e™ € do
. Mp
) M .
Jeco Mp(0)min(u, (1 + [o])#)e” 4 dv

A > min(
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In the fixed point part, choose
K ={f € IL([-1,1] x B®; / min(p, (1 + [v)%) f (2, v)dzdo = M}. (4.1)

Reasoning as before, there are f4 and fp solutions to the equation (1.1)
with respective f—norms M4 and Mpg. O

In the presence of several gases of the A component and several gases of the B
component, Corollary 4.1 can be generalized. Consider (f4, fan o B ....fBNB)
with f4, satisfying

;rfAi = Q(fAi7fAl) +.t Q(fAi7fANA) + Q(fAi?fBl) +..+ Q(fAi7fBNB)7
(z,v) € (=1,1) x R3,
fa,(=L0) = ka,M_(v), £>0, fa,(1,v)=kaMi(v), £<0,

and fp, satisfying

0
%fBi :Q(fBi7fA1)+"'+Q(fBi7fANA)+Q(fBi7fBl)+"'+Q(fBi7fBNB)7
(ZE,U) € (_171) X R%?

fa-10) = ([ [€1a (1)) € >0,

£'<0
fBi(l,’U) = ( flfBi(l,v’)dv’)M+(v) , £<0.
&'>0

Corollary 4.2. Given B with 0 < § < 2, MAI""MANA and MBI""MBNB
there are weak solutions fAl"‘fBNB to the stationary problem with respective
B-norms Ma,, ..., MBNB .

Proof of Corollary 4.2. Let f = fa, +....4+ fay +fB, +--oon. + fBy- The
Boltzmann operator corresponding to the A; component is
Q(fa,, ) = Q(fa;s fa )+ +Q(fa,, fay ) +Q(fa;, fB)+ . 4+Q(fass fBy )
([6]). For the fixed point step, define K as in (4.1) and consider the compact
and continuous map 7 from the closed convex set K x [0, 1]V2 into itself,

T: (f: 017"'a9NB) — (fA1 + ...+ fANA +fB1"'fBNB79~17"'79~NB)7
with

Oy = Jeco 1€l fBy, (=1, 0)dv
N; f§<0 |§‘fBNi(_17v)dv+ff>0£fBNi(]—7’U)d’U.
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The corollary follows by the same arguments as before. [

Remark that the case of a one component gas with one boundary condi-
tion of the type (1.3) and another of the type (1.4) can also be solved. It
comes back to the diffuse-reflection problem solved in ([2]). Furthermore,
this problem can be generalized to several components by reasoning as in
the proof of Corollary 4.2.

Theorem 1.1 can also be generalized to the case of a convex combination of
boundary conditions of the type (1.3) and (1.4),

E5-F =QULD, (00) € (1,1) <Y,
F10) =l AL 0N 0+ (LM () >0

f(l,’l)) = a( £50 {f(l,v)dv)M+(v) + (1 - a)kM+(v) , £<0, (42)

a € [0,1].

Corollary 4.3. Given 8 with 0 < 8 <2, M > 0 there is a weak solution to
the stationary problem (4.2) with the B-norm M.
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