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Abstract. We are interested in the numerical approximation of the bi-temperature Euler
equations, which is a non conservative hyperbolic system introduced in [4]. We consider a
conservative underlying kinetic model, the Vlasov-BGK-Poisson system. We perform a scaling
on this system in order to obtain its hydrodynamic limit. We present a deterministic numerical
method to approximate this kinetic system. The method is shown to be Asymptotic-Preserving
in the hydrodynamic limit, which means that any stability condition of the method is indepen-
dant of any parameter ε, with ε → 0. We prove that the method is, under appropriate choices,
consistant with the solution for bi-temperature Euler. Finally, our method is compared to
methods for the fluid model (HLL, Suliciu).

1. Introduction

Plasma physics is renowned for being a multiscale problem ([13]). Phenomena range from
plasma oscillations and charge separation at very small scales to fluid mechanics at macroscopic
levels. Different physical models exist in order to describe a plasma according to the scale of in-
terest. The kinetic model, constituted of the Vlasov-Boltzmann equations, coupled with Maxwell
equations, are well suited for mesoscopic descriptions. In this model, each population of particles
α (in the case of a plasma, these are electrons, ions and neutral atoms and molecules) is rep-
resented via the use of a distribution function fα. This function, defined over the phase space,
denotes the number of particles that, at a given time t at a given point x, possess a velocity
v. Via an hydrodynamic limit, equations on the macroscopic conserved quantities (mass, mo-
mentum and energy) can be derived. These equations form the so-called bi-temperature Euler
system (see [4] for the electrostatic case, and [9] for the transverse magnetic case, and [3] for the
viscous development). From a numerical point of view, these equations are less accurate than the
underlying kinetic model, but they are cheaper to solve.

The bi-temperature Euler system is comprised of an equation over mass, an equation over mo-
mentum, and one equation over each species energy. These energy equations are non-conservative,
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accounting for the fact that, in a plasma, electrons and ions are exchanging energy through col-
lisions and via electromagnetic interactions. Contrarily to the usual Euler system, for which
the exact solution of any Riemann problem is known, these non-conservative terms prevent the
knowledge of such solutions, especially when the solution contains a shock. This is a consequence
that these non-conservative terms are written as products of distributions, which does not possess
a clear definition. [17] presents a way of defining these products using a theory of paths. It is
made clear that a certain amount of arbitrariness is needed in the choice of such paths. A major
drawback of this property is that, when attempting numerical resolution of this system, every
numerical scheme chooses its own path, and the Rankine-Hugoniot relation holding across shocks
will be different for every scheme. This phenomenon is highlighted in [4]. More precisly, different
schemes have different numerical viscosity, and the shock relations depend on such viscosities.
Several solutions have been proposed in order to derive numerical methods that use the notion
of paths to define jump relations ([28], [11]). Other approaches have been proposed for differ-
ent kinds of non-conservative systems (see [12], [21], [26], [29], [1]). Finally, Bouchut’s book [7]
presents an overview of numerical methods for non-conservative Shallow-water equations.

In this paper, the aim is to propose a reference numerical method for such solutions using
the underlying kinetic model. This kinetic model is conservative, and hence does not exhibit
the drawback of the macroscopic model. Hence, the idea dwells in solving the Vlasov-BGK-
Ampère system in the hydrodynamic limit, which will be presented in section 2.3. In order to
be able to compare the results with the scheme applied to the bi-temperature Euler system, it is
necessary to describe identical scales. By performing a scaling on the kinetic system, dimensionless
parameters (scaled Debye length, scaled plasma frequency) are introduced in the system. Taking
the hydrodynamic limit then amounts to taking the limit when these parameters tend to zero. In
the general case, if a naive numerical approach is used, extremely restrictive stability conditions
will appear, rendering the scheme unusable in a decent amount of computation time. Hence,
an Asymptotic-Preserving (AP) scheme needs to be derived. Such a scheme possess stability
conditions independent of these small parameters and is then able to compute solutions for both
cases when parameters are of the order of one and when these parameters are arbitrarily small.
The adjective Asymptotic Preserving has been introduced by Shi Jin in [23]. In the study of
plasma simulation, numerous several Asymptotic Preserving methods have been proposed for
various models, such as Euler-Maxwell, Euler-Poisson, Euler-Lorentz, Vlasov-Poisson ([20], [8],
[19], [16], [15], [18], [5]).

The paper is organized as follows. Firstly, the macroscopic and kinetic models relative to our
problem are introduced. A reduced 1D3V kinetic model is derived, and the relative properties of
moment conservation and entropy dissipation are specified. Subsequently, a scaling of the kinetic
model is proposed in order to exhibit the limiting behaviour of the system. Then, a Asymptotic-
Preserving numerical method is presented. This method is able to compute solutions of the
kinetic model in the asymptotic regime. Finally, test cases are presented in order to illustrate the
derived method. In particular, the numerical results are compared with an HLL-inspired method
and a Suliciu relaxation approach, both derived in [4].

2. Description of the models

2.1. Bi-temperature Euler model. The one-dimensional bi-temperature Euler model describes
the behaviour of a two species fluid (constituted of electrons and ions) on a macroscopic scale
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(see [14]): 

∂tρ+ ∂x(ρu) = 0,(1a)
∂t(ρu) + ∂x(ρu2 + pe + pi) = 0,(1b)

∂t(ρiεi + 1
2ρ

iu2) + ∂x(u(ρiεi + 1
2ρ

iu2 + pi)) + u(ci∂xpe − ce∂xpi)

= −νei(T i − T e),

(1c)

∂t(ρeεe + 1
2ρ

eu2) + ∂x(u(ρeεe + 1
2ρ

eu2 + pe))− u(ci∂xpe − ce∂xpi)

= νei(T i − T e).

(1d)

Superscripts e and i denote quantities related to electrons and ions, respectively. ρ = ρe+ρi =
mene + mini is the total density, mα being the mass of a particle of species α, and nα the
corresponding concentration. u is the macroscopic velocity of the fluid. pα, Tα and εα denote the
partial pressures, temperatures and specific energies. cα = mα

mα+mβ denotes the mass fractions.
νei is the temperature exchange rate between the two species, that can depend on space and time.

2.2. Macroscopic quantities. Define fα(t, x, v) : R+×R3×R3 7→ R+, the particle distribution
function of species α, where t, x, v respectively denote the time, space and microscopic velocity
variables. Integration with respect to v ∈ R3 will be denoted as follows, for any function g that
depends on v such that g ∈ L1(R3):

〈〈g〉〉 =
∫
R3
gdv.

Macroscopic quantities nα(t, x), uα(t, x) and Tα(t, x) are defined as moments of fα such that
(1 + v2)fα ∈ L1(R3) as follows:

〈〈fα〉〉 = nα,

〈〈vfα〉〉 = nαuα,

〈〈mα v
2

2 f
α〉〉 = 1

2m
αnα(uα)2 + 3

2n
αkBT

α.

Similarly, mixture macroscopic quantities ρ, u and T are defined as:
〈〈mefe +mif i〉〉 = ρ,(2a)
〈〈v(mefe +mif i)〉〉 = ρu,(2b)

〈〈v
2

2 (mefe +mif i)〉〉 = 1
2ρu

2 + 3
2(ne + ni)kBT.(2c)

Finally, we define electromagnetic quantities: E ∈ R is the electric field along x, qα is the
electric charge of species α. Note that qe = −Zqi, with Z the ionization rate. j and ρ are
respectively the current and total electric charge, defined as:

〈〈qefe + qif i〉〉 = ρ, 〈〈v(qefe + qif i)〉〉 = j.(3)

2.3. Vlasov-BGK-Ampère system. Consider the Vlasov-BGK-Ampère model, for t ∈ R, x ∈
R, v = (v1, v2, v3) ∈ R3 and α ∈ {e, i}:

∂tf
α + v1∂xf

α + qαE

mα
∂v1f

α = 1
τα

(M(fα)− fα) + 1
ταβ

(M(fα)− fα),(4a)

∂tE = − j

ε0
,(4b)

∂xE = ρ

ε0
,(4c)

where τα and ταβ are, respectively, the relaxation rate towards intra-species and inter-species
equilibria (ταβ = τβα). ε0 is the dielectric permittivity of vacuum. The first equation is called
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the Vlasov-BGK equation, while the two equations on the electric field are respectively called the
Maxwell-Ampère equation and the Maxwell-Gauss equation.

The entropy-minimizing distribution function is the local Maxwellian distribution (see [27] for
more details), denoted M(fα), defined by:

M(fα)(t, x, v) = nα(t, x)
(2πkB Tα(t,x)

mα ) 3
2

exp (−|v − u
α(t, x)|2

2kB Tα(t,x)
mα

).

M(fα), the exchange Maxwellian distribution, presented for example in [6], is defined as:

M(fα)(t, x, v) = nα(t, x)
(2πkB T (t,x)

mα ) 3
2

exp (−|v − u(t, x)|2

2kB T (t,x)
mα

).

2.4. Reduced model.

2.4.1. Definition of the reduced distribution functions. The problem is assumed to be one dimen-
sional in space and 3 dimensional in velocity (1D3V). Hence, the distribution functions fα only
depend on x = x1 and v = (v1, v2, v3). To further simplify the model, we also assume that the
function fα is even in v2 and v3, which can be expressed as:

∫
R2

fα(t, x, v)v2dv2dv3 = 0,(5a)

∫
R2

fα(t, x, v)v3dv2dv3 = 0.(5b)

Denote uα = (uα1 , uα2 , uα3 ), this assumption gives uα = (uα1 , 0, 0). Hence, the notation uα = uα1
is used. The components u2 and u3 of the macroscopic velocity being equal to zero, the number
of variables can be reduced, as in [2] or [25], in order to reduce the numerical cost of the method,
while retaining the actual 3 dimensional total energy. Define the marginals, for α = e, i, by:

gα0 (t, x, v1) =
∫
R2

fα(t, x, v)dv2dv3,(6a)

gα2 (t, x, v1) =
∫
R2

fα(t, x, v)m
α(v2

2 + v2
3)

2 dv2dv3,(6b)

and denote integration with respect to v1, for any function g that depends on v1, as:

(7) 〈g〉 =
∫
R

gdv1.

2.4.2. Reduced system of equations and its properties. The idea is to describe the system of
equations and the macroscopic quantities using these reduced functions. The system obtained
after reduction reads as follows:

Proposition 1. Under the assumptions (5) and (6), the system (4) can be reduced to the following
one, with α = e, i and p = 0, 2:

∂tg
α
p + v1∂xg

α
p + qαE

mα
∂v1g

α
p = 1

τα
(Mα

p − gαp ) + 1
ταβ

(Mα

p − gαp ),(8a)

∂xE|t=t0 = 1
ε0
ρ|t=t0 ,(8b)

∂tE = − 1
ε0
j,(8c)
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where the different Maxwellian distributions are defined as:

Mα
0 (t, x, v1) = nα(t, x)√

2πkB Tα(t,x)
mα

exp (− (v1 − uα)2

2kB Tα(t,x)
mα

),(9a)

Mα
2 (t, x, v1) = kBT

α(t, x)Mα
0 (t, x, v1),(9b)

M
α

0 (t, x, v1) = nα(t, x)√
2πkB T (t,x)

mα

exp (− (v1 − u)2

2kB T (t,x)
mα

),(9c)

M
α

2 (t, x, v1) = kBT (t, x)Mα

0 (t, x, v1).(9d)
Moreover, gα0 and gα2 satisfy the following relations:

nα = 〈gα0 〉,(10a)
nαuα = 〈gα0 v1〉,(10b)
3
2n

αkBT
α + 1

2m
αnα(uα)2 = 〈gα0

mαv2
1

2 〉+ 〈gα2 〉.(10c)

Proof. Firstly, by integrating equation (4a) with respect to v2 and v3, it comes:

∂t

∫
R2

fαdv2dv3 + v1∂x

∫
R2

fαdv2dv3 = 1
τα

(
∫
R2

M(fα)dv2dv3 −
∫
R2

fαdv2dv3)

+ 1
ταβ

(
∫
R2

M(fα)dv2dv3 −
∫
R2

fαdv2dv3).
(11)

Define Mα
0 ,M

α

0 : R+
t ×Rx×Rv 7→ R using (9a-9c), which correspond to the formulae obtained

from:
Mα

0 =
∫
R2

M(fα)dv2dv3, M
α

0 =
∫
R2

M(fα)dv2dv3.

The definition of gα0 given in (6a) allows us to rewrite (11) as (8a) with p = 0. We have obtained
an equation on the function gα0 . Let us express the moments using gα0 . The 0th-order moment
can be expressed as:

〈〈fα〉〉 = 〈gα0 〉 = nα.

Similarly, the first order moment writes:

nαuα = 〈〈fαv〉〉 =
〈∫
R2

fα

v1
v2
v3

 dv2dv3

〉
.

According to (5a) and (5b), the second and third components of the first order moment are
equal to zero. Then, we get, for the first component:〈

v1

∫
R2

fαdv2dv3

〉
= 〈v1g

α
0 〉 = nαuα.

The third moments reads as:

〈〈fαm
α|v|
2

2
〉〉 =

〈
gα0
mαv2

1
2

〉
+ 〈〈fαm

α(v2
2 + v2

3)
2 〉〉.(12)

Hence, another function gα2 , defined by (6b), is introduced. Rewrite (12) as:

3
2n

αkBT
α + 1

2m
αnα(uα)2 =

〈
gα0
mαv2

1
2

〉
+ 〈gα2 〉 .
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Finally, in order to close the system, an equation over gα2 is needed. To obtain it, multiply
(4a) by mα(v2

2+v2
3)

2 , and integrate with respect to v2 and v3:∫
R2

∂tf
αm

α(v2
2 + v2

3)
2 dv2dv3 +

∫
R2

v1∂xf
αm

α(v2
2 + v2

3)
2 dv2dv3

+ qαE

mα

∫
R2

∂v1f
αm

α(v2
2 + v2

3)
2 dv2dv3

= 1
τα

(
∫
R2

M(fα)m
α(v2

2 + v2
3)

2 dv2dv3 −
∫
R2

f
mα(v2

2 + v2
3)

2 dv2dv3).

Then we introduce the function Mα
2 of (9b) corresponding to:

Mα
2 =

∫
R2

M(fα)m
α(v2

2 + v2
3)

2 dv2dv3.

We get equation (8a) with p = 2. �

Remark 1. Equation (8b) means that, provided that Maxwell-Gauss equation is satisfied at t = 0
and if the Maxwell-Ampère equation is satisfied for all t, so will the Maxwell-Gauss equation.

Regarding the conservation properties of the BGK operators in equations (8a), the following
proposition holds:

Proposition 2. The intra-species BGK operators defined by the Maxwellians (9a) and (9b)
conserve the partial masses, momenta and energies according to the following identities, for α =
e, i:

(13)
〈

(Mα
0 − gα0 )

(
1
v1

)〉
= 0,

〈
(Mα

0 − gα0 )m
α(v1)2

2

〉
+ 〈(Mα

2 − gα2 )〉 = 0.

The exchange Maxwellians (9c) and (9d) define inter-species BGK operators that enjoy the
following conservation properties:〈

M0
α − gα0

〉
= 0,

∑
α

〈
(M0

α − gα0 )mαv1

〉
= 0,(14)

∑
α

〈
(M0

α − gα0 )m
α(v1)2

2

〉
+
∑
α

〈
M2

α − gα2
〉

= 0.(15)

Proof. The proof of this proposition is similar to [24]. Using the results from Proposition 1, we
first recall equations (10a-10b)

nα = 〈gα0 〉, nαuα = 〈gα0 v1〉.

Then, according to the expressions of Mα
0 from (9a), a straightforward computation gives:

nα = 〈Mα
0 〉, nαuα = 〈Mα

0 v1〉,

which gives the first equation of (13). For the second equation, the following computation
holds, according to the expression of Mα

2 in (9b):

3
2n

αkBT
α + 1

2m
αnα(uα)2 = 〈Mα

0
mαv2

1
2 〉+ 〈Mα

2 〉,

which gives the expected result by substracting equation (10c).
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For the results concerning the exchange Maxwellians, the expressions of Mα

0 and Mα

2 in (9c)
and (9d) give the following computations:

〈Mα

0 〉 = nα,

〈mαM
α

0 v1〉 = ραu,

〈mαM
α

0
v2

1
2 〉 = 1

2ρ
αu2 + 3

2n
αkBT.

The first equation gives the first equation of (14). By summing the second equation over α,
and in favor of the definition of ρ and u from (2), one gets the second equation of (14). Similarly,
by summing the third equation over α, and in favor of the definition of ρ, u and T from (2),
equation (15) holds.

�

Define now the entropy of the non-reduced system:
(16) Hα(fα) = 〈〈fα log fα〉〉.

In order to obtain the entropy of the reduced system, consider the following definition of the
Maxwellian distribution of the non-reduced system:

Hα(M(fα)) = min
fα≥0

(H̃α(fα) s.t. gα0 (v1) =
∫
R2

fα(v)dv2dv3,

gα2 (v1) =
∫
R2

fα(v)m
α(v2

2 + v2
3)

2 dv2dv3),
(17)

with

(18) H̃α(fα) =
∫
R2

fα log fαdv2dv3.

Proposition 3. The minimization problem (17) admits the following solution:

(19) M(fα)(gα0 , gα2 ) = (gα0 )2mα

2πgα2
exp (−g

α
0m

α(v2
2 + v2

3)
2gα2

).

Proof. Define the Lagrangian associated with this minimization problem:

L(fα, λ1, λ2) =
∫
R2

fα log fαdv2dv3 + λ1(gα0 (v1)−
∫
R2

fα(v)dv2dv3)

+ λ2(gα2 (v1)−
∫
R2

fα(v)m
α(v2

2 + v2
3)

2 dv2dv3)),

where λ1 and λ2 denote the Lagrange multipliers associated to the constraints

gα0 (v1) =
∫
R2

fα(v)dv2dv3, gα2 (v1) =
∫
R2

fα(v)m
α(v2

2 + v2
3)

2 dv2dv3.

A straightforward computation of the differential of the Lagrangian w.r.t fα gives the following
equation for the minimum M(fα)(gα0 , gα2 ):

log(M(fα)(gα0 , gα2 )) + 1− λ1 − λ2
mα(v2

2 + v2
3)

2 = 0.

Then, by using the constraints, the following expressions of λ1 and λ2 are found:

λ1 = 1 + log (gα0 )2mα

2πgα2
, λ2 = −g

α
0
gα2
,
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which give the following expression for the Maxwellian:

(20) M(fα)(gα0 , gα2 ) = (gα0 )2mα

2πgα2
exp (−g

α
0m

α(v2
2 + v2

3)
2gα2

).

�

Hence, by injecting (19) in (16), it comes

Hα(gα0 , gα2 ) =
〈
gα0 log (gα0 )2

gα2
− 2gα0

〉
.

Hence, define the following notations for the partial entropies of the reduced model:

(21) Hα(gα0 , gα2 ) = 〈ηα(gα0 , gα2 )〉 ,

with

ηα(gα0 , gα2 ) = gα0 log (gα0 )2

gα2
− 2gα0 ,

for α = e, i, and the total entropy

(22) H(ge0, ge2, gi0, gi2) =
∑
α

Hα(gα0 , gα2 ).

Firstly, this entropy is shown to be convex:

Proposition 4. For α = e, i, under the assumption that gα0 , gα2 are positive, Hα is a strictly
convex function. Consequently, H is strictly convex as well.

Proof. Compute the gradient of ηα:

(23) ∇ηα =
(
∂gα0 η

α

∂gα2 η
α

)
=
(

log (gα0 )2

gα2

− g
α
0
gα2

)
.

Compute the Hessian:

(24) ∇2ηα =
( 2

gα0
− 1
gα0

− 1
gα0

gα0
(gα2 )2

)
.

By positivity of the distribution functions, Tr(∇2ηα) > 0 and det (∇2ηα) = 1
(gα2 )2 > 0. Hence,

the Hessian is positive definite and ηα is strictly convex. Consequently, Hα is strictly convex.
�

The following property on entropy dissipation holds:

Proposition 5. The reduced system (8) satisfies the H-theorem for the entropy defined by (22):

(25) ∂H

∂t
+ ∂G

∂x
≤ 0,

with G the entropy flux associated to H:

G(ge0, ge2, gi0, gi2) =
∑
α

Gα(gα0 , gα2 ) =
∑
α

〈v1η
α(gα0 , gα2 )〉 .

Proof. Multiply equation (8a) by ∂gαp η
α(gα0 , gα2 ), sum over p and integrate over v1:

∂Hα

∂t
+ ∂Gα

∂x
= 1
τα
〈
(Mα

0 − gα0 )∂gα0 η
α + (Mα

2 − gα2 )∂gα2 η
α
〉

+ 1
ταβ

〈
(Mα

0 − gα0 )∂gα0 η
α + (Mα

2 − gα2 )∂gα2 η
α
〉
.
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Then, summing over α gives:
∂H

∂t
+ ∂G

∂x
=
∑
α

1
τα
〈
(Mα

0 − gα0 )∂gα0 η
α + (Mα

2 − gα2 )∂gα2 η
α
〉

+
∑
α

1
ταβ

〈
(Mα

0 − gα0 )∂gα0 η
α + (Mα

2 − gα2 )∂gα2 η
α
〉
.

(26)

Consider every term of the right-hand side consecutively.〈
(Mα

0 − gα0 )∂gα0 η
α + (Mα

2 − gα2 )∂gα2 η
α
〉

=
〈
(Mα

0 − gα0 )(∂gα0 η
α(gα0 , gα2 )− ∂gα0 η

α(Mα
0 ,M

α
2 ))
〉

+
〈
(Mα

2 − gα2 )(∂gα2 η
α(gα0 , gα2 )− ∂gα2 η

α(Mα
0 ,M

α
2 ))
〉

+
〈
(Mα

0 − gα0 )∂gα0 η
α(Mα

0 ,M
α
2 )
〉

+
〈
(Mα

2 − gα2 )∂gα2 η
α(Mα

0 ,M
α
2 )
〉
.(27)

By convexity of ηα, the sum of the first two terms of the right-hand side of (27) is negative.
The remaining terms are〈

(Mα
0 − gα0 )∂gα0 η

α(Mα
0 ,M

α
2 )
〉

+
〈
(Mα

2 − gα2 )∂gα2 η
α(Mα

0 ,M
α
2 )
〉

=
〈

(Mα
0 − gα0 ) log ((Mα

0 )2

Mα
2

)
〉
−
〈

(Mα
2 − gα2 )M

α
0

Mα
2

〉
= 1
kBTα

〈(Mα
0 − gα0 ) log (Mα

0 )〉 − 1
kBTα

〈(Mα
2 − gα2 )〉

= 1
kBTα

log ( nα

(2πkB Tα

mα ) 1
2

) 〈(Mα
0 − gα0 )〉+

〈
(Mα

0 − gα0 )( vuα

kB
Tα

mα

− (uα)2

2kB Tα

mα

)
〉

− 1
kBTα

〈
(Mα

0 − gα0 )m
α(vα)2

2 + (Mα
2 − gα2 )

〉
= 0,

according to (13). Then, consider the remaining last term in (26). Firstly, rewrite the term
as:〈

(Mα

0 − gα0 )∂gα0 η
α + (Mα

2 − gα2 )∂gα2 η
α
〉

=
〈

(Mα

0 − gα0 )(∂gα0 η
α(gα0 , gα2 )− ∂gα0 η

α(Mα

0 ,M
α

2 ))
〉

+
〈

(Mα

2 − gα2 )(∂gα2 η
α(gα0 , gα2 )− ∂gα2 η

α(Mα

0 ,M
α

2 ))
〉

+
〈

(Mα

0 − gα0 )∂gα0 η
α(Mα

0 ,M
α

2 )
〉

+
〈

(Mα

2 − gα2 )∂gα2 η
α(Mα

0 ,M
α

2 )
〉
.(28)

By convexity of ηα, the sum of the first two terms is negative. Then, in favor of Proposition
2, by treating the remaining terms as previsously, the dissipation of entropy (25) is obtained.

�

2.5. Scaling of the equations. The regime of interest is the hydrodynamic limit of this model,
which corresponds to the scale of the phenomena described by the bi-temperature Euler equations
(see [4]). To do so, it is necessary to perform a scaling on this model, in order to exhibit the
behaviour of the equations when the macroscopic characteristic scale is much larger than the
ones involved by the kinetic equations (collisional scale, Debye scale). Denote t0, L, vth, q,m
respectively the reference time, length, velocity, electric charge and particle mass. Denoting with
a tilda the dimensionless quantities, it comes:

t̃ = t

t0
, x̃ = x

L
, ṽ1 = v1

vth
, q̃α = qα

q
, m̃α = mα

m
.
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From this scaling, define also the following dimensionless quantities:

g̃αp = vth

n0
gαp , Ẽ = qt0

vthm
E, j̃ = j

qvthn0
, ˜̄ρ = ρ̄

qn0
, T̃ = kB

mv2
th
T,

where n0 is the reference density.
Applying this scaling to our model, and removing the tildas for the sake of readability, it

comes, for p = 0, 2 and α = e, i:

∂tg
α
p + v1∂xg

α
p + qα

mα
E∂v1g

α
p = 1

εe
(Me

p − gep) + 1
εei

(Me

p − gep),(29a)

∂tE = − j

β2 ,(29b)

∂xE = ρ

β2 ,(29c)

where εα = τα

t0
, εαβ = ταβ

t0
and β = λDe

L , λDe = ( ε0kBT0
q2n0

) 1
2 , with T0 = mv2

th
kB

the reference
temperature. λDe is the so-called Debye length, which is the characteristic length of charge
separation in a plasma. In the regime of interest, this quantity is extremely small compared to
the reference length of the domain L. Similarly, the same-species mean free path related quantities
εα are small compared to the reference length L. Hence, reaching the hydrodynamic limit consists
in taking the limit of the model when εα and β tend to 0. Notice that, however, εαβ is finite. In
the limit, the Maxwell equations (29b-29c) become j = 0 and ρ = 0, which can be rewritten as:

ue = ui, ne = Zni.(30)

The equations (30) are called the quasi-neutrality constraints. This form of the system of equa-
tions is the singular quasi-neutral limit of our initial model, where two evolution equations de-
generate into algebraic relations. The purpose of this work is to derive an Asymptotic-preserving
(AP) numerical scheme, that is to say with a stability condition that is independant of every
non-dimensional small parameters εα, εαβ and β.

2.6. Hydrodynamic limit. In this section, we prove that the hydrodynamic limit of the scaled
kinetic system (29) is the bi-temperature Euler system (1). Firstly, let us rewrite system (29)
under the following form, where all parameters are β, εi and εe are equal to a common value τ :

∂tg
α
p + v1∂xg

α
p + qα

mα
E∂v1g

α
p = 1

τ
(Mα

p − gαp ) + 1
εαβ

(Mα

p − gαp ),(31a)

∂tE = − j

τ2 ,(31b)

∂xE = ρ

τ2 .(31c)

As said in the previous section, the Maxwell equations give, in the limit τ → 0, the following
equation:

ue = ui.

Hence, in the limit, electronic and ionic velocities are both equal to the mixture velocity u.
Besides, the BGK operators (31a) implie that the distribution functions gαp are equal to their
partial maxwellian. Then, for α = e, i et p = 0, 2:
(32) gαp = Mα

p .

By integrating equation (31a) multiplied by mα for p = 0 w.r.t. v for each α, the following
equation is obtained, for α = e, i:

∂tρ
α + ∂x(ραuα) = 0,

and, by summing over α, the total mass equation is obtained:
∂tρ+ ∂x(ρu) = 0.
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To obtain the equation on total momentum, multiply equation (31a) for p = 0 by mαv, and
integrate w.r.t. v. It comes:

(33) ∂t(ραuα) + ∂x〈mαv2gα0 〉+ qαE〈v∂v1g
p
0〉 = ρα

εαβ
(u− uα).

The third term on the left hand side can be rewritten as follows, by use of a integration by
parts:

qαE〈v∂v1g
p
0〉 = −qαE〈gp0〉 = −Eρα,

where ρα = qαnα. The second term on the left hand side, in favor of (32), is equal to:

∂x〈mαv2gα0 〉 = ∂x〈mαv2Mα
0 〉 = ∂x(ρα(uα)2 + pα).

By summing over α, and in favor of conservation properties 2, one gets:
∂(ρu) + ∂x(ρu2 + pe + pi)− Eρ = 0.

By using the quasi-neutrality on electric charge ρ = 0, we finally get:
∂(ρu) + ∂x(ρu2 + pe + pi) = 0.

Finally, compute the evolution equations on partial energies. For α = e, i, multiply (31a) (for
p = 0) by mα v2

2 , and integrate w.r.t. v. It comes:

∂t〈mα v
2

2 g
α
0 〉+ ∂x〈mα v

3

2 g
α
0 〉+ qαE〈v

2

2 ∂v1g
α
0 〉 = 1

εαβ
〈Mα

0 − gα0 〉.

To obtain an equation on total energy for species α, integrate equation (31a) for p = 2 and
sum with the previous equation. The following equation is obtained:

∂t〈mα v
2

2 g
α
0 + gα2 〉+ ∂x〈mα v

3

2 g
α
0 + vgα2 〉+ qαE〈v

2

2 ∂v1g
α
0 〉 = 1

εαβ
(E − Eα).

where the total plasma energy E is defined by:

E =
∑
α

Eα, Eα = 1
2ρ

αuα + ραεα.

According to this definition, the right hand side can be rewritten as:
1
εαβ

(E − Eα) = 1
εαβ

3
2n

αkB(T − Tα).

Then, in favor of quasi-neutrality properties and the definition of mixture temperature, we get
T = T e+T i

2 . The following expression ναβ is then obtained:
1
εαβ

(E − Eα) = 1
εαβ

3
4n

αkB(T i − T e) = ναβ(T i − T e).

For the left hand side, the third term can be computed:

qαE〈v
2

2 ∂v1g
α
0 〉 = −qαE〈vgα0 〉 = −Ejα,

where jα = qαnαuα is the partial current of species α. Finally, the second term of the left
hand side, by use of (32), can be computed as well:

∂x〈mα v
3

2 g
α
0 + vgα2 〉 = ∂x〈mα v

3

2 M
α
0 + vMα

2 〉 = u(ρ
αu2

2 + 3
2n

αkBT
α + pα).

Hence, the following equation on total energy of species α is obtained:
(34) ∂tEα + ∂x(u(Eα + pα))− jαE = ναβ(T β − Tα).

Finally, to compute the third term on the left hand side, rewrite equation (33) as follows:

∂tu+ u∂xu+ ∂xp
α

ρα
− ραE

ρα
= 0.
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Substracting this equation for α = i to the equation for α = e, the generalized Ohm law is
obtained, which writes:

(35) ∂xp
e

ρe
− ∂xp

i

ρi
= qeneρ

ρeρi
E.

By denoting the following relation:

jeE = −jiE,

and by using the expression of E given by Ohm’s law, it comes:

jeE = qeneue(∂xp
e

ρe
− ∂xp

i

ρi
) ρ

eρi

qeneρ
= u(ci∂xpe − ce∂xpi).

By injecting this expression into (34), the bi-temperature Euler system (1) is recovered.

2.7. Entropy inequality for hydrodynamic limits. In [4], the existence of an entropy-flux
pair is shown for the bi-temperature Euler system (1). In this section, an entropy dissipation
inequality in the limit is derived for the reduced model presented in Proposition 1.

Firstly, denote U = (ρ, ρu, εe, εi) the unknowns of the bi-temperature model and
(Hmacro(U), Gmacro(U)) the corresponding macroscopic entropy-flux pair. Note the following
properties regarding the link between kinetic and macroscopic entropies:

(36) H(Me
0 ,M

e
2 ,M

i
0,M

i
2) = Hmacro(U), G(Me

0 ,M
e
2 ,M

i
0,M

i
2) = Gmacro(U).

See [4] for further details on these properties.

Proposition 6. Let U be a limit solution of the kinetic model from Proposition 1, i.e moments of
solution distribution functions (gα0 , gα2 ) in the hydrodynamic limit. Then, the following inequality
on entropy holds:

(37) ∂Hmacro

∂t
+ ∂Gmacro

∂x
≤ − νei

kBT iT e
(T i − T e)2,

with

ναβ = 3kBnαnβ

2ταβ(nα + nβ) .

Proof. Multiply equation (8a) by ∂gαp η
α(gα0 , gα2 ), sum over p and integrate over v1. It comes, for

α = e, i:

∂Hα

∂t
+ ∂Gα

∂x
= 1
εα
〈
(Mα

0 − gα0 )∂gα0 η
α(gα0 , gα2 ) + (Mα

2 − gα2 )∂gα2 η
α(gα0 , gα2 )

〉
+ 1
εαβ

〈
(Mα

0 − gα0 )∂gα0 η
α(gα0 , gα2 ) + (Mα

2 − gα2 )∂gα2 η
α(gα0 , gα2 )

〉
.

Using the entropy dissipation properties of the BGK operator shown in Section 2.4.2:

∂Hα

∂t
+ ∂Gα

∂x
≤ 1
εαβ

〈
(Mα

0 − gα0 )∂gα0 η
α(gα0 , gα2 ) + (Mα

2 − gα2 )∂gα2 η
α(gα0 , gα2 )

〉
.

By formally passing to limit εα → 0, it comes gαp = Mα
p , ne = ni and u = ue = ui. Hence,

summing over α and using (36), the inequality becomes

∂Hmacro(U)
∂t

+∂Gmacro(U)
∂x

≤ 1
εei

∑
α

〈
(Mα

0 −Mα
0 )∂gα0 η

α(Mα
0 ,M

α
2 ) + (Mα

2 −Mα
2 )∂gα2 η

α(Mα
0 ,M

α
2 )
〉
.
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The right hand side reads∑
α

〈
(Mα

0 −Mα
0 )∂gα0 η

α(Mα
0 ,M

α
2 ) + (Mα

2 −Mα
2 )∂gα2 η

α(Mα
0 ,M

α
2 )
〉

=
∑
α

〈
(Mα

0 −Mα
0 ) log ((Mα

0 )2

Mα
2

)− (Mα

2 −Mα
2 )M

α
0

Mα
2

〉
=
∑
α

〈
(Mα

0 −Mα
0 ) log ( Mα

0
kBTα

)− 1
kBTα

(Mα

2 −Mα
2 )
〉

=
∑
α

〈
(Mα

0 −Mα
0 ) log ( nα

(2πkB Tα

mα ) 1
2

)− (Mα

0 −Mα
0 ) (v − u)2

2kB Tα

mα

− (Mα

0 −Mα
0 ) log (kBTα)

〉

−
∑
α

〈
1

kBTα
(Mα

2 −Mα
2 )
〉
.

The first and third term are equal to zero according to the conservation properties. The second
term is equal, after computation, to:

−
∑
α

〈
(Mα

0 −Mα
0 ) (v − u)2

2kB Tα

mα

〉
= −

∑
α

1
kBTα

〈
mα(Mα

0 −Mα
0 )v

2

2

〉
.

The total right hand side is then equal to∑
α

〈
(Mα

0 −Mα
0 )∂gα0 η

α(Mα
0 ,M

α
2 ) + (Mα

2 −Mα
2 )∂gα2 η

α(Mα
0 ,M

α
2 )
〉

= −
∑
α

1
kBTα

(〈
mα(Mα

0 −Mα
0 )v

2

2

〉
+
〈
M

α

2 −Mα
2

〉)
= −3

2
∑
α

nα
T − Tα

Tα
.

According to the definition of T , it comes:

T − Tα = nα

nα + nβ
(T β − Tα).

Hence,

− 3
2εei

∑
α

nα
T − Tα

Tα
= − 3

2τei
neni

ne + ni
(T e − T i)2

T eT i
,

and we get (37).
�

3. Numerical treatment

In this section, numerical treatment of system (29) is addressed. The method to compute
the evolution of the particle distribution is presented. For the sake of simplicity, in the Ampère
equation and BGK operator, every non-dimensional quantity εe, εi and β are chosen equal to τ .
Reaching the hydrodynamic limit is then equivalent to the limit τ → 0.

3.1. Vlasov-BGK equations: general method. A time-splitting method is used on the
Vlasov-BGK equations, in order to separate the Vlasov equations from the BGK operators.
More precisely, the following equations are going to be consecutively solved:

(38) ∂tg
α
p + v1∂xg

α
p + qα

mα
E∂v1g

α
p = 0,

the Vlasov-Maxwell equations for α = e, i, coupled with the Ampère equation:

(39) ∂tE = − j

τ2 .
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Then, the effects of the inter-species collisions are computed:

(40) ∂tg
α
p = 1

εαβ
(Mα

p − gαp ),

and finally, intra-species collisions:

(41) ∂tg
α
p = 1

τ
(Mα

p − gαp ),

where τ → 0.
A uniform discretization of the phase space is considered. Concerning the velocity discretiza-

tion, in the present case, only static grids are considered, contrarily to [10]. A suitable subset of
R that contains the most part of the distribution function has to be chosen in order to perform
correct numerical evaluations of the moments.

However, in this model, two particle distributions are considered, in order to follow the dynam-
ics of both electrons and ions via a kinetic description. The major difference between these two
species is the value of the mass of a particle that can have a ratio of the order of one thousand.
Consequently, the distribution functions have very different supports. Thus, if only one velocity
grid is employed, then this grid has to be large enough to encompass the largest distribution and
has to be fine enough to describe the smallest one, which is numerically very costly. Hence, two
velocity grids, one for each species, are considered. The boundaries of the domains are chosen as
follows: for a given initial condition, let us denote the initial moments by nα0 , uα0 and Tα0 . For
α = e, i, we have:

V α = [min
x

(uα0 (x))− lα max
x

√
kB

Tα0 (x)
mα

,max
x

(uα0 (x)) + lα max
x

√
kB

Tα0 (x)
mα

],(42)

where lα is chosen to fit the initial maxwellian distribution. Note that this grid is the same
for all points in space and is constant in time.

Notations for the discretization are chosen as follows: ∆x denotes the discretization step of
the domain [Lmin, Lmax] ⊂ R in Nx cells. For α = e, i, the velocity domains [V αmin, V

α
max] ⊂ R

are both discretized using Nv cells and the discretization steps are denoted ∆ve and ∆vi. Then,
we use indices k and j to denote quantities computed at the k-th cell in space and j-th cell in
velocity. Moreover, we denote ∆t the time step and we use a superscript n to denote the quantity
computed at time tn = t0 + n∆t.

Step 1: Computation of g and E

The following discretization is performed, for α = e, i:

(43) g̃α,n+1
0,k,j = gα,n0,k,j −

∆t
∆x (φα,n0,k+ 1

2 ,j
− φα,n0,k− 1

2 ,j
)− ∆t

2∆vα
qαEn+1

k

mα
(gα,n0,k,j+1 − g

α,n
0,k,j−1),

coupled with

(44) En+1
k = Enk −

∆t
τ
jn+1
k .

Note that the term ∂v1g0 has been discretized using a centred scheme. For the space discretiza-
tion, φ0 represented the flux function of the spatial discretization which will be specified in the
next section.

Then, the following procedure is applied to obtain g̃α,n+1
2 :

(45) g̃α,n+1
2,k,j = gα,n2,k,j −

∆t
∆x (φα,n2,k+ 1

2 ,j
− φα,n2,k− 1

2 ,j
)− ∆t

∆vα (ψα,n2,k,j+ 1
2
− ψα,n2,k,j− 1

2
),

where

φα,n2,k+ 1
2 ,j

=
vαj
2 (gα,n2,k+1,j + gα,n2,k,j)−

|vαj |
2 (gα,n2,k+1,j − g

α,n
2,k,j),
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and

ψα,n2,k,j+ 1
2

=
qαEn+1

k

2mα
(gα,n2,k,j+1 + gα,n2,k,j)−

|qαEn+1
k |

2mα
(gα,n2,k,j+1 − g

α,n
2,k,j).

Equations (43) are stable under the CFL condition :

(46) ∆t ≤ min
α

( 1
||V α||∞

∆x + ||qαEn+1||∞
mα∆vα

).

Moments of g̃e,n+1
p and g̃i,n+1

p are then computed using the midpoint quadrature formula.
∀k ∈ {1, ..., Nx}:

ñα,n+1
k =

Nv∑
j=1

g̃α,n+1
0,k,j ∆vα,

ũα,n+1
k = 1

ñα,n+1
k

Nv∑
j=1

g̃α,n+1
0,k,j vj∆vα,

T̃α,n+1
k = 1

3ñα,n+1
k kB

 Nv∑
j=1

mαg̃α,n+1
0,k,j v2

j∆vα + 2
Nv∑
j=1

g̃α,n+1
2,k,j ∆vα −mαñα,n+1

k ũα,n+12

k

 .
In order to compute the mixture Maxwellian distribution in the next step, mixture quantities

must also be computed:

ñn+1
k = ñe,n+1

k + ñi,n+1
k ,

ũn+1
k =

∑
α
ρ̃
α,n+ 1

2
k ũα,n+1

k∑
α
ρ̃α,n+1
k

,

T̃n+1
k = 1

ñn+1
k kB

[∑
α

1
3 ρ̃

α,n+1
k ((ũα,n+1

k )2 − (ũn+1
k )2) +

∑
α

ñα,n+1
k kBT̃

α,n+1
k

]
.

Step 2: inter-species relaxation

We apply a backward Euler method to the equations (40):

ĝα,n+1
p,k,j = 1

∆t+ τei

[
∆tM̃

α,n+1
p,k,j + τeig̃α,n+1

p,k,j

]
which is unconditionnaly stable. M̃

α,n+1
p,k,j is the mixture Maxwellian defined by the moments

ñα,n+1
k , ũn+1

k and T̃n+1
k , which are conserved through this step. Hence, the mixture Maxwellian is

known beforehand, which allows this implicitation. Partial velocities and temperatures (denoted
in the next section with a hat) are then recomputed using the previous formulae.

Step 3: intra-species relaxation

The next step consists in the relaxation towards Maxwellian equilibrium. Since the BGK
operator preserves moments, we have the following properties: ∀k ∈ {1, ..., Nx},

(47) n̂α,n+1
k = nα,n+1

k , ûα,n+1
k = uα,n+1

k , T̂α,n+1
k = Tα,n+1

k .

Similarly to the previous section, this property allows us to use an implicit scheme, the back-
ward Euler method: ∀k ∈ {1, ..., Nx}, ∀j ∈ {1, ..., Nv} and p = 0, 2,

(48) gα,n+1
p,k,j = ĝα,n+1

p,k,j + ∆t
τ

(Mα,n+1
p,k,j − g

α,n+1
p,k,j ),
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where

Mα,n+1
0,k,j =

nα,n+1
k√

2πkB
Tα,n+1
k

mα

exp (−
(vj − uα,n+1

k )2

2kB
Tα,n+1
k

mα

),

Mα,n+1
2,k,j = kBT

α
kM

α,n+1
0,k,j ,

which are expressed using quantities known at the end of step 2, according to the properties
(47). Taking the limit τ → 0 in (48) leads to:

gα,n+1
p,k,j = Mα,n+1

p,k,j .

In the next section, enforcement of quasineutrality constraints (30) will be adressed. More
precisely, specific spatial fluxes will be given and a reformulation of the Maxwell-Ampère equation
will be performed in order to derive an Asymptotic-Preserving method, valid in the limit τ → 0.
Note that if these constraints are enforced through the hyperbolic step of the scheme (step 1),
then they will be trivially preserved by both step 2 and 3. Hence, quasineutrality only has to
been enforced through step 1.

3.2. Modified-viscosity upwind scheme. The space divergence is discretized explicitly, via
the following modified upwind scheme:

(49) φα,n0,k+ 1
2 ,j

=
vαj
2 (gα,n0,k+1,j + gα,n0,k,j)−

|Vmax|
2 (gα,n0,k+1,j − g

α,n
0,k,j),

where Vmax = max (|V emin|, |V imin|, |V emax|, |V emin|).
This method is the classical upwind scheme, where the numerical viscosity |vj |, that depends

directly of the microscopic velocity, has been replaced by the smallest velocity that ensures
stability for all equations. The discrete system writes as follows:

(50) g̃α,n+1
0,k,j = gα,n0,k,j −

∆t
∆x (φα,n0,k+ 1

2 ,j
− φα,n0,k− 1

2 ,j
)− ∆t

2∆vα
qαEn+1

k

mα
(gα,n0,k,j+1 − g

α,n
0,k,j−1),

and

(51) En+1
k = Enk −

∆t
τ
jn+1
k .

This level of implicitness allows for a reformulation of the equation on the electric field. More
precisely, the equation used to compute the electric field in (51) is not valid in the limit τ → 0.
To solve this problem, we follow the idea developped in [22]. By multiplying equation (50) by
qαvαj ∆vα and summing over j, it comes:

qα
∑
j

vαj g̃
α,n+1
0,k,j ∆vα = qα

∑
j

vαj g
α,n
0,k,j∆v

α − qα∆t∆vα

∆x
∑
j

vαj (φα,n0,k+ 1
2 ,j
− φα,n0,k− 1

2 ,j
)

− ∆t
2
∑
j

vαj (
(qα)2En+1

k

mα
(gα,n0,k,j+1 − g

α,n
0,k,j−1)).

(52)

According to the definition of the current jnk =
∑
α
qα
∑
j

vαj g
α,n
0,k,j∆vα, taking (52) into account

with α = e, i, it comes

j̃n+1
k = jnk −

∆t
∆x

∑
α

qα
∑
j

∆vαvαj (φα,n0,k+ 1
2 ,j
− φα,n0,k− 1

2 ,j
)

−
∆tEn+1

k

2
∑
α

(qα)2

mα

∑
j

vαj (gα,n0,k,j+1 − g
α,n
0,k,j−1).
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By injecting this equation in (51), we get the following expression for the electric field:

En+1
k =

τEnk −∆tjnk + ∆t2
∆x
∑
α
qα
∑
j

∆vαvαj (φα,n0,k+ 1
2 ,j
− φα,n0,k− 1

2 ,j
)

τ − ∆t2
2
∑
α

(qα)2

mα

∑
j

vαj (gα,n0,k,j+1 − g
α,n
0,k,j−1)

,

which is valid for all values of τ . In particular, we are interested in the limit τ → 0, which is:

(53) En+1
k =

1
∆x
∑
α
qα
∑
j

∆vαvαj (φα,n0,k+ 1
2 ,j
− φα,n0,k− 1

2 ,j
)∑

α

(qα)2

mα nα,nk
,

where it has been assumed that jnk = 0. Such a choice for En+1
k ensures that j̃n+1

k = 0, which
is one of the two quasi-neutrality constraints (30). The choice of φ0 (49) that has been made
ensures that the other contraint ˜̄ρn+1

k = 0 is also verified. More precisely, compute the discrete
equation on ˜̄ρn+1

k . ∀k ∈ {1, ..., Nx}, provided that

∑
j

(ψα,n0,k,j+ 1
2
− ψα,n0,k,j− 1

2
) = 0,

the electric charge is

∑
j

qαgα,n+1
0,k,j ∆vα =

∑
j

qαgα,n0,k,j∆v
α − ∆t

∆x
∑
j

(φα,n0,k+ 1
2 ,j
− φα,n0,k− 1

2 ,j
)∆vα.

So, the following equation on the total electric charge is obtained:

ρn+1
k = ρnk −

∆t
∆x

∑
α

qα
∑
j

(φα,n0,k+ 1
2 ,j
− φα,n0,k− 1

2 ,j
)∆vα.

According to (49), we get:

(54) ρn+1
k = ρnk−

∆t
2∆x

∑
α

qα
∑
j

(vαj (gα,n0,k+1,j−g
α,n
0,k−1,j)−|Vmax|(gα,n0,k+1,j−2gα,n0,k,j+g

α,n
0,k−1,j))∆v

α.

By rearranging the terms, we obtain:

(55) ρn+1
k = ρnk −

∆t
2∆x (jnk+1 − jnk−1) + ∆t

2∆x
∑
α

qα
∑
j

|Vmax|(gα,n0,k+1,j − 2gα,n0,k,j + gα,n0,k−1,j)∆v
α

By assuming that ρnk = jnk+1 = jnk−1 = 0, it comes:

(56) ρn+1
k = ∆t

2∆xVmax(ρnk+1 − 2ρnk + ρnk−1) = 0.

Hence, quasineutrality is conserved at all time. However, applying this modification to our
scheme amounts to overevaluating the numerical viscosity by its highest value. This will create
an important amount of dissipation in the numerical solutions obtained with this scheme. Hence,
the discretization of the space domain needs to be very precise to compensate this viscosity, which
will result in a longer computation time.
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4. Numerical results

In this section, numerical resolution of Riemann problems with our method is presented. Such
problems are characterized by initial conditions constituted of two constant states separated by a
discontinuity. In the study of such problems, an exact solution can be provided for the conserved
quantities (density, momentum and total energy). However, it is not true for non-conserved
quantities, and no reference results exist.

Comparative results obtained by an HLL-type scheme and a Suliciu relaxation method on the
bi-temperature Euler system are displayed along the solutions from the kinetic scheme that has
been derived in this paper (see [4] for more details on these methods).

The spatial domain is chosen as the interval [0,1], supplemented with homogeneous Neumann
boundary conditions. Physical constants (kB , Z, qi) are chosen equal to one. All test cases are
done in the hydrodynamic limit τ → 0. Concerning the choice of lα in (42), a convergence test
has been performed on the initial conditions of the test cases in order to obtain a appropriate
value that would optimize computational cost. Hence, in all test cases, lα = 8, for α ∈ {e, i}.

A mass ratio of 10 (me = 0.1 and mi = 1) is considered. The greater the mass ratio, the
greater the value of Vmax in (49). Hence, a high mass ratio implies an important amount of
numerical viscosity. Then, we are restricting ourselves to a mass ratio of 10, which is already
demanding in terms of number of discretization points. However, in a proper physical context,
mass ratios of the order of 1000 should be considered.

4.1. Shock tube with identical initial temperatures. The Riemann problem of the shock
tube with identical ionic and electronic temperature is given by the following initial condition:{

ρ(t0, x) = 1, uα(t0, x) = 0, Tα(t0, x) = 1 if x ∈ [0, 0.5],
ρ(t0, x) = 0.125, uα(t0, x) = 0, Tα(t0, x) = 1 if x ∈ [0.5, 1].

Parameters are chosen as Nx = 120000, Nv = 40 and l = 8. The inter-species collision
relaxation time is τei = 0.1. Results are computed at time t = 0.1. For fluid methods, 4000
discretization points are used.

The results are provided in figure 1 and 2.
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Figure 1. Density and velocity solutions of shock tube test case with a mass
ratio of 10 with 120000 space points, 40 velocity points and a domain length of
8

The quantities described by conservative equations (densities and velocities) are consistant
with the fluid methods HLL and Suliciu. Moreover, quasi-neutrality is shown to be achieved,
since electronic and ionic densities are superposed, as well as electronic and ionic velocities.
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Figure 2. Electronic and ionic temperatures of a shock tube test case with a
mass ratio of 10 with 120000 space points, 40 velocity points and a domain length
of 8

For the partial temperatures presented in figure 2, the intermediate state reached between
the rarefaction wave and the contact discontinuity is identical for all schemes, which is expected
since this part of the solution is smooth. However, the states obtained between the contact
discontinuity and the shock are different for every scheme. Figures 3 display a zoom on this part
of the solution. The results can be seen to be different for all three methods. The behaviour of
the different schemes should be investigated further.
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Figure 3. Different jump relations through shocks of electronic and ionic tem-
peratures for a shock tube test case with a mass ratio of 10 with 120000 space
points, 40 velocity points and a domain length of 8

On figure 4, we display the electric field at the final time t = 0.1, obtained in two different
ways. The first method is the electric field obtained directly by the kinetic scheme, by formula
(53). The second one corresponds to the electric field computed by the generalized Ohm’s law
(35), computed thanks to the macroscopic quantities obtained by the scheme. As can be seen,
the behaviour of the scheme is completely consistent with the hydrodynamic limit.

4.2. Shock tube with different initial temperatures. This test case is similar to the previous
one, the only difference being the initial left ionic and electronic temperatures. The following
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Figure 4. Electric field obtained by the kinetic scheme and by Ohm’s law for
the Sod tube test case with identical initial temperatures

initial conditions are:{
ρ(t0, x) = 1, uα(t0, x) = 0, Tα(t0, x) = 1 if x ∈ [0, 0.5],
ρ(t0, x) = 0.125, uα(t0, x) = 0, T e(t0, x) = 2 T i(t0, x) = 3 if x ∈ [0.5, 1].

Parameters are chosen as Nx = 120000, Nv = 40 and l = 8. The inter-species collision
relaxation time is τei = 0.1. Results are computed at time t = 0.1. The result are provided in
figure 5 and 6. The behaviour of the result if very similar to the previous one. Quasi-neutrality is
achieved and temperatures exhibit different jump relations across discontinuities for each method.
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Figure 5. Density and velocity solutions of shock tube test case with a mass
ratio of 10 with 120000 space points, 40 velocity points and a domain length of
8

On figure 8, similarly to the previous test case, the behaviour of the electric field is shown.
The results are consistent with the hydrodynamic limit.

4.3. Rarefaction wave. This test case is constituted of two rarefaction waves going in opposite
directions. It is given by the following data:{

ρ(t0, x) = 1, uα(t0, x) = −1, Tα(t0, x) = 1 if x ∈ [0, 0.5],
ρ(t0, x) = 1, uα(t0, x) = 1, Tα(t0, x) = 1 if x ∈ [0.5, 1].
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Figure 6. Electronic and ionic temperatures of a shock tube test case with a
mass ratio of 10 with 120000 space points, 40 velocity points and a domain length
of 8
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Figure 7. Different jump relations of electronic and ionic temperatures for a
shock tube test case with a mass ratio of 10 with 120000 space points, 40 velocity
points and a domain length of 8

We have Nx = 120000, Nv = 40 and l = 8. The inter-species collision relaxation time is
τei = 0.1. Results are computed at time t = 0.1.

The result are provided in figure 9 and 10. In this test case, the solution is smooth. There are
no shock waves, and then, all methods are expected to give the same results. Figure 11 shows
that this is what happens. Figure 12 shows the behaviour of the electric field.

4.4. Shock wave. This test case is constituted of two shock waves. It is given by the following
data: {

ρ(t0, x) = 1, uα(t0, x) = 1, Tα(t0, x) = 1 if x ∈ [0, 0.5],
ρ(t0, x) = 1, uα(t0, x) = −1, Tα(t0, x) = 1 if x ∈ [0.5, 1].

We have Nx = 120000, Nv = 40 and l = 8. The inter-species collision relaxation time is
τei = 0.1. Results are computed at time t = 0.1.

The results are provided in Figure 13 and 14. Quasi-neutrality is achieved on the conserved
quantities. The solution contains two shock waves and different jump relations can be observed
for each numerical method. In Figure 15, a zoom is performed on the constant values reached
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Figure 8. Electric field obtained by the kinetic scheme and by Ohm’s law for
the Sod tube test case with different initial temperatures
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Figure 9. Density and velocity solution of a rarefaction wave test case with
a mass ratio of 10 with 120000 space points, 40 velocity points and a domain
length of 8
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Figure 10. Temperature solutions of a rarefaction wave test case with a mass
ratio of 10 with 120000 space points, 40 velocity points and a domain length of
8
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Figure 11. Zoom on temperature solutions of a rarefaction wave test case with
a mass ratio of 10 with 120000 space points, 40 velocity points and a domain
length of 8

Figure 12. Electric field obtained by the kinetic scheme and by Ohm’s law for
the double rarefaction test case

by each method between the two shocks. This shows the different behaviour between the three
methods. The electric field is displayed on figure 16.

4.5. Sod tube with realistic mass ratio. In this last test case, we consider the same initial
data as in the test case from section 4.2, but the electronic mass is chosen equal to me = 0, 001,
which is close to a realistic mass ratio. The initial data are:{

ρ(t0, x) = 1, uα(t0, x) = 0, Tα(t0, x) = 1 if x ∈ [0, 0.5],
ρ(t0, x) = 0.125, uα(t0, x) = 0, T e(t0, x) = 2 T i(t0, x) = 3 if x ∈ [0.5, 1].

Parameters are chosen as Nx = 100000, Nv = 40 and l = 8. The inter-species collision operator
is ignored for this test case, which amounts to νei = 0 in the bi-temperature Euler equations.
Results are computed at time t = 0.05. The result are provided in figure 17 and 18. With the
absence of a temperature relaxation term, the jump relations for this test case are the same for
our method and the HLL method. The electric field is displayed on figure 20 and can be seen to
be perfectly consistent with the hydrodynamic limit.
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Figure 13. Density and veloctiy solutions of a shock wave test case with a mass
ratio of 10 with 120000 space points, 40 velocity points and a domain length of
8
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Figure 14. Electronic and ionic temperature of a shock wave test case with
a mass ratio of 10 with 120000 space points, 40 velocity points and a domain
length of 8

5. Conclusion

In this article, a kinetic numerical method able to provide reference results for a non-conservative
hyperbolic system, the bi-temperature Euler system, is proposed. This method is able to enforce
all the desired properties that are relevant for comparisons with methods applied directly to the
hyperbolic system. Such methods lack an unambiguous definition of the non-conservative prod-
ucts and exhibit different Rankine-Hugoniot relation when the solution contains shock waves.
However, the proposed method introduces a important amount of numerical viscosity, which ren-
ders the method costly. A second-order method able to circumvent such a drawback is a current
on-going work, which should be the subject of a subsequent article.
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Figure 17. Density and velocity solutions of shock tube test case with a mass
ratio of 1000 with 100000 space points, 40 velocity points and a domain length
of 8
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Figure 19. Different jump relations of electronic and ionic temperatures for
a shock tube test case with a mass ratio of 1000 with 100000 space points, 40
velocity points and a domain length of 8
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a Sod tube test with different initial temperatures
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