Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
			000			

A lumped nodal DGTD-PIC method to ensure charge conservation for the 3D Vlasov-Maxwell system on nonconforming grids

B. Fornet

Nuclétudes

Wednesday, October 13

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
		00000000	0000			

Some Physics

DGTD-PIC : why and how

3 Introduction to correction methods to preserve divergence constraints

Why centered fluxes are unsuitable

5 A new method without correction or centered fluxes

6 Validation of new method and interest of using high order

Conclusion and Outlook

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
000			0000			

Quick introduction to mesoscopic plasma description

Boltzmann Probability Function

$$f(X,p,t) = f(x,y,z,p_x,p_y,p_z,t)$$

is an observable used to describe particles behavior at the mesoscopic level in phase space : X = (x, y, z) is the position vector, $p = (p_x, p_y, p_z)$ the momentum and t the time.

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{dx}{dt}\frac{\partial f}{\partial x} + \frac{dv}{dt}\frac{\partial f}{\partial v} = \left(\frac{df}{dt}\right)_{coll}$$

Applying Newton's Second Law of Motion, we get Bolzmann equation :

$$\frac{\partial f}{\partial t} + v . \nabla f + \frac{F}{m} \frac{\partial f}{\partial v} = \left(\frac{df}{dt}\right)_{coll}$$

For collionless plasmas F stands for the Lorentz Force (produced by electromagnetic fields E and H) and therefore :

$$\left(\frac{df}{dt}\right)_{coll} = 0$$

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
000		000000000	00000000000			

Special case of an electron collisionless plasma

Colors used to emphasize nonlinear dependencies between (E, H, f)

Non-consistent DGTD-PIC

• Dynamics of electromagnetic fields : Maxwell equations

 \mapsto Discontinuous Galerkin in Time Domain : How to do it in order to numerically conserve charge as a first part

$$\epsilon \partial_t E - \nabla \times H = -J(f)$$
$$\mu \partial_t H + \nabla \times E = 0$$
$$\nabla \cdot E = \frac{\rho}{\epsilon}$$
$$\nabla \cdot H = 0$$

Vlasov system describing electron behavior : Vlasov equation

 Particle In Cell How to combine PIC with DGTD as a second part

$$\frac{\partial \mathbf{f}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{f} + \frac{F(\mathbf{E}, \mathbf{H})}{m} \frac{\partial \mathbf{f}}{\partial \mathbf{v}} = \mathbf{0}$$

A new method to ensure DGTD-PIC charge conservation WORKSHOP HOT PLASMAS

Some Physics ○○●	DGTD-PIC 000000	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
What is	charge co	onservati	on?			
Char	ge Conserv	ation Equ	ation			

$$\partial_t \rho + \nabla J = 0$$

- A necessary property for both Maxwell and Vlasov equations to make sense
- Involution in Maxwell equations. Given suitable initial conditions thanks to this property, Maxwell's equations reduce to

 $\epsilon \partial_t \mathbf{E} - \nabla \times \mathbf{H} = -J(\mathbf{f})$ $\mu \partial_t \mathbf{H} + \nabla \times \mathbf{E} = \mathbf{0}$

• What about a numerical solution not satisfying this property? → Accounting for divergence constraints becomes mandatory

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
		00000000	0000			

- 2 DGTD-PIC : why and how
- Introduction to correction methods to preserve divergence constraints
- Why centered fluxes are unsuitable
- 5 A new method without correction or centered fluxes
- 6 Validation of new method and interest of using high order

Conclusion and Outlook

- Purely local Method
- Can be used for lots of other physical applications \mapsto *Multiphysics*
- Natural ability to easily increase resolution order
- High order method compatible with very general meshes (hybrid, with hanging nodes, HP) : possibility of multiscale highly accurate modelling

4 E b

• Highly parallelizable

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
	000000		0000			

Main drawbacks of DGTD(-PIC)

DGTD and DGTD-PIC

High computational cost (worse for complex meshes) depending on the available resources

 \mapsto only cartesian grids with hanging nodes (multiscale) for this briefing

DGTD

 $\begin{array}{c} \mbox{Complete mastery of } \underline{\mbox{nonspurious DGTD schemes}} \mbox{ on general grids not yet} \\ \mbox{achieved} \end{array}$

DGTD-PIC

Complete mastery of charge conserving DGTD-PIC schemes on general grids not yet achieved

- 4 同 6 4 日 6 4 日 6

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
	000000		00000000000			

Nonspurious schemes and charge conserving schemes

Charge conserving : nonlinearity but source term prescribed by PIC

$$\epsilon \partial_t \mathbf{E} - \nabla \times \mathbf{H} = -J(\mathbf{f})$$
$$\mu \partial_t \mathbf{H} + \nabla \times \mathbf{E} = \mathbf{0}$$

Nonspurious : linear but arbitrary source term J

$$\epsilon \partial_t \mathbf{E} - \nabla \times \mathbf{H} = -\mathbf{J}$$

$$\mu \partial_t \mathbf{H} + \nabla \times \mathbf{E} = \mathbf{0}$$

Goal : secure charge conservation on 3D cartesian grids with hanging nodes (multiscale)

FIG.: $E_{\rm y}$ field for parameter $\beta=1$ and $\beta=2$ Legendre P^1 with centered fluxes on mesh 10x10x10

A new method to ensure DGTD-PIC charge conservation WORKSHOP HOT PLASMAS

Some Physics DCTD-PIC Correction About centered fluxes New method Numerical results Conclusion and Outlook

How is this result obtained? (Generalization to 3D of 2D Issautier test-case)

$$J = \pi \begin{pmatrix} (\cos(t) - \beta)[\pi\cos(\pi x)(\sin(\pi z) + \sin(\pi y)) + 2\pi^2 x \sin(\pi y) \sin(\pi z)] - \cos(t)x\sin(\pi y) \sin(\pi z) \\ (\cos(t) - \beta)[\pi\cos(\pi y)(\sin(\pi x) + \sin(\pi z)) + 2\pi^2 y \sin(\pi z) \sin(\pi x)] - \cos(t)y\sin(\pi z) \sin(\pi x) \\ (\cos(t) - \beta)[\pi\cos(\pi z)(\sin(\pi y) + \sin(\pi x)) + 2\pi^2 z \sin(\pi x) \sin(\pi y)] - \cos(t)z\sin(\pi x) \sin(\pi y) \end{pmatrix}$$

$$\begin{split} E &= \sin(t) \begin{pmatrix} x \sin(\pi y) \sin(\pi z) \\ y \sin(\pi z) \sin(\pi x) \\ z \sin(\pi x) \sin(\pi y) \end{pmatrix} \\ \mathcal{H} &= \pi(\cos(t) - \beta) \begin{pmatrix} \sin(\pi x) (z \cos(\pi y) - y \cos(\pi z)) \\ \sin(\pi y) (x \cos(\pi z) - z \cos(\pi x)) \\ \sin(\pi z) (y \cos(\pi x) - x \cos(\pi y)) \end{pmatrix} \end{split}$$

Test-case similar to the one of A. Stock (proceedings of coupled problems 2011 conference) but fields are known explicitly

The same bad results are obtained

- For all $\beta > 0 \mapsto$ a small error can trigger a spurious reaction
- $\bullet\,$ For Bernstein basis functions $\mapsto\,$ not due to a defect in Legendre basis functions

Upwind fluxes and higher order basis functions delay the appearance of spurious behavior (but do not correct it)

★ Ξ → < Ξ →</p>

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
	000000	000000000	000000000000000000000000000000000000000			

How to get correct results?

Two kinds of methods

- Reintroduce divergence contraints in the equation via penalization (Issautier et Depeyre, rapport de recherche du CERMICS 1995) or a Lagrange Multiplier (Elliptic correction, Parabolic correction, Hyperbolic correction : PHM)
 → the data ρ is needed
- Use a proxy space for *J*, different from the one used to approximate the field *H*. Based on this principle, many configurations which correct spurious behaviors can be found.

\mapsto Charge conservation in DGTD-PIC is a separate issue

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
			0000			

Some Physics

DGTD-PIC : why and how

3 Introduction to correction methods to preserve divergence constraints

Why centered fluxes are unsuitable

6 A new method without correction or centered fluxes

6 Validation of new method and interest of using high order

Conclusion and Outlook

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
000	000000	0000000	00000	0000000	00000	000
Context						

Both Maxwell and Vlasov are hyperbolic, encouraging the use of explicit time integrators.

The correction methods replace Maxwell equations by an augmented formulation that can be :

- Still hyperbolic
- Parabolic or with parabolic/elliptic features

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
		00000000	0000			

First kind of correction : Depeyre-Issautier's penalization method

Formulation

Analysis of the formulation

No additional unknowns to compute but the equations become parabolic :

- Explicit time stepping loose efficiency
- Discretization of the additional penalization term in DGTD is more technical to perform
- Given suitable assumptions and an initial condition, there is a unique solution $(E(\alpha_E, \alpha_H), H(\alpha_E, \alpha_H))$

Some Physics	DGTD-PIC 000000	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
Second k	kind of co	rrection	containing sev	eral correc	ction method	ds

Formulation

Remarks

- Depending on the choice of parameters (α_E, β_E, γ_E) and of the differential operator op(∂), the Cauchy system on the whole space is well-posed.
- The last two equations can be : hyperbolic, parabolic, elliptic
- The PHM (Purely Hyperbolic Maxwell) formulation ensures global hyperbolicity of the system whose unknowns are (E, H, φ_E, φ_H)

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
		000000000	0000			

Relevant questions

List of questions

- Generalization of classical boundary conditions for Maxwell's equations to the augmented system (existence but no uniqueness)
- Time scheme to use to solve numerically the new augmented system
- Characteristics of waves propagating on (φ_E, φ_H) unknowns. For instance, for PHM, parameters have to be prescribed in a unique way to ensure propagation of these waves at the speed of light.
- Rigourous meaning of charge density ρ

Some Physics DGTD-PI	Correction About ce ○○○○●○○○○○◎○	entered fluxes New method	Numerical results	Conclusion and Outlook
Definition of a	ormo doncity (1)			

Two point of views for the Vlasov-Maxwell system

• ρ obtained from density function f as

$$\rho_{Vlasov} := (t, x) \mapsto \int_{\mathbb{R}^3} f(t, x, v) \, dv$$

 $\bullet~\rho$ obtained from the electric field through Gauss' law as

$$\rho_{Maxwell} := (t, x) \mapsto \epsilon \nabla.E(t, x)$$

• The two definitions of ρ give different values in DGTD-PIC, for instance on charged metallic surfaces

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
		0000000000	0000			

Definition of charge density (II)

A new method to ensure DGTD-PIC charge conservation WORKSHOP HOT PLASMAS

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
000	000000	000000000	0000	0000000	00000	000

Definition of charge density (III)

A new method to ensure DGTD-PIC charge conservation WORKSHOP HOT PLASMAS

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
		00000000000	000			

Charge density in correction methods

ρ in correction methods for PIC applications

- $\rho = \rho_{vlasov}$ thus correction methods enforce $\nabla . E rac{\rho_{vlasov}}{\epsilon} = 0$
- The information contained by $\rho_{\textit{vlasov}}$ is poorer than the one contained in $\rho_{\textit{Maxwell}}$ (physical charge density)
- The differences between $\rho_{Maxwell}$ and ρ_{Vlasov} lie on hypersurfaces on which suitable boundary conditions for the augmented system are expected to impose the correct physics

Correction methods using only DG...

We do not want to loose the advantages of DG by mixing it with finite elements

Physical case for which DGM correction Methods give nonphysical results

Some Physics	DGTD-PIC 000000	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
Commen	t on the	nonnhys	ical results			

Tests performed

- In 3D with PHM (preferred correction method)
- In 2D with Boris correction (reference method in terms of quality for most people)

Unphysical results how?

Charge density near the emissive zone goes to zero instead of maintaining a constant positive value at late times.

Expected results and results obtained when charge is not conserved

A new method to ensure DGTD-PIC charge conservation WORKSHOP HOT PLASMAS

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlool
000	000000	000000000	000	0000000	00000	000

Results obtained after correction can be even worse than those without correction !

Numerical artefacts induced by PHM

FIG.: Normal electric field near emissive plate

3.1

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
			0000			

Some Physics

DGTD-PIC : why and how

3 Introduction to correction methods to preserve divergence constraints

Why centered fluxes are unsuitable

6 A new method without correction or centered fluxes

6 Validation of new method and interest of using high order

Conclusion and Outlook

Some Physics	DGTD-PIC	Correction About centered fluxes	New method	Numerical results	Conclusion and Outlook	
		000000000000				
D						

Results obtained with centered fluxes

DGTD

- Bad with general meshes (lower convergence order, unphysical solutions for discontinuous meshes)
- For spurious schemes, encourage spurious errors
- For nonspurious schemes (Mounier, Campos-Pinto, Sonnendrücker (to appear in Applied Math and Computation 2015)) cannot cope with meshes with hanging nodes

DGTD-PIC

- Bad with general meshes (Example of Crestetto : 2D PHM on triangular meshes)
- Encourage false statistical-like noise
- Bad for charge conservation on general meshes including grids with hanging nodes

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
		000000000	000			

Some Physics

DGTD-PIC : why and how

3 Introduction to correction methods to preserve divergence constraints

Why centered fluxes are unsuitable

5 A new method without correction or centered fluxes

6 Validation of new method and interest of using high order

Conclusion and Outlook

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
		0000000	00000	000000		
DGTD s	cheme (p	art one)				

From equation :

$$A_0\partial_t U + A(\partial)U = S(t, x, y, z),$$

A way to write the DGTD scheme is :

$$\begin{split} \frac{d}{dt} \mathbf{U}_{K} + (M_{K}^{-1}R_{K})\mathbf{U}_{K} + \sum_{L \in \nu(K)} M_{K}^{-1}F_{KL}^{in}\mathbf{U}_{K} + \sum_{L \in \nu(K)} (M_{K}^{-1}F_{KL}^{out})\mathbf{U}_{L} \\ + \sum_{L \in \nu_{bound(K)}} M_{K}^{-1}F_{KL}^{bound}\mathbf{U}_{K} = M_{K}^{-1}\mathbf{S}_{K}. \end{split}$$

With Mass Matrix :

$$M_{K} = \begin{pmatrix} \left\langle \left\langle A_{0}\psi_{1}^{K}, \psi_{1}^{test,K} \right\rangle \right\rangle_{L^{2}(\Omega_{K})} & \cdots & \left\langle \left\langle A_{0}\psi_{dof_{tot}^{K}}^{K}, \psi_{1}^{test,K} \right\rangle \right\rangle_{L^{2}(\Omega_{K})} \\ \vdots & \ddots & \vdots \\ \left\langle \left\langle A_{0}\psi_{1}^{K}, \psi_{dof_{tot}^{test,K}}^{K} \right\rangle \right\rangle_{L^{2}(\Omega_{K})} & \cdots & \left\langle \left\langle A_{0}\psi_{dof_{tot}^{K}}^{K}, \psi_{dof_{tot}^{test,K}}^{test,K} \right\rangle \right\rangle_{L^{2}(\Omega_{K})} \end{pmatrix}$$

< ∃ →

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
			0000	000000		

DGTD scheme (part two)

Stiffness Matrix :

$$R_{K} = - \begin{pmatrix} \left\langle \left\langle \psi_{1}^{K}, A(\partial) \psi_{1}^{\text{test}, K} \right\rangle \right\rangle_{L^{2}(\Omega_{K})} & \cdots & \left\langle \left\langle \psi_{\text{dof}_{\text{tot}}^{K}}^{K}, A(\partial) \psi_{1}^{\text{test}, K} \right\rangle \right\rangle_{L^{2}(\Omega_{K})} \\ \vdots & \ddots & \vdots \\ \left\langle \left\langle \psi_{1}^{K}, A(\partial) \psi_{\text{dof}_{\text{tot}}^{\text{test}, K}}^{\text{test}, K} \right\rangle \right\rangle_{L^{2}(\Omega_{K})} & \cdots & \left\langle \left\langle \psi_{\text{dof}_{\text{tot}}^{K}}^{K}, A(\partial) \psi_{\text{dof}_{\text{tot}}^{\text{test}, K}}^{\text{test}, K} \right\rangle \right\rangle_{L^{2}(\Omega_{K})} \end{pmatrix}$$

Interior Fluxes

$$F_{\mathsf{KL}}^{in} = \begin{pmatrix} \left\langle \frac{A_{in}^{\gamma}(n_{\mathsf{KL}})}{2} \psi_{1}^{\mathsf{K}}, \psi_{1}^{\mathsf{test},\mathsf{K}} \right\rangle_{L^{2}(\partial\Omega_{\mathsf{K}})} & \cdots & \left\langle \frac{A_{in}^{\gamma}(n_{\mathsf{KL}})}{2} \psi_{\mathsf{dof}_{\mathsf{tot}}}^{\mathsf{K}}, \psi_{1}^{\mathsf{test},\mathsf{K}} \right\rangle_{L^{2}(\partial\Omega_{\mathsf{K}})} \\ & \vdots & \ddots & \vdots \\ \left\langle \frac{A_{in}^{\gamma}(n_{\mathsf{KL}})}{2} \psi_{1}^{\mathsf{K}}, \psi_{\mathsf{dof}_{\mathsf{tot}}}^{\mathsf{test},\mathsf{K}} \right\rangle_{L^{2}(\partial\Omega_{\mathsf{K}})} & \cdots & \left\langle \frac{A_{in}^{\gamma}(n_{\mathsf{KL}})}{2} \psi_{\mathsf{dof}_{\mathsf{tot}}}^{\mathsf{K}}, \psi_{\mathsf{dof}_{\mathsf{tot}}}^{\mathsf{test},\mathsf{K}} \right\rangle_{L^{2}(\partial\Omega_{\mathsf{K}})} \end{pmatrix}$$

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶ -

∃ 990

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook			
		0000000	0000	0000000					
DGTD s	DGTD scheme (part three)								

Exterior flux linked with neighboring unknown U_L is :

$$F_{\mathsf{KL}}^{out} = \begin{pmatrix} \left\langle \frac{A_{out}^{\gamma}(n_{\mathsf{KL}})}{2} \psi_{1}^{\mathsf{L}}, \psi_{1}^{\mathsf{test},\mathsf{K}} \right\rangle_{L^{2}(\partial\Omega_{\mathsf{K}})} & \cdots & \left\langle \frac{A_{out}^{\gamma}(n_{\mathsf{KL}})}{2} \psi_{dof_{tot}}^{\mathsf{L}}, \psi_{1}^{\mathsf{test},\mathsf{K}} \right\rangle_{L^{2}(\partial\Omega_{\mathsf{K}})} \\ & \vdots & \ddots & \vdots \\ \left\langle \frac{A_{out}^{\gamma}(n_{\mathsf{KL}})}{2} \psi_{1}^{\mathsf{L}}, \psi_{dof_{tot}}^{\mathsf{test},\mathsf{K}} \right\rangle_{L^{2}(\partial\Omega_{\mathsf{K}})} & \cdots & \left\langle \frac{A_{out}^{\gamma}(n_{\mathsf{KL}})}{2} \psi_{dof_{tot}}^{\mathsf{L}}, \psi_{dof_{tot}}^{\mathsf{test},\mathsf{K}} \right\rangle_{L^{2}(\partial\Omega_{\mathsf{K}})} \end{pmatrix}$$

Boundary fluxes are added to inforce chosen boundary conditions whenever needed

Fluxes are parametrized through the choice of 0 $\leq \gamma \leq$ 1

$$\begin{aligned} A^{\gamma}_{in}(n_{KL}) &= (1+\gamma)A^+(n_{KL}) + (1-\gamma)A^-(n_{KL}) \\ A^{\gamma}_{out}(n_{KL}) &= (1-\gamma)A^+(n_{KL}) + (1+\gamma)A^-(n_{KL}) \end{aligned}$$

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
		00000000	00000	0000000		

New DGTD(-PIC) scheme

Choices

- Explicit time scheme : RK4 or LF2
- Full Upwind Fluxes : $\gamma = 1$
 - ($\gamma = 0$ would be Centered Fluxes)

< ∃⇒

< 🗇 🕨

æ

Lumping

- Lagrange basis functions defined from Gauss-Lobatto quadrature points
- $\bullet\,$ Gauss-Lobatto quadrature rule $\mapsto\,$ Approximation of Integrals in DG matrices

A new method to ensure DGTD-PIC charge conservation WORKSHOP HOT PLASMAS

Some Physics	DGTD-PIC 000000	Correction	About centered fluxes	New method ○○○○●○	Numerical results	Conclusion and Outlook
PIC to so	olve Vlaso	ov equat	ion			

Macro-particle α is a clustering of particles with same position and momentum :

$$f(X, p, t) = \sum_{lpha=1}^{N} w_{lpha} \ \delta(X - X_{lpha}(t)) \ \delta(p - p_{lpha}(t))$$

 δ denotes the Dirac measure.

Current density J(f) is given by :

$$J(X,t) = q_e \int f v \, dp = \sum_{\alpha=1}^{N} q_\alpha v_\alpha(t) \delta(X - X_\alpha(t)) \tag{1}$$

Each macro-particle evolution is described by the fundamental laws of dynamics (ODE) :

$$\left\{ egin{array}{c} rac{dX_lpha}{dt} = {\sf v}_lpha\ rac{dp_lpha}{dt} = {\sf q}_lpha({\sf E}_lpha + {\sf v}_lpha imes {\sf B}_lpha) \end{array}
ight.$$

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
			0000	0000000		

Details of charge conserving PIC algorithm

- Classical relativistic Boris pusher based on DG fields at macroparticle location
- ② Each macroparticle α of charge qw_α remaining in cell Ω_K for t ∈ [τ_α, τ_α + Δτ_α) ⊂ [t_n, t_{n+1}) contributes to create in Ω_K the DGTD current source term given as follows (no Dirac smoothing, like Crestetto and Helluy)

$$\int_{\Omega_{K}} J\varphi_{i}^{K} = \sum_{\alpha=1}^{N_{inside}^{K}} \frac{1}{\Delta t} \int_{\tau_{\alpha}}^{\tau_{\alpha}+\Delta\tau_{\alpha}} qw_{\alpha}v(t) \varphi_{i}^{K}(x_{\alpha}(t)) dt$$

Since $\int_{\Omega_K} \delta(X - X_\alpha(t)) \varphi_i^K(x) \ dX = \varphi_i^K(x_\alpha(t)).$

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
			0000			

Some Physics

DGTD-PIC : why and how

3 Introduction to correction methods to preserve divergence constraints

Why centered fluxes are unsuitable

5 A new method without correction or centered fluxes

6 Validation of new method and interest of using high order

Conclusion and Outlook

FIG.: Electronic emission is caused by an external electrical field. After a transient phase, the induced field should remain static (equilibrium state). A coarser mesh is successfullly used in the middle.

Fragmentation du faisceau d'électrons

Comportement correct du faisceau d'électrons

→ Ξ → → Ξ →

< 🗇 🕨

3

FIG.: Simulation time : 10 ns, results obtained with and without charge conservation

Some Physics	DGTD-PIC 000000	Correction About centered fluxes	New method	Numerical results ○○●○○	Conclusion and Outlook
Interest	of high o	rder			
Ques	tion				

PIC algorithm is pretty inaccurate (assumption that the Lorentz Force remains constant during a time step).

 \mapsto Is there any use in coupling PIC with a high order DGTD scheme?

Answer

It is not only useful but sometimes necessary given performance requirements

Next numerical results

Illustrated by results given on cubic mesh (allows comparison with FDTD-PIC)

Interest of high order : first example

Coarsest mesh allowing convergence : increased computational efficiency

< 一型

 FIG.: Normal field in the case mentioned as a counterexample for correction methods

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
000	000000	000000000000		0000000	00000	000

Necessity of high order

What is high order?

The scheme must converge at speed 3, which is true for polynomial basis functions of order greater than $1 \ \ \,$

Fluctuation in convergence for low orders \mapsto not happening for high order!

FIG.: Abnormal damping of the plasma oscillation for mesh $100\times100\times100$

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
			0000			

Some Physics

DGTD-PIC : why and how

3 Introduction to correction methods to preserve divergence constraints

Why centered fluxes are unsuitable

6 A new method without correction or centered fluxes

6 Validation of new method and interest of using high order

Conclusion and Outlook

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
			0000			000

Conclusion

Presentation of a new DGTD-PIC method

- Charge is conserved even with hanging nodes (cartesian mesh with subgrids)
- Coupling high order DGTD with PIC has been shown to be a very rewarding choice since High order convergence (obvious in DGTD) has been achieved in DGTD-PIC (ability to reach converged state using much coarser meshes)

Some Physics	DGTD-PIC 000000	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook ○●○
Outlook						
More	general m	eshes				

• This new method is genuinely discontinuous (no continuous reconstruction assumed)

 No feature of the method is mesh-dependent (most DGTD-PIC relying on Dirac regularization scaled on local cell size)

 \mapsto The proposed method is a good candidate to conserve charge on general meshes

Computational efficiency

Increase efficiency by using tensor product structure of proposed basis functions

Some Physics	DGTD-PIC	Correction	About centered fluxes	New method	Numerical results	Conclusion and Outlook
			0000			000

Thank you for your attention !