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Model 1 used: the fluid model for electrons

e Imposed magnetic field By(z) = By(z)e., electron density
no(z). Two frequencies in this study

plasma frequency: (wy(x))? = 62:172?)
cyclotron frequency: w.(z) = %'

o Maxwell equations

V/\E:—ﬁtB
cZV/\B:%J#—@tE

e Relation on the electric current (from f = ¢(E + 7 A B)):
OJ = 0(wp(x))’E — we(z)J Aey —vJ

Relation between the velocity of electrons and the current:
J = —np(x)ev.
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Model 2 used: the fluid model for electrons and ions
Multispecies: ions of charge Z; and of masses m;

J = —ng(x eve—t—Zan x)ev; = —ng(x eve—f—ZJ

Electroneutrality no(z) = >, Zin;(z).
Electrodynamics

Z;
O; = m('i (E + Bo(z)v; Ab) — v,
Z%e’n; ZieB
o oy, = Ziem@) g ZieBo@) ;o
my mg
Zme

Deduce, with p; =

mg

2r7 . .
o+ =3¢ Zlnz(:j(l T2 o) S (14p0) i) TAb
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Effective dielectric tensor (cold plasma model, cf BD)
Recall that By depends only on z.

Fourier transform in time e~**. Express v, J; in terms of E
(eno(x)ve = X(w, x)E, J; = Ei(w, z)E, ¥(w,x), 3i(w, z)
matrices).

Deduce J = —eng(x)ve + >, Ji = [D; Xi(w, z) — E(w, x)]E.
Obtention of X, 3;: each one is obtained independently using
Z2e*n;(x)

Eomy;

—iwd; + vJ; — piwe; ANb=¢gg FE

Resonances, for v =0, at = s. th. w = pjw.(x).
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Effective dielectric tensor (cold plasma model, cf BD)
Recall that By depends only on z.

Fourier transform in time e~**. Express v, J; in terms of E
(eno(x)ve = X(w, x)E, J; = Ei(w, z)E, ¥(w,x), 3i(w, z)
matrices).

Deduce J = —eng(x)ve + >, Ji = [D; Xi(w, z) — E(w, x)]E.
Obtention of X, 3;: each one is obtained independently using
Z2e*n;(x)

Eomy;

—iwd; + vJ; — piwe; ANb=¢gg FE

Resonances, for v =0, at = s. th. w = pjw.(x).
—iwJ + v + wed b= (Q(2))°E + we(x) Y _(1+pi)Ji A

Effective dielectric tensor €”(w,z) = PDE on E:

VAV AE = eopow’e’ (w,z)E = equow?(Id — o(w,z))E.

iweg
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Hybrid resonance (case of electrons only)
One gets

1— (W‘f"i’/);-’;% , i w'cwé .
Sloz)= | CH VRGO
[y S S 1 [ S R—
w((w+iv)2—w?) w((w+iv)?2—w?)

Definition of hybrid resonance:
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Hybrid resonance (case of electrons only)
One gets
1 (w—i—iu)wg i wcwg
— | i) 2—w? Fiv)?—w?
EV(w,:L‘) = » w((wwczsé w?2) , _"-’((W (;er)w):fp) (1)
w((w+iv)?—w?) w((w+iv)?—w?2)

Definition of hybrid resonance:diagonal terms of €’ vanish. Why?
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Hybrid resonance (case of electrons only)

One gets
1 (w—i—iu)w?, i wcw%
v _ T w((wti)2—w2) w((w+iv)2—w?
€ (w’ iL‘) - i Wew,, 1— (w+iu)wg (1)

o((or)T—w?) () —o2)

Definition of hybrid resonance:diagonal terms of €’ vanish. Why?
System depending only on z: Fourier mode in y ¢*c S fo¥ (Normal
incidence)

csin OBy (x) — €1 EY (x) — €]5F5 (x) = 0.
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Hybrid resonance (case of electrons only)

One gets
1 (w—l—iu)wg i wcw%
v _ T w((wti)2—w2) w((w+iv)2—w?
€ (w’ iL‘) - i Wew,, 1— (w+iu)wg (1)

o((or)T—w?) () —o2)

Definition of hybrid resonance:diagonal terms of €’ vanish. Why?
System depending only on z: Fourier mode in y ¢*c S fo¥ (Normal

incidence)
csin OBy (x) — €1 EY (x) — €]5F5 (x) = 0.

EY(x) is singular at x = x, such that ¢} (z) = 0. If z/ solution
of (w+iv)wy(2)? = w((w +iv)? — w.(x)?) = 2% regular singular
point for the ODE.

Oblique incidence: c(ikoBY — ik3BY) — €/1 EY — €/, E5 = 0.
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Maxwell equations on the electromagnetic field (electrons
only)

Assumption: one seeks solutions of the form f(z)ei*osinfoy—iwt
ko = 2.
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Maxwell equations on the electromagnetic field (electrons
only)

Assumption: one seeks solutions of the form f(z)ei*osinfoy—iwt
ko = 2. System (normal incidence):

( inl = ik)() sin 90E3

iwBy = —E4

ing = Eé — iko sin (90E1

CQ(ik‘o sin 0033) = jl — inl
02(—Bé) = j2 — inQ

C2(Bé — ’iko sin 9031) = j3 — ing
—iwj = wg(x)El —we(x)jo — v
—iwjy = w3 () By 4 we(x)j1 — vjo
(| —iwjs = wy(z)E3 — vj3




Table of contents Modelling Classical method: the effective dielectric tensor An equivalent system of ODEs Hybrid resonance Li

System: oblique incidence, electrons: (e#F2vtiksz—ivt £(y))

iwB = tkoEy — iksE»

inQ = i]{gEl — Eé
iwBs = Eb — iky B

C2(ik233 — ik‘gBQ) = jl — iUJEl
Cz(ikgEl — Bé) = jg — inQ
*(By — ikgB1) = jz — iwE3

—iwj1 = wg(x)El — we(x)j2 — Vi1
—iwjy = w3 (x) By 4 we(x)j1 — vjo
—iwjz = wg(ﬂj‘)Eg —VJ3



Table of contents Modelling Classical method: the effective dielectric tensor An equivalent system of ODEs Hybrid resonance Li
[e] o]
(o] 000
000
[e]e]

Multispecies, oblique incidence (restructuring)

iwBy = iky By — E
¢?(Bl —ikyBy) = j3 — iwEs

(—iw +v)js = w, 2(2)Es
szl = (Zk‘gEg — ZkgEg)

ing = Eé — ’ikQEl
C2(ik331 — Bé) = jQ — ’inQ

jl — sz1 = C (ZkQBg — ZkgBQ)
(_ZW+V)J11 pchJ2j —50(("} )

piwed1,i + (—iw + v)Jaj = go(w )2 Es
(—iw + I/)jl + wc( ) J2 = 8092( )E1 + We Zl(l +pz‘)JZ’72
(—iw + v)jo — we(x)j1 = 6092($)E2 —we o (1+pi)dia

2E1

%
p
%
p
X
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Hybrid singularities

2n — 1 last equations = €al(j1,j2, J14,J24), E1 in terms of
(Es, ikyBs — iksBs).
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Hybrid singularities
2n — 1 last equations = eal(jl,jg, J14,J24), E1 in terms of
(Eq,ikoBs — iksBs2).
Assembling the system:

(ady om) o ()

(1,0) 0 —iw
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Hybrid singularities
2n — 1 last equations = €al(j1,j2, J14,J24), E1 in terms of
(Eq,ikoBs — iksBs2).
Assembling the system:

M; 0 <(°"§)2
<Ly ") ()

'Physical’ remarks:
o p << 1
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Hybrid singularities
2n — 1 last equations = €al(j1,j2, J14,J24), E1 in terms of
(Eq,ikoBs — iksBs2).
Assembling the system:

| (wp)?
" o (4
0 -1 - Di (Qp)2
We < 14+ p; 0 ) M < 0
(1,0) 0 —iw
'Physical’ remarks:
opi<<1%912,:w§

.M:<_ZW+V ‘Wc ),
—We —iw + v

[ tw+rv —piwe L
0M1—< Dioe —iw—l—u)_( iw+v)Id



An equivalent system of ODEs

Replace F by its value from the last equation:

. (w})? 1 0
Ml iw (0 0)

0 —1—pi (Qp)2 1 0
wc<1+pi 0 )M+ w \ 00

Electrons only: determinant:

dy(7) = we(z)? + (iw — V)% + wgi‘j—;”.




An equivalent system of ODEs

Replace F by its value from the last equation:

. (w})? 1 0
Ml iw (0 0)

0 —1—pi (Qp)2 1 0
wc<1+pi 0 )M+ w \ 00

Electrons only: determinant:

dy(7) = we(z)? + (iw — V)% + wgi‘j—;”.

do(x) vanishes at xj, such that w? = (W + w?)(xp).




An equivalent system of ODEs

Replace F by its value from the last equation:

. (w})? 1 0
Ml iw (0 0)

0 —1—pi (Qp)2 1 0
wc<1+pi 0 )M+ w \ 00

Electrons only: determinant:

dy(2) = we()? 4 (iw — v)? + w2 =t

do(x) vanishes at xj, such that w? = (W + w?)(xp).
Does not vanish at z..




An equivalent system of ODEs

Replace F by its value from the last equation:

. (w})? 1 0
Ml iw (0 0)

0 —1—pi (Qp)2 1 0
wc<1+pi 0 )M+ w \ 00

Electrons only: determinant:

dy(2) = we()? 4 (iw — v)? + w2 =t

do(x) vanishes at xj, such that w? = (W + w?)(xp).
Does not vanish at z..

Definition: a hybrid singularity is a = such that the

determinant of the system vanish for v = 0




An equivalent system of ODEs

Replace F by its value from the last equation:

. (w})? 1 0
Ml iw (0 0)

0 —1—pi (Qp)2 1 0
wc<1+pi 0 )M+ w \ 00

Electrons only: determinant:

dy(7) = we(z)? + (iw — V)% + wgi‘j—;”.

do(x) vanishes at xj, such that w? = (W + w?)(xp).

Does not vanish at z..

Definition: a hybrid singularity is a = such that the
determinant of the system vanish for v = 0

Assumption: simple hybrid singularity: Do(zp;) = 0, D{(zpi) # 0.
For simplicity: concentrate on electrons only, oblique incidence.
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System of ODEs

Elimination of (41, j2):

2 . . 2
. w. 1 2 9 W . .
(—iw+v— )i - w2 = —c* 32 (ko Bs — k3 B2)
wcg—é + (—iw + I/)g% = (A.)IZ)EQ

Obtain:
IR S .
€y J1= E[Tc (Zkng — lkng) + wCEQ]
2 2
g g2 = %[%02(1'1@233 — ik3Bs) + (—iw + v — 72) By
Recall E; = X no_ Vs

w €0 w
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Unknowns:
(B, Vs = ikyBs — ik3 By, E3, Vy = ik By + ik3Bs)

OpFo = iwBs + ika Eq

8, *Va = iw(ikg By + iks Es) + ikseg ' js + e likaja

OxF3 = —iwBy + ikgEq

836(62‘/2) = —iw(ik‘QEg — ik‘gEQ) — |,I€|2C2Bl + ikzealjg — Eglikgjz

with

0t j2 = [041162V3 + a12E5)
E| = [Oézlc VE; + OtQQEQ] ( )7102‘/3 = El — (iw)flcQV;;
We w2 1 iw—v

. P
Q] = Q2 = —,012 = —W+V——,00] = ——
w 1w w w

Note that o199 — ajo9; = _w72dy.




An equivalent system of ODEs

System after transformations

00 By = — 5 (ikaV3 + ik3 Vo) — 42 2v3 + iko By

0, 02‘/?3 ZUJ(Z]{?QEQ + Zk?gEg) + iks zw+yE3 +é9 1k2J2
00 B3 = i (ik2Vo — iksV3) — 527V; + ik Eq

0 (2V3) = (—iw — F< ' S (iky Bs — iks ) + iky—2— Fy — g iksjz

zw—i—u

Introduce A = < @22 a2 ) A= ( 22 a2 ) System

Q12 Q11 —Q12 —O11

E2 3 ; E2

895 < 62‘/23 > = ik‘gBll ( )-f—’bkgBlg( 2V >+Zk2d A< 02V3 >
E .

O ( 021?}2 > = ik3 B2y ( )
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System for (Ey, W := ¢Bs)

.. €Y 2 k2
i Es _ —1ks % ( %) - % Es
de \ W _ 1€ €

; 21
Z]fg

v v

€11 €11

For v = 0, singularity at = = x,.
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o 000
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System for (Ey, W := ¢Bj)

d ko Si2 (2)2 — K

— By — 265} c vy E,

de \ W G 1Sl 15 R ) W11 w
it e

For v = 0, singularity at = = x,.
For v = 0, matrix bounded at « = z., with a turning point.



Hybrid resonance
[ ]

System for (Ey, W := ¢Bj)

e E12 wy2 _ k5
dx W _ €11€22"€12€91 —Z‘kgm W

v
611 €

For v = 0, singularity at x = xp,.

For v = 0, matrix bounded at « = z., with a turning point.
Main result:

i) one can construct solutions in the neighborhood of both
points.

ii) heating of the plasma only occurs at = = z;,

Main hypothesis: w. and w), are locally analytic at = xy,.
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Approximate solution in the neighborhood of x,

i E2 _ ay by E2

de \ W ) e —a W)
ODE of order 2: use ¢, # 0 in a neighborhood of xj,
= By = (c,) YW’ + a,W).

1 2 D\
:>i 7iW = &‘i_by_ a4 W, xzeR.
dr \ ¢, dx Cy c

14
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€00

000

00

Approximate solution in the neighborhood of x,

()= )8,

ODE of order 2: use ¢, # 0 in a neighborhood of xj,
= By = (c,) YW’ + a,W).

1 2 D\
:>i 7iW = &‘i_by_ a4 W, xzeR.
dr \ ¢, dx Cy Cy

New unknown h(zx) := (—cy)7%W(aj). =

d*h ay\’ I
dl‘; = ((IZ + byCl/ — Cy <CV> + Vv —Cy (ﬁ) ) h,/, Tz € R.
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Note a, €}, (z) bounded and not zero in a neighborhood of x},
10y €Yy (wp) > 0,02€% (zp) > 0.

= ey(2) = 0 &z = o (local), ;™ = ia+ O(v).

v
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Note a, €}, (z) bounded and not zero in a neighborhood of x},
10y €Yy (wp) > 0,02€% (zp) > 0.

= e (z) =0 & z = zY (local), “*" =ia + O(v).
Estimates

and the most singular term of the ODE is

_1 1
(= X) 3 ((2 ~ X0)2)" = —qxo



Hybrid resonance

ooe

Lemma

There exists R, (x), analytic in a ball of center x}, and of radius
d,sur that the equation on h, writes

d*h, B 1 n R, ()
de2 ~ \ 4(z—-X,)? =z-X,

> hy, reR (2)
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ooe

Lemma

There exists R, (x), analytic in a ball of center x}, and of radius
d,sur that the equation on h, writes

d*h,, 1 R,(x)
(- hy, R (2
dx? ( 4(CCXV)2+$X,/> re (2)

Lemma
For \2 = —4R, x — X,,Jo(\/z — X,)) is a solution of

d?h, _ [ 1 R
dz? ( 4(z—X,)? + .Z’—XV) hu, r €R.
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Eikonal equation

e Model solutions: Let Jy and Y be the Bessel functions of the
first kind and of the second kind. The functions \/zJy(y/x) (and
VxYo(x)) are solutions of

U'=(—p= — &)U
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Eikonal equation

e Model solutions: Let Jy and Y be the Bessel functions of the
first kind and of the second kind. The functions \/zJy(y/x) (and
VxYy(zx)) are solutions of

U'=(—p= — &)U
e Stretching: If u is solution of a Sturm equation v (z) = p(z)u,
and if p is a given analytic (in V/(x3)) function, such that

p(zn) =0, p'(zn) # 0, then v(z) = (p') " 2u(p(x)) solves

V= [(0)?p(p) + ()7 ((0) %)
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Eikonal equation

e Model solutions: Let Jy and Y be the Bessel functions of the
first kind and of the second kind. The functions \/zJy(y/x) (and
VxYy(zx)) are solutions of

U'=(—p= — &)U
e Stretching: If u is solution of a Sturm equation v (z) = p(z)u,
and if p is a given analytic (in V/(x3)) function, such that

p(zn) =0, p'(zn) # 0, then v(z) = (p') " 2u(p(x)) solves

V= [(0)?p(p) + ()7 ((0) %)
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Eikonal equation

e Model solutions: Let Jy and Y be the Bessel functions of the
first kind and of the second kind. The functions \/zJy(y/x) (and
VxYy(zx)) are solutions of

U'=(—p= — &)U
e Stretching: If u is solution of a Sturm equation v (z) = p(z)u,
and if p is a given analytic (in V/(x3)) function, such that

p(zn) =0, p'(zn) # 0, then v(z) = (p') " 2u(p(x)) solves
o = 1(0)2p(p) + (1)2 () 2) o
Eikonal equation:

! (x))? 1 R,(x
(Zpg(i)) (14 py(2)) = 4z —X,)? @ —(X),,'

v
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The solutions of the ODE

Introduce the special function To( ) = Yo(2) — 2InzJo(2), which
admits an analytic expansion in z2. Define

Uy(z) = \/EJO A/ pu(2)),
V(z) = p,, [Yo(As \/T % In A )JO()\,,\//T(QZ))]
_ \/7T0 Ao/ou (@) + 2(In /() Jo (A /P ().

They solve UI/ — (_4(;E_1XL,)2 + :EKA(XB)U =+ SVU. where Sy smooth.

Proposition

There exists two 'smooth’ functions A, et B,,, such that a solution
of (2) writes

hy(x) = Ay(z)Uy(x) + By (z)V, ().
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Solution of the Eikonal equation and of the ODE

Lemma
One has p,(x) = (x — X, )o,(x), where 0,,(z) is the unique

solution of o), (x v(x,0,(x), in the neighborhood of x},
such that o, (x},

~— —
I

S|
<
e
8
~— ¥
|

In this lemma
4[R,(X,)a — Ry(z)] '
\/(1 — 4R, (7)(r — X)) + \/(1 — 4R, (X)) (z — X,)a)

F,(z,a) =
Use of Duhamel principle yields
(A, B)T () = M, (x)s,(Ay, B,)" (),

_(UWVly)  Uly)?
My(y)—( Vo) —U,()Vil(y) )
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Solution of the Eikonal equation and of the ODE

Lemma

One has p,(x) = (x — X, )o,(x), where 0,,(z) is the unique
solution of o},(z) = o, (x)F,(x,0,(x), in the neighborhood of x}
such that o, (x}, 1
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In this lemma
4[R,(X,)a — Ry(z)] '
\/(1 — 4Ry (z)(z — Xy)) + \/(1 — 4R, (Xy)(z = Xy)a)

Use of Duhamel principle yields
(A}, B;)T(x) =My (z)sy (A, BV)T(x),

_(UWVly)  Uly)?
My(y)—( —Vo(y)?  ~U,(y)Vi(y) )

integral equation with initial datum.

F,(z,a) =
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One has p,(x) = (x — X, )o,(x), where 0,,(z) is the unique
solution of o},(z) = o, (x)F,(x,0,(x), in the neighborhood of x}
such that o, (x}, 1
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In this lemma
4[R,(X,)a — Ry(z)] '
\/(1 — 4Ry (z)(z — Xy)) + \/(1 — 4R, (Xy)(z = Xy)a)

Use of Duhamel principle yields
(A}, B;)T(x) =My (z)sy (A, BV)T(x),

_(UWVly)  Uly)?
My(y)—( —Vo(y)?  ~U,(y)Vi(y) )

F,(z,a) =

integral equation with initial datum. Quod erat demonstrandum.
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Explicit solution of the global system

w2
LAF = iky BiaG

0y F — ika(B11 +
w? .
0:G — ikyBooG = iks(Ba; + fA)F

Sketch:

e From the equation on F, obtain an equation on V3 (plays the
role of W) with source term depending on G.

System (A, B))T(z) = nM,(2)s,(Ay, B,)T () + ik3Baa(G) ()
e One obtained F = F/7¢¢ + ik3T(G)(z).
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Sketch:
e From the equation on F, obtain an equation on V3 (plays the
role of W) with source term depending on G.
System (A, B))T(z) = nM,(2)s,(Ay, B,)T () + ik3Baa(G) ()
e One obtained F = F/7¢¢ + ik3T(G)(z).
e replace the values obtained in the equation on G:
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Explicit solution of the global system

w2
“PA)F = ikyB1oG

0y F — ika(B11 + 7

2
W, ~
0:G — ikyBooG = iks(Ba; + fA)F

Sketch:

e From the equation on F, obtain an equation on V3 (plays the
role of W) with source term depending on G.

System (A, B))T(z) = nM,(2)s,(Ay, B,)T () + ik3Baa(G) ()
e One obtained F = F/7¢¢ + ik3T(G)(z).

e replace the values obtained in2the equation on G:

02G — ikyB2yG = iks(Ba1 + g2 A)(FI7°° + ik T(G)(x)).

e Equation on G:

0:G — tkoBosG + k%(BQl + %A)T(G) = ikg(le + %A)Ffree.
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Another way of studying the problem:

k
8, G = ¢k2322G+¢k3321F+k—3 ( (1) 01 ) [0, F —iky By1 F—iks B12G.
, _

EquationonH:G—zz<(1) _01>F:

. . 1 0 1 0
axH = Zk2B22H+Zk3(B22 ( 0 —1 > +Bgl - < 0 —1 >Bll)F
k2 1 0
—i72 Bia(H + 2 ( 0 1 > F).

The singularity generated by F' is only in the source term for H.
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Resonant heating
Relevant quantity
Q(a,b) =3 [} (e ()
= —J(W”(b)(E )*(b)
where a and b are fixed.
In the case of the cyclotron frequency, no singularity and limit zero

when (a,b) is a small neighborhood of ..
For the hybrid frequency, note that

limy 0. In(py(2)) = (In(po(x)))* = { E&(ﬁif;ihx <axp

Hence M, (z) — M (z), is L}, and one notes the following
approximations:

z)EY(z), (E¥)*(x))dz
)+ S(W¥(0)(E5)"(a))

WY — AW (x) + BE W5 ()

5 AFR(r) + B Ra() + ~ B3 (o))
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1 &t v () 1 1 v ()
BY = i WY 2 — (AW + B, (WY + LW In 2]

N
AT K, (x) + Bf Ka(x) + BfS(x)(In p(x))*

Limit of Q¥(a,b) for a < xp — o < xp + dp + b and v — 04

|Bo(en)PIedaen) P sign(@ety ) (e, ).
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