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Model 1 used: the fluid model for electrons

• Imposed magnetic field ~B0(x) = B0(x)ez, electron density
n0(x). Two frequencies in this study

plasma frequency: (ωp(x))2 = e2n0(x)
mε0

,

cyclotron frequency: ωc(x) = e|B0(x)|
m .

• Maxwell equations{
∇∧ E = −∂tB
c2∇∧B = 1

ε0
J + ∂tE

• Relation on the electric current (from ~f = q( ~E + ~v ∧ ~B)):

∂tJ = ε0(ωp(x))2E − ωc(x)J ∧ ez − νJ

Relation between the velocity of electrons and the current:
J = −n0(x)ev.
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Model 2 used: the fluid model for electrons and ions
Multispecies: ions of charge Zi and of masses mi

J = −n0(x)eve +
∑
i

Zini(x)evi = −n0(x)eve +
∑
i

Ji

Electroneutrality n0(x) =
∑

i Zini(x).
Electrodynamics

∂tvi =
Zie

mi
(E +B0(x)vi ∧ b)− νvi

⇔ ∂tJi =
Z2
i e

2ni(x)

mi
E +

ZieB0(x)

mi
Ji ∧ b− νJi

Deduce, with pi = Zme
mi

∂tJ+νJ =
∑
i

e2Zini(x)(1 + pi)

me
E+ωc(x)

∑
i

(1+pi)Ji∧b−ωc(x)J∧b
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Effective dielectric tensor (cold plasma model, cf BD)
Recall that B0 depends only on x.
Fourier transform in time e−iωt. Express ve, Ji in terms of E
(en0(x)ve = Σ(ω, x)E, Ji = Σi(ω, x)E, Σ(ω, x),Σi(ω, x)
matrices).
Deduce J = −en0(x)ve +

∑
i Ji = [

∑
i Σi(ω, x)− Σ(ω, x)]E.

Obtention of Σ,Σi: each one is obtained independently using

−iωJi + νJi − piωcJi ∧ b = ε0
Z2
i e

2ni(x)

ε0mi
E

Resonances, for ν = 0, at x s. th. ω = piωc(x).

−iωJ + νJ + ωcJ ∧ b = (Ωp(x))2E + ωc(x)
∑
i

(1 + pi)Ji ∧ b

Effective dielectric tensor εν(ω, x) ⇒ PDE on E:

∇∧∇ ∧ E = ε0µ0ω
2εν(ω, x)E := ε0µ0ω

2(Id− 1

iωε0
σ(ω, x))E.
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Hybrid resonance (case of electrons only)

One gets

εν(ω, x) =

1− (ω+iν)ω2
p

ω((ω+iν)2−ω2
c )

i
ωcω2

p

ω((ω+iν)2−ω2
c )

−i ωcω2
p

ω((ω+iν)2−ω2
c )

1− (ω+iν)ω2
p

ω((ω+iν)2−ω2
c )

 (1)

Definition of hybrid resonance:diagonal terms of ε0 vanish. Why?
System depending only on x: Fourier mode in y ei

ω
c

sin θ0y (Normal
incidence)

c sin θ0B
ν
3 (x)− εν11E

ν
1 (x)− εν12E

ν
2 (x) = 0.

E0
1(x) is singular at x = xh such that ε011(x) = 0. If xνh solution

of (ω+ iν)ωp(x)2 = ω((ω+ iν)2 − ωc(x)2)⇒ xνh regular singular
point for the ODE.
Oblique incidence: c(ik2B

ν
3 − ik3B

ν
2 )− εν11E

ν
1 − εν12E

ν
2 = 0.



Table of contents Modelling Classical method: the effective dielectric tensor An equivalent system of ODEs Hybrid resonance Limiting absorption principle Conclusion

Hybrid resonance (case of electrons only)

One gets

εν(ω, x) =

1− (ω+iν)ω2
p

ω((ω+iν)2−ω2
c )

i
ωcω2

p

ω((ω+iν)2−ω2
c )

−i ωcω2
p

ω((ω+iν)2−ω2
c )

1− (ω+iν)ω2
p

ω((ω+iν)2−ω2
c )

 (1)

Definition of hybrid resonance:diagonal terms of ε0 vanish. Why?
System depending only on x: Fourier mode in y ei

ω
c

sin θ0y (Normal
incidence)

c sin θ0B
ν
3 (x)− εν11E

ν
1 (x)− εν12E

ν
2 (x) = 0.

E0
1(x) is singular at x = xh such that ε011(x) = 0. If xνh solution

of (ω+ iν)ωp(x)2 = ω((ω+ iν)2 − ωc(x)2)⇒ xνh regular singular
point for the ODE.
Oblique incidence: c(ik2B

ν
3 − ik3B

ν
2 )− εν11E

ν
1 − εν12E

ν
2 = 0.



Table of contents Modelling Classical method: the effective dielectric tensor An equivalent system of ODEs Hybrid resonance Limiting absorption principle Conclusion

Hybrid resonance (case of electrons only)

One gets

εν(ω, x) =

1− (ω+iν)ω2
p

ω((ω+iν)2−ω2
c )

i
ωcω2

p

ω((ω+iν)2−ω2
c )

−i ωcω2
p

ω((ω+iν)2−ω2
c )

1− (ω+iν)ω2
p

ω((ω+iν)2−ω2
c )

 (1)

Definition of hybrid resonance:diagonal terms of ε0 vanish. Why?
System depending only on x: Fourier mode in y ei

ω
c

sin θ0y (Normal
incidence)

c sin θ0B
ν
3 (x)− εν11E

ν
1 (x)− εν12E

ν
2 (x) = 0.

E0
1(x) is singular at x = xh such that ε011(x) = 0. If xνh solution

of (ω+ iν)ωp(x)2 = ω((ω+ iν)2 − ωc(x)2)⇒ xνh regular singular
point for the ODE.
Oblique incidence: c(ik2B

ν
3 − ik3B

ν
2 )− εν11E

ν
1 − εν12E

ν
2 = 0.



Table of contents Modelling Classical method: the effective dielectric tensor An equivalent system of ODEs Hybrid resonance Limiting absorption principle Conclusion

Hybrid resonance (case of electrons only)

One gets

εν(ω, x) =

1− (ω+iν)ω2
p

ω((ω+iν)2−ω2
c )

i
ωcω2

p

ω((ω+iν)2−ω2
c )

−i ωcω2
p

ω((ω+iν)2−ω2
c )

1− (ω+iν)ω2
p

ω((ω+iν)2−ω2
c )

 (1)

Definition of hybrid resonance:diagonal terms of ε0 vanish. Why?
System depending only on x: Fourier mode in y ei

ω
c

sin θ0y (Normal
incidence)

c sin θ0B
ν
3 (x)− εν11E

ν
1 (x)− εν12E

ν
2 (x) = 0.

E0
1(x) is singular at x = xh such that ε011(x) = 0. If xνh solution

of (ω+ iν)ωp(x)2 = ω((ω+ iν)2 − ωc(x)2)⇒ xνh regular singular
point for the ODE.
Oblique incidence: c(ik2B

ν
3 − ik3B

ν
2 )− εν11E

ν
1 − εν12E

ν
2 = 0.



Table of contents Modelling Classical method: the effective dielectric tensor An equivalent system of ODEs Hybrid resonance Limiting absorption principle Conclusion

Contents

Modelling

Classical method: the effective dielectric tensor
The effective tensor
The hybrid resonance

An equivalent system of ODEs

Hybrid resonance
Normal incidence, in the neighborhood of the hybrid singularity
Reduction to a Bessel-type equation
Associated eikonal equation
Oblique incidence

Limiting absorption principle

Conclusion



Table of contents Modelling Classical method: the effective dielectric tensor An equivalent system of ODEs Hybrid resonance Limiting absorption principle Conclusion

Maxwell equations on the electromagnetic field (electrons
only)

Assumption: one seeks solutions of the form f(x)eik0 sin θ0y−iωt,
k0 = ω

c . System (normal incidence):

iωB1 = ik0 sin θ0E3

iωB2 = −E′3
iωB3 = E′2 − ik0 sin θ0E1

c2(ik0 sin θ0B3) = j1 − iωE1

c2(−B′3) = j2 − iωE2

c2(B′2 − ik0 sin θ0B1) = j3 − iωE3

−iωj1 = ω2
p(x)E1 − ωc(x)j2 − νj1

−iωj2 = ω2
p(x)E2 + ωc(x)j1 − νj2

−iωj3 = ω2
p(x)E3 − νj3
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System: oblique incidence, electrons: (eik2y+ik3z−iωtf(x))

iωB1 = ik2E3 − ik3E2

iωB2 = ik3E1 − E′3
iωB3 = E′2 − ik2E1

c2(ik2B3 − ik3B2) = j1 − iωE1

c2(ik3E1 −B′3) = j2 − iωE2

c2(B′2 − ik2B1) = j3 − iωE3

−iωj1 = ω2
p(x)E1 − ωc(x)j2 − νj1

−iωj2 = ω2
p(x)E2 + ωc(x)j1 − νj2

−iωj3 = ω2
p(x)E3 − νj3
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Multispecies, oblique incidence (restructuring)



iωB2 = ik3E2 − E′3
c2(B′2 − ik2B1) = j3 − iωE3

(−iω + ν)j3 = ω2
p(x)E3

iωB1 = (ik2E3 − ik3E2)

iωB3 = E′2 − ik2E1

c2(ik3B1 −B′3) = j2 − iωE2

j1 − iωE1 = c2(ik2B3 − ik3B2)
(−iω + ν)J1,i − piωcJ2,j = ε0(ωip)

2E1

piωcJ1,i + (−iω + ν)J2,j = ε0(ωip)
2E2

(−iω + ν)j1 + ωc(x)j2 = ε0Ω2
p(x)E1 + ωc

∑
i(1 + pi)Ji,2

(−iω + ν)j2 − ωc(x)j1 = ε0Ω2
p(x)E2 − ωc

∑
i(1 + pi)Ji,1
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Hybrid singularities
2n− 1 last equations ⇒ ε−1

0 (j1, j2, J1,i, J2,i), E1 in terms of
(E2, ik2B3 − ik3B2).
Assembling the system:

Mi 0

(
(ωip)

2

0

)
ωc

(
0 −1− pi

1 + pi 0

)
M

(
(Ωp)

2

0

)
(1, 0) 0 −iω


’Physical’ remarks:
• pi << 1 → Ω2

p ' ω2
p

• M =

(
−iω + ν ωc
−ωc −iω + ν

)
,

• Mi =

(
−iω + ν −piωc
piωc −iω + ν

)
' (−iω + ν)Id
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Replace E1 by its value from the last equation: Mi
(ωip)2

iω

(
1 0
0 0

)
ωc

(
0 −1− pi

1 + pi 0

)
M +

(Ωp)2

iω

(
1 0
0 0

)


Electrons only: determinant:
dν(x) = ωc(x)2 + (iω − ν)2 + ω2

p
iω−ν
iω .

d0(x) vanishes at xh such that ω2 = (ω2
p + ω2

c )(xh).
Does not vanish at xc.
Definition: a hybrid singularity is a x such that the
determinant of the system vanish for ν = 0
Assumption: simple hybrid singularity: D0(xhi) = 0, D′0(xhi) 6= 0.
For simplicity: concentrate on electrons only, oblique incidence.
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System of ODEs

Elimination of (j1, j2):{
(−iω + ν − ω2

p

iω ) j1ε0 − ωc
j2
ε0

= −c2 ω
2
p

iω (ik2B3 − ik3B2)

ωc
j1
ε0

+ (−iω + ν) j2ε0 = ω2
pE2

Obtain:{
ε−1

0 j1 =
ω2
p

dν
[ iω−νiω c2(ik2B3 − ik3B2) + ωcE2]

ε−1
0 j2 =

ω2
p

dν
[ωciω c

2(ik2B3 − ik3B2) + (−iω + ν − ω2
p

iω )E2]

Recall E1 = 1
iω
j1
ε0
− c2V3

iω .
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Unknowns:
(E2, V3 = ik2B3 − ik3B2, E3, V2 = ik2B2 + ik3B3)


∂xE2 = iωB3 + ik2E1

∂xc
2V3 = iω(ik2E2 + ik3E3) + ik3ε

−1
0 j3 + ε−1

0 ik2j2
∂xE3 = −iωB2 + ik3E1

∂x(c2V2) = −iω(ik2E3 − ik3E2)− |k|2c2B1 + ik2ε
−1
0 j3 − ε−1

0 ik3j2

with{
ε−1

0 j2 =
ω2
p

dν
[α11c

2V3 + α12E2]

E1 =
ω2
p

dν
[α21c

2V3 + α22E2]− (iω)−1c2V3 = Ẽ1 − (iω)−1c2V3

α11 = α22 =
ωc
iω
, α12 = −iω + ν −

ω2
p

iω
, α21 =

1

iω

iω − ν
iω

.

Note that α11α22 − α12α21 = −ω−2dν .
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System after transformations
∂xE2 = − iω

|k|2 (ik2V3 + ik3V2)− ik2
iω c

2V3 + ik2Ẽ1

∂xc
2V3 = iω(ik2E2 + ik3E3) + ik3

ω2
p

−iω+νE3 + ε−1
0 ik2j2

∂xE3 = iω
|k|2 (ik2V2 − ik3V3)− ik3

iω c
2V3 + ik3Ẽ1

∂x(c2V2) = (−iω − |k|
2c2

iω )(ik2E3 − ik3E2) + ik2
ω2
p

−iω+νE3 − ε−1
0 ik3j2

Introduce A =

(
α22 α21

α12 α11

)
, Ã =

(
α22 α21

−α12 −α11

)
. System

∂x

(
E2

c2V3

)
= ik2B11

(
E2

c2V3

)
+ik3B12

(
E3

c2V2

)
+ik2

ω2
p

dν
A

(
E2

c2V3

)

∂x

(
E3

c2V2

)
= ik3B21

(
E2

c2V3

)
+ik2B22

(
E3

c2V2

)
+ik3

ω2
p

dν
Ã

(
E2

c2V3

)
.
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Contents
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Classical method: the effective dielectric tensor
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Associated eikonal equation
Oblique incidence
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System for (E2,W := cB3)

d

dx

(
E2

W

)
=

 −ik2
εν12
εν11

(ωc )2 − k22
εν11

− εν11ε
ν
22−εν12εν21
εν11

−ik2
εν21
εν11

( E2

W

)
For ν = 0, singularity at x = xh.
For ν = 0, matrix bounded at x = xc, with a turning point.
Main result:
i) one can construct solutions in the neighborhood of both
points.
ii) heating of the plasma only occurs at x = xh
Main hypothesis: ωc and ωp are locally analytic at x = xh.
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Approximate solution in the neighborhood of xh

d

dx

(
E2

W

)
=

(
aν bν
cν −aν

)(
E2

W

)
.

ODE of order 2: use cν 6= 0 in a neighborhood of xh
⇒ E2 = (cν)−1(W ′ + aνW ).

⇒ d

dx

(
1

cν

d

dx
W

)
=

(
a2
ν

cν
+ bν −

(
aν
cν

)′)
W, x ∈ R.

New unknown h(x) := (−cν)−
1
2W (x). ⇒

d2hν
dx2

=

(
a2
ν + bνcν − cν

(
aν
cν

)′
+
√
−cν

(
1√
−cν

)′′)
hν , x ∈ R.
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Note aνε
ν
11(x) bounded and not zero in a neighborhood of xh,

i∂νε
ν
11(xh) > 0, ∂xε

0
11(xh) > 0.

⇒ εν11(x) = 0⇔ x = xνh (local),
xνh−xh
ν = ia+O(ν).

Estimates

0 < c1 ≤ |(x− xνh)(a2
ν + bνcν)(x)| ≤ c2

0 < c1 ≤ |(aνcν )′| ≤ c2.

and the most singular term of the ODE is
(x−Xν)−

1
2 ((x−Xν)

1
2 )′′ = − 1

4(x−Xν)2
.
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Lemma

There exists Rν(x), analytic in a ball of center xh and of radius
δ,sur that the equation on hν writes

d2hν
dx2

=

(
− 1

4(x−Xν)2
+

Rν(x)

x−Xν

)
hν , x ∈ R (2)

Lemma

For λ2 = −4R,
√
x−XνJ0(λ

√
x−Xν) is a solution of

d2hν
dx2

=
(
− 1

4(x−Xν)2
+ R

x−Xν

)
hν , x ∈ R.
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Eikonal equation

• Model solutions: Let J0 and Y0 be the Bessel functions of the
first kind and of the second kind. The functions

√
xJ0(
√
x) (and√

xY0(x)) are solutions of
U ′′ = (− 1

4x2
− 1

4x)U.
• Stretching: If u is solution of a Sturm equation u′′(x) = p(x)u,
and if ρ is a given analytic (in V (xh)) function, such that

ρ(xh) = 0, ρ′(xh) 6= 0, then v(x) = (ρ′)−
1
2u(ρ(x)) solves

v′′ = [(ρ′)2p(ρ) + (ρ′)
1
2 ((ρ′)−

1
2 )′′]v.

Eikonal equation:

(ρ′ν(x))2

4ρ2
ν(x)

(1 + ρν(x)) =
1

4(x−Xν)2
− Rν(x)

x−Xν
.
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The solutions of the ODE
Introduce the special function T0(z) = Y0(z)− 2

π ln zJ0(z), which
admits an analytic expansion in z2. Define

Uν(x) =
√

ρν
ρ′ν
J0(λν

√
ρν(x)),

Vν(x) =
√

ρν
ρ′ν

[Y0(λν
√
ρν(x))− 2

π (lnλν)J0(λν
√
ρν(x))]

=
√

ρν
ρ′ν

[T0(λν
√
ρν(x)) + 2

π (ln
√
ρν(x))J0(λν

√
ρν(x))].

They solve U ′′ = (− 1
4(x−Xν)2

+ Rν(x)
x−Xν )U + sνU. where sν smooth.

Proposition

There exists two ’smooth’ functions Aν et Bν , such that a solution
of (2) writes

hν(x) = Aν(x)Uν(x) +Bν(x)Vν(x).
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Solution of the Eikonal equation and of the ODE

Lemma

One has ρν(x) = (x−Xν)σν(x), where σν(z) is the unique
solution of σ′ν(x) = σν(x)Fν(x, σν(x), in the neighborhood of xνh
such that σν(xνh) = 1

In this lemma

Fν(x, a) =
4 [Rν(Xν)a−Rν(x)]√

(1− 4Rν(x)(x−Xν)) +
√

(1− 4Rν(Xν)(x−Xν)a)
.

Use of Duhamel principle yields
(A′ν , B

′
ν)T (x) = πMν(x)sν(Aν , Bν)T (x),

Mν(y) =

(
Uν(y)Vν(y) Uν(y)2

−Vν(y)2 −Uν(y)Vν(y)

)
,

integral equation with initial datum. Quod erat demonstrandum.
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Explicit solution of the global system

∂xF − ik2(B11 +
ω2
p

dν
A)F = ik3B12G

∂xG− ik2B22G = ik3(B21 +
ω2
p

dν
Ã)F.

Sketch:
• From the equation on F , obtain an equation on c2V3 (plays the
role of W ) with source term depending on G.
System (A′ν , B

′
ν)T (x) = πMν(x)sν(Aν , Bν)T (x) + ik3B22(G)(x)

• One obtained F = F free + ik3T (G)(x).
• replace the values obtained in the equation on G:

∂xG− ik2B22G = ik3(B21 +
ω2
p

dν
Ã)(F free + ik3T (G)(x)).

• Equation on G:

∂xG− ik2B22G+ k2
3(B21 +

ω2
p

dν
Ã)T (G) = ik3(B21 +

ω2
p

dν
Ã)F free.
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Another way of studying the problem:

∂xG = ik2B22G+ik3B21F+
k3

k2

(
1 0
0 −1

)
[∂xF−ik2B11F−ik3B12G].

Equation on H = G− k3
k2

(
1 0
0 −1

)
F :

∂xH = ik2B22H + ik3(B22

(
1 0
0 −1

)
+B21 −

(
1 0
0 −1

)
B11)F

−ik
2
3
k2
B12(H + k3

k2

(
1 0
0 −1

)
F ).

The singularity generated by F is only in the source term for H.
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Resonant heating
Relevant quantity

Qν(a, b) = =
∫ b
a (εν(x) ~Eν(x), ( ~Eν)∗(x))dx

= −=(W ν(b)(Eν2 )∗(b)) + =(W ν(b)(Eν2 )∗(a))

where a and b are fixed.
In the case of the cyclotron frequency, no singularity and limit zero
when (a, b) is a small neighborhood of xc.
For the hybrid frequency, note that

limν→0± ln(ρν(x)) := (ln(ρ0(x)))± =

{
ln(ρ0(x)), x > xh
ln(−ρ0(x))∓ iπ, x < xh

.

Hence Mν(x)→M±(x), is L1
loc and one notes the following

approximations:

W ν → A±0 W
0
1 (x) +B±0 W

±
2 (x)

Eν2 → A±0 R1(x) +B±0 R3(x) +
1

π
B±0 (ln(ρ0(x)))±
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For the hybrid frequency, note that

limν→0± ln(ρν(x)) := (ln(ρ0(x)))± =

{
ln(ρ0(x)), x > xh
ln(−ρ0(x))∓ iπ, x < xh

.

Hence Mν(x)→M±(x), is L1
loc and one notes the following

approximations:

W ν → A±0 W
0
1 (x) +B±0 W

±
2 (x)

Eν2 → A±0 R1(x) +B±0 R3(x) +
1

π
B±0 (ln(ρ0(x)))±
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Singular limit

Eν1 − 1
π

εν12
(εν11)2−|εν12|2

W ν
1
ρ′ν(x)
ρν(x) −

iθ
εν11

[AνW
ν
1 +Bν(W ν

3 + 1
πW

ν
1 ln ρν(x)

4 )]

→
A±0 K1(x) +B±0 K2(x) +B±0 S(x)(ln ρ(x))±

.

Limit of Qν(a, b) for a < xh − δ0 < xh + δ0 + b and ν → 0+:

1

π
|B0(xh)|2|ε012(xh)|2(sign(∂νε

ν
11)(xh, 0)).
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Conclusions

1. We are able to write the case of multispecies (mixing of ions
and electrons)

2. In the fluid model, no singularity (of the type of ODEs) at the
cyclotron frequency

3. We can obtain (as roots of the determinant) all the hybrid
singularities

4. The oblique incidence leads to a system where the
singularities are concentrated on E2 and ik2B3 − ik3B2

5. We understand completely the singularities of solutions in the
neighborhood of a hybrid resonance, for any shape of profile.

6. Solutions of model problems extremely useful.
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