COMPACTNESS PROPERTY OF THE LINEARIZED BOLTZMANN
OPERATOR FOR A MIXTURE OF POLYATOMIC GASES
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Abstract. In this paper we concern ourselves with a kinetic description of gas mixtures for
polyatomic molecules. In particular, we will consider the Boltzmann equation that models a mixture
of polyatomic gases of n species (A;)i=1,... n- At the microscopic level, one additional argument of the
distribution function is introduced which is the parameter I denoting the continuous internal energy.
Under some convenient assumptions on the collision cross-section B;;, we prove that the linearized
Boltzmann operator £ of this model is a Fredholm operator. For this, we write £ as a perturbation
of the collision frequency multiplication operator, and we prove that the perturbation operator K is
compact. The result is established after inspecting the kernel form of K and proving it to be L?
integrable over its domain using elementary arguments.
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1. Introduction

After an intensive kinetic study of the behaviour of monoatomic gases, the study
of polyatomic gases is recently witnessing a remarkable progress as it is very important
in applications. In fact, it is indispensable to take into consideration the presence of
polyatomic particles in the gas flows upon the study of of non-equilibrium processes.
In this paper, we implement a polyatomic model for a mixture of gases assuming the
internal energy to be continuous. In such model, each polyatomic gas species i is
represented by a distribution function f;, where the phase space is generated by time
t, space x, velocity v and a continuous variable I. The variable I describes the storage
of vibrational and rotational energies inside each molecule. The idea of modeling the
internal energy by a continuous variable was introduced in [12], which was dedicated
for modeling polyatomic single gases based on the Borgnakke-Larsen parameterization
process. This process is based on randomly proportioning the total energy in each
interaction between the internal energy and kinetic energy.

In general, the Boltzmann equation for polyatomic gases with continuous internal
energy can be modeled by hydrodynamic asymptotics [1,2,7,18], where for the collision
operator transport coefficients are computed and proved to be consistent with experi-
ments [19,20] for single-species collision kernel. In the spirit of hydrodynamics, a kinetic
model describing a mixture of polyatomic gases was introduced in [18], for which the
Chapman-Enskog method was developed in [3]. In the same perturbation framework,
the authors of [22] established the global well-posedness for bounded mild solutions near
global equilibria on torus. It is noteworthy to remark that many of the achieved results
for mixtures of polyatomic gases were dedicated to the study of the BGK [6-8] and
ES-BGK models [13].

The aim of our work is to prove the Fredholm property of the linearized Boltz-
mann operator for a mixture of polyatomic gases. In the monoatomic single gas setting,
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2 Compactness Property of the Linearized Boltzmann Operator for Polyatomic Gases

Grad [26] proved that the linearized Boltzmann operator is a Fredholm operator, by
writing it as a compact perturbation of a multiplication operator (see also [16, 21]).
For monoatomic mixtures, £ was proved to be Fredholm in [4,11,27]. Coercivity esti-
mates on the spectral gap of the linearized Boltzmann operator were also obtained [17].
In [15], the compactness property for I was proved in the case of diatomic molecules.
For a single polyatomic gas in general, [14] and [5] proved K is compact by different ap-
proaches. For the case of a single resonant polyatomic gas, the compactness was proved
in [10]. In this work, we aim to generalize the work [14] for a mixture of polyatomic
gases using a suitable variables to write the perturbation operator under a kernel form.
For this, we prove that £ is written as a compact perturbation of the collision frequency
v multiplication operator, and we prove as well that v is coercive. This implies that £
is a Fredholm operator.

The plan of the paper is as follows: In Section 2, we give a brief recall on the
collision model [12], which describes the microscopic state of a mixture of polyatomic
gases, and give an equivalent formulation of the collision operator. In Section 3, we
define the linearized operator £, which is obtained by approximating the distribution
function f around the Maxwellian M. The main aim of this paper is to prove that
the linearized Boltzmann operator is a Fredholm operator, which is achieved in Section
4. In particular, we write £ as L=K —v Id and we prove that K is compact, and v
is coercive. As a result, £ is viewed as a compact perturbation of the multiplication
operator v Id. To prove K is compact, we write K as K3+Ko— K1, and we prove
each K, with [=1,---,3, to be a Hilbert-Schmidt operator. In Section 5, we give the
monotonicity property of the collision frequency, which helps to locate the essential
spectrum of L.

2. The Classical model

For modeling the Boltzmann equation for a mixture of polyatomic gases, we gen-
eralize in this paper the model in [12], which is dedicated for a single polyatomic gas.
For this, we present first the conservation equations, which lead by parameterization to
the pre-post collisional relations. Throughout the paper, ¢ denotes a generic constant.

2.1. Boltzmann Equation We denote as usual by (v,v.), (I,I.) and (v',v}),
(I',I.) the pre-collisional and post-collisional velocity and internal energy pairs respec-
tively. In this model, the internal energies are assumed to be continuous. The following
conservation of momentum and total energy equations hold:

m;v+m v, =m;v’ +m;vl,
my m; m; m;
0 L2 T T, =0+ L2 T+ T (2.1)
2 2 2 2
where m; and m; are the respective particle mass of species A; and A;. From the above
equations, we can deduce the following equation representing the conservation of total
energy in the center of mass reference frame:

v L L=t i T =B,

m,i-i-m],j
Larsen parameterization procedure [9] used to express the post-collisional quantities in
terms of the pre-collisional quantities is based on introducing s the parameter R € [0,1]

which represents the portion allocated to the kinetic energy after collision out of the

with F denoting the total energy, and j1;; = is the reduced mass. The Borgnakke-
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total energy, and the parameter r € [0,1] which represents the distribution of the post
internal energy among the two colliding molecules. That is,

%(v’ —v.)*=RE
I'+Il=(1-R)E,
and
I'=r(1-R)E
IL=(1-r)1-R)E.
In addition, we can express the post-collisional velocities in terms of the other quantities
by the following relations

;U 15Uy m; 2RE
v' =0 (v,0.,1,1,,0,R) = — =4 & o
m; +mj m; —l—mj Hij
m;v+m,;v m; 2RE
vl =vl(v,v.,1,1.,0,R) = — Jx : o,
mitmy o mytmy L
where o0 = ﬂ::z::‘ € 5?2 is an additional parameter. In addition, we define the parameters

r’€10,1] and R’ €[0,1] for the pre-collisional terms in the same manner as r and R. In
particular

%(v—v*f =RE
I+I,=(1-R)E,
and
I=r'(1-R)E
L=(1-r)(1-R)E.

The Boltzmann equation for a mixture of n species of polyatomic gases is

Ofi+vVafi=) Qij(fif;), 1<i<n, (2.2)

j=1

where f;=fi(t,x,v,I)>0 1is the distribution function of the species A;, with
t>0,z€R?veR3, and I>0. The operator Qq; is the quadratic Boltzmann operator
given as

Qs (ht D= [

(0,1)2x 52 xR xR3

fifie  fifjs , : "y
(st - 2L ) b1y myeres

I 1Y (1—R)RY? dRdrdodl, duv,,

(2.3)
where we use the standard notations fj. = f;(v., L), f{ = fi(v',1'), and f}, = f;(vi,I}),
and ai > —1for k=1,---,n is the parameter related to the number of degrees of freedom

Dy, of the k—th species as

D5

5 1<i<n.

(€93



4 Compactness Property of the Linearized Boltzmann Operator for Polyatomic Gases

The function B;; =B;;(v,v., I, 1,7, R,0) is the collision cross-section. In the following,
we give some assumptions on B;;. In general, B;; is assumed to be an almost everywhere
positive function satisfying the following microreversibility conditions:

Bij(v,ve, I, I, 7, R,0) = Bji(vs,v, I, I,1—r,R,0)

24
Bij(U7U*,I,I*7T,R,O’):Bij(’l}/,’l);,II,I:(7T‘/,R/7O'/)7 ( )

V—VUx
[v—v.]

where ¢’ = . Assumption (2.4) clearly implies that

Bij=r*(1—r)%(1-R)* % [* [ B,

is also microreversible
Bij(v,v*,l,l*,r,R,a) zgji(v*,v,l*,l,l —r,R,0)
Bij(v,v., I, 1,7, R, 0) =B (v/ oL, I I.7' R o).

2.2. Main Assumptions on the Collision Cross-section B5;;

Together with the above assumption (2.4), we assume the following boundedness as-
sumptions on the collision cross section B;;. In fact, we assume two classes of assump-
tions for a given 7;; >0 and for —1 <+;; <0. For 7;; >0, we assume

Y5 >0,  ®(r,R) (Mij o—v,| " +IW2+IQ”/2) <Bij(v,v0s,1, 1.1, R,0),  (2.5)

2

and

'yijZO, Bij(v,v*,I,I*,r,R,o)g \I/ij(T,R) (%W—’U* ’yij+I’Yij/2+Izij/2). (26)

On the other hand, for —1 <;; <0, we prove that the i —th component of K remains
compact under the following upper bound assumption on B;;

~1<7;; <0, Bij(v,vs,1, 1,7, R,0) <V, (r,R) EVi4/? (2.7)

where ®;; and ¥;; are positive functions such that ®;; >0 on a set of non-zero measure
and

P, <V

ii S Wij,
and

‘bij(’f‘,R)Zq)ij(l—T,R), \I/ij(’ﬁR):\I/ij(l—T,R). (28)
In addition, we assume the following conditions for ¥;;:

2 (e 77 (1]'717 ij _ Otjfl _ (e 77 20(1'7 ij 1 2
3 (r,R)ret Yii(1—r) R(1—R)**2~%i e L'((0,1)?), (2.9)

and

W (r, R)(1 - )P T RO R e LY(0,1)7). (210)

In fact, (2.10) is needed for the compactness of K5 which we do not prove in this paper.
In addition, though assumptions (2.9) and (2.10) seem to be strict, yet they cover
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several physical models presented below. Furthermore, one may notice that as the
value of a; or a; increases, conditions (2.9) and (2.10) cover a wider class of functions
;. We give now models for B;; that satisfy condition (2.9).

Models of the Cross section B;;
Suppose that v;; < a; +«;, and o >0, then the following models for mixtures, extended
from the single gas models suggested in [23]

s +pm/2+13”'/2>, (2.11)

Bij = (R%j/z ‘U*U*

(L= RS2 (T4 L)1), (2.12)
and

Bi;= (%RV”’/Z o — " 4 (r(1— R 4 ((1 —r)(l—R)I*)%'J‘/Q) (2.13)
satisfy (2.6) by taking for model (2.11)

®,;(r,R)=V;;(r,R)="¥,;(r,R)=1,
for model (2.12)
®;;(r,R)=min{R,(1— R)}"/2 and W,;(r,R) =max{R,(1—R)}"/2,

and for model (2.13)
®;;(r, R) =min{R,(1— R)}"/?min{r,(1—7)}"/%,and W;;(r,R) =max{R,1— R}"/2.

3. The Linearized Boltzmann Operator The Maxwellian function which rep-
resents the equilibrium state of the i —th species of the gas and is denoted by M;(v,I),
and given by

Mi(v,])= ———" : [ wr (3 (vmw) D),
(2m)3T(a; +1) (RT)*+3

where k is the Boltzmann constant, and n;,u, and T are the number of molecules per
unit volume, the hydrodynamic velocity, and the temperature respectively. Without loss
of generality, we will consider in the sequel a normalized version of M;, by assuming
kT'=n;=1 and u=0. In particular, we will linearize the Boltzmann equation around
the following global Maxwellian function

M;(v,])= S e ) (3.1)
(27)3T (o +1)
)

We look for a solution f; around M; (3.1) having the form
filts 0, 1) = M (0, 1)+ M,}"* (0, 1) gi (t,2,0,1).

The linearization of the Boltzmann operator around M; leads to introduce the linearized
Boltzmann operator £ applied on g= (g1, - ,9n), with Lg=((Lg)1,-,(Lg)n), where

ZM 2 Qi (M, M g;) +Quy (Mg, M),
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In particular, (Lg); writes

:Z":M_;/ [M{(M]’-m Tin
= ¢ INB VA L’(’lj

1 1/2
MM Gjx MJ*(M'P g MM g

— X
ai /1% /T NN i R N i e
r ,(1 — )% (1= Ry +etip/2 e 1249 B, drd Rdod I, dws,.

Thanks to the conservation of total energy (2.1) we have 24 ]}4];“ = IZ\/{,’ jv,ja and so (Lg);

has the following form

(Lg)i=
1/2

"L Gjx M}? 3% o , i+a+1 pl/2 rou 79
_Zl_zAIaj/Q Taif2 IDE r(1—r)% (1= R)* IRV [ [ B,

drdRdodI.dv.

O‘J
*

—Zf—av / i i (1= 1) (1= R)* s H L RY2 [ [ B, drd Rdod L dv,

1/2

_i‘ g* (M/)1/2 a o it o ;
+ZI / I Jaj/2 a]/2 (az" (L=r)® (1= R)“ R[N LY B,

drdRdodI,.dv.

n _7‘[1/2 7‘[/ 1/2
§ : —Zi g; J* ( ) ri(1—r)% (1 — aitaj+1 pl/21a; 7% 12
* ,_11 i /A Jlei/2 :tj/2 (I/)QJ/Q (1=r)* (1 R) TTRIMLI B

drdRdodl.dv..

Here, A refers to the open set (0,1)% x S? x Ry x R3. In addition, £ can be written in
the form

L=K—-vId,

where the i-th component of v is

M. _ e, o
vi= ZI @i / — i (1—r)® (1= R)* T I RY2[* [V B;;drdRdod Ldv,,  (3.2)

which represents the collision frequency of the i-th species. We write also the i-th
component of ICg as [KC]; as (K); = (K3);+ (KC2)i — (K1), with

n 1/2 M1/2
T Gjx Mi *_pa s aita; a; T
(Kighi=2 177 /A]a],/z T [ajj/z (1=r)® (1= Ry e IR [ LY By,
—1

drdRdodlI,.dv,,
(3.3)
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n / 1/2

Kag)i=Y 1% 95 (MDY (1= pyos(1— Ryostosti g2 o 2,

(Ke)i=3 "% | i ars (e’ A=) (0-B) < Big
j=1 * L

drdRdodI,dv,,

(3.4)

and

‘ gl M2 (M2
— = J* * a; @ a;it+a;+1 pl/2 ra; 745
(Ks9)i E I / 73 aJ/z ([5)«1;»/2 r(1—7) (1 - R)* Tt RY2 [ [0 B,

drdRdodl,.dv,.

(3.5)

The i-th operator (£); of the linearized operator £ is a symmetric operator, with
kernel

ker (£)= {ek,mvl,mvg,mvg,%vz+l}, k=1, n,

where ey = (6ik)i=1,... n, m=(my,---,my), and I=(I,---,I) €R". Since L is symmetric
and v Id is self-adjoint on

Dom(v Id)={ge L*(R®* xR, )" :vg€ L*(R® xR, )"},

then KC is symmetric. In the following section, we prove that K is a compact operator on
L?(R3 x R4 )™. Hence, L is a self adjoint operator on Dom (£)=Dom(v Id). In section
5 we prove that v is coercive. Therefore, £ is a compact perturbation of the Fredholm
operator v1d, and thus £ is a Fredholm operator on L?(R3 x R )™.

4. Main Result We state the following theorem, which is the main result of the
paper.
THEOREM 4.1.
1. For ~;; >0, and under assumptions (2.6),(2.8), (2.9), and (2.10), the operator
K whose i-th component is defined in (3.3)-(3.5) is a Hilbert-Schmidt (and thus
compact) operator from L*(R® xR )" to L2(R® xR )", and the multiplication
operator by v is coercive. As a result, the linearized Boltzmann operator L
is an unbounded self adjoint Fredholm operator from Dom(L)=Dom(v Id)C
L2(R3 xRy )" to L2(R3 xR, )"
2. For —1<r;; <0, under assumptions (2.7),(2.8), (2.9), and (2.10), K is a com-
pact operator from L*(R® xR )" to L2(R® xR )".

Proof. We give the proof of compactness of I for both cases of 7;; (7;; >0 and
—1<;; <0) right after the following corollary. In addition, we prove that v is coercive
for «;; >0 in Section 5. As a result, by Theorem 4.3 in [24], £ is a Fredholm operator
for 7;; >0 and under assumptions (2.5),(2.6), (2.8), and (2.9). O
COROLLARY 4.1. For v;; >0, and for every i €{1,---,n}, there exists C >0 such that,
for each ¢ € L*(v;dvdl), the following coercivity estimate holds

/ H(L(9))sdvdl > C (¢—Pi9)?v;(v,I)dvdl,
R3 xRy

R3 X]R+

where P is the orthogonal projection on ker(L);. The proof of the corollary is similar
to that in the monatomic case [25]. Therefore, we only give the proof of Theorem 1.
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We carry out the proof of the coercivity of v Id in Section 5, and we dedicate the rest
of this section to the proof of the compactness of K.

Proof of compactness of K Throughout the proof, we prove the compactness of each
Ky with [=1,---,3 separately.

Compactness of K1. The compactness of Ky is straightforward as K; already possesses
a kernel form. Thus, we can inspect the operator kernel of (K1); (3.3) to be

(mim;)*
T(ci + 1)V/2T (e + 1)1/2(27)

/ Tai(l_r)aj(l_R)ai+aj+1Rl/2]—ai/2L?j/2
(0,1)2x 52

kij(v,l,v*,l*):

3
2

mji o my

_ a2 2_17 1
Bijem 7w v —2l-malqrdRdo,

and therefore

(IClg)i(v,I):Z/3 9 (e, L)KY (0,10, L)AL dv,  ¥(v,1) €R® xR,
j=1"F

xRy

We give the following lemma that yields to the compactness of ;.
LEMMA 4.1. Using assumptions (2.6), (2.7), (2.9), and (2.10) on B;;, the function
kY e L2(R® x Ry x R® x R,).

Proof. Applying Cauchy-Schwarz inequality we get

mj oo my

k7172 <c / / 109 B e 7 oI [dvdrd Rdod L do,
RSXR+ A

For ~;; >0 we use assumptions (2.6) and either (2.9) or (2.10) to get

||k;'j|\izgc0+c// // T I (Jo =, |0 4 D 4 I) ) = 7 i L
rs JR. JR3 JR,

dIdvdIl.dv.

_my oo _my 2 S Tig,2
Sco+c/ e 2”*[/ e 2”dv—|—/ |v—v*\r2%ﬂe 2 VY do | dw,
R3 lv—v4|<1 [v—v,|>1

[27i51

SCO“/ o / > oM. 21 =Rem 5 o | do,
R3 |

v—v,|>1 k=0

[27:5]

Tk — 1,2 M2
<co+c g v, |[ria 1=k =" [u|Fe™ 2" dv | du, < oo,
k=0 /R RS

where [2v;;] is the ceiling of 2+;;, and ¢¢ is such that

c/ [T ([ 4 [)9)e= 3 0P =5 0P =L =1 g 14pd ], dv, < cp.
(R+ XR3)2
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On the other hand, for —1 <~;; <0, we use assumption (2.7) to obtain

||k1||2L2SC// // T L (T4 LA o —v,]) 7
R® JR; JR3 JRy

_mj 2_ M2, —
e~ 2 [l = L=l g rqyd ], do,,

and using the inequality
(I+I* + |’U — Vs |)'Y’ij < I'Yij/2]';)’ij/2

we get,

4 i /2 T 2 Migu2 1. —
||k1|‘%2 Sc/ / Iar‘r’)’z]/QIf‘J‘f"Y i/ e 2 [y 5t |v]* =1 IdIdI* < 00,

d

This implies that (K1); is a Hilbert-Schmidt operator, and thus compact. We prove
now the compactness of (KCz);, by proving it to be a Hilbert-Schmidt operator as well.

Compactness of (Ks2);. Additional work is required to inspect the kernel form of Ko,
since the kernel is not obvious. (K3); is written explicitely as

n

i(v,I)= (mimj)%
(Kag)i( »I)—ZF(ai+1)1/2l‘(aj+1)1/2(277)%

Jj=1

/ e—%—%r(l—R) (L;j(v—v*)2+l+l*) —%vf
A

i j Vs i 2 ij
gj(m VMUl m \/R (%(va*)zﬁ»IJrI*)a,

mitmy  (mitmy)\

(1-R)(1-r) [“2” (vu*)%[ﬂq)

my [ TyvFmvs m; 2
e—Ti( e ) \/ﬁfj (% (v—v.)24+1+1.)0) P (1) (1 R)es

RY2(1L)=/21%/2 [ B;;drd Rdod I, dw,.
(4.1)
We seek first to write [Kag]; in its kernel form. For this, the necessary change of variable
is (vs, L)+ (v, 1) since g depends on (v}, I]) instead of a direct dependence on (v, I.).
We denote by the new variables (x,y) the variables (v),I,) to avoid confusions. In
particular, the new coordinates (x,y) are

- —(v—v*)2—|—l—|—[*)a,
Hij

= miv+mjv* m; E ([Lij
y=(1-R)(1 - [f0—v)?+1+1L].
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We define now h:jj I Ro where for simplicity the index will be omitted; as
hR3xRi— h(R*x R, ) CR3 xR,

i Vs i 2 ij
(v*,mH(x,y):(m”*mJ”— = ¢R(‘;J<v—v*>2+1+h)a,

m;+m; (mi—|—mj) i

(17R)(17r)[%(va*)2+l+l*} :

(4.3)
for fixed v,I,r,R, and o. The function h is invertible, and (v, I.,v",I") can be expressed
in terms of (z,y) as

- m, : : 2
U*:ml—’—m]x—i— i \/2Raya—ﬁv, v =x+,/—+/Rayo,
: m; \ 1is

my Mg/ Hij j

and

2
Wi [ My +m; (mi ) m; . r
I=ay—IT—"2 (=2 (241 — /2R . I =—y,
ay 2( p T +1jv+ ayo 17Ty

mj
_ 1
where a= = 0=R"
LEMMA 4.2. The Jacobian of h (4.3) is

0v,. 01,
0x0y

= (=" )3(1_T)(1—R).

mﬁ—mj

Proof. We pass by the intermediate change of variable
(0s 1) = (02, ) > (2,9).

The Jacobian of the first map is unity as we recall that E is given in terms of I, as

E="%i(v—v,)2+I+1.. For the second map, we shall write (z,y) in terms of (vs,E) as

_ miU—ij’U* m; 2R
mit+m; (mitmg) \ i

y=(1-R)(1—r)E.

FEo,

The Jacobian is therefore given as

m; m R
811 611 611 E):pl " 4 N 0 0 - " L " . 01
%’U*l 7%,0*2 7%,0*3 7gE mi+m; (mr‘rm_]) QH;E
T2 T2 T2 T2 mj mi
_ (%an __ | Ovs1 Ovio Ouiz OFE | _ 0 m,i+7»mj - (mit+my) QMUEUQ
- a,u 8E — | Oz Ozz Ozxs Ozz | — )
* Ovs1 Ovio Ovez OF 0 0 m; _ m; R o3
dy Oy Oy Oy mi+m; (mi+my)\/ 2ui; B
Ove1 OVyo Ovyg OF 0 0 0 (1—7‘)(1 —R)
m. 3
=(=22 ) a-na-n),
m; +mj

since the latter matrix is upper triangular. O
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Noticing that the Jacobian J depends on r and R only, instead of an additional
dependence on v, and o yields to less complications in the proof of the L? integrability
of the kernel of ICo. The positivity of I, restricts the variation of the variables (z,y) in
integral (4.1) to the space

HY!  =h(R®xRy)=

2 mj

mjr\/m0>2>0}.

In fact, H}%’ia can be explicitly expressed as

Hﬁ,ﬁ’,o{(xay) G]RB XR+ :

( m; 2(ay—1)
(my; +7n])WV2RayU:| (mi+mj) Mg

xeB[ > and ye((l—r)(l—R)I,+oo)}.

Therefore, equation (4.1) becomes
n

ST [
Kog)i= Jij
( 29) Z(2ﬁ)%r(az+1)1/2r a _|_1 1/2 (0,1)2 %52

Rro'

H?
1, Mg (mitm; . )
—%Jr%(imijﬂx_(%ﬂ)wﬁma)
m

my+my m 2 2
e 2(1 s1-mI— *]( ™ Tt \/Z*VzR“yafm ”) e*i($+\/%ﬂ)

ri(1—7)% (1 — R)* Tt RY2y=as /2102 1% . (1 y)dzdydrd Rdo.

We now point out the kernel form of [Ks]; and prove after by the help of assumption
(2.6) that it belongs to L?(R*xR xR3xR ). Indeed, we recall the definition of A, with
A:=(0,1)2x S? xR, xR3, and we define H"! to be

HY .= {(R,r,o,x,y) €A:Re(0,1),7€(0,1),0€ 8%,

i 2(ay—1
oo ] (e 22 ) e - BT .
v— T Fm; )iy 2Rayo:| (ml + mj) Mij

.7363[

We remark that H;’%:ITJ is a slice of H""!, and we define the slice H2"] € (0,1) x (0,1) x S?
such that

HY! :H;’:; x R? x R which is equivalent to H”' =(0,1) x (0,1) x $? x H;{,Ir,g'
In other words,

Hy, I'={(r,R,0)€(0,1) % (0,1) x S?: (y,z,0,7,R) € H"}.
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Then by Fubini theorem, it holds that

(mimy) 1

(a0 D) = 2 o T G 1)1 oT (e, 7 1)1

n

_ay—I _ Mij (mitmy o (my my 2
/ J Boe 2 + 4( e (m_7+1)”+7Yijv2R“yU)
ij POij
Hv. T

mytm;

2
J my _my )
™5 x4+ Y e vV2Rayo my v

e—ﬁy—%(

e o )

ij

—i (mumy ¥ [ B
(2m)3 (0 +1)1/2T D2 Jpaxr, Juzt I

. ay21+4 (%x ( 1+1)'U+m \/—\/WU)

r(1—r)% (1 —R)O‘”’%“Rl/z —a/2194/2 [ g (z,y)drd Rdodady

,2(17'7”347%(7”;;;” T+ — F\/QRayaffvfe (+ 2Ru.yo_)2

e

r (1 —7)% (1 — R)iTa L RY2y=ai/2[0i/2 129 g (2 y)drd Rdodzdy

The kernel of (K2); is thus inspected and written explicitly in the following lemma.
LEMMA 4.3. Using assumptions (2.6), (2.

7), and (2.9) on B;;, the kernel of [KC2]; given
by

3
kY v, 1,x,y)= (mim; )
2( y) (27‘[’)31—‘(0@"‘1)1/21—‘(0‘]+1)1/2

) 2 Lo ong [ matm m; my 2
_my 2Ray ) _ay I, Hij ( i J x_( i 1)1} i 2Ra 17)
/ e 1 (a:-‘,— Wi; o e 5 + 7 m; pr + + ™Sy A% Y
HY,

r _my (mytm; m; R . \2
e 21-m Y 4( ™5 T+ \/7\/ ay )

Jij Bigri(1—r)® (1 —R)O‘”O‘ﬁlRl/Qy’o‘f/?Iaf/Qlfjdrdea
is in L?(R3xRy xR3xR,).

Proof. Applying Cauchy-Schwarz inequality, we get

\|k”||L2<c// ///
rR3 JR, JR3JR, JHY

1) vt o F\/mo) ]

2 2
m; ma >
"_ v) 21 ('z' /2R_t1‘y 7)
J (& Hij

120 (1 — )2 (1— R)? 202 Ry=as [ [ J2 B2 dodrd Rdydad I dw.
By means of h™!, we get

||k””L2 <C/ / / / / *D‘je*I**T(lfR)(%(va*)2+1+l*)f%v2
R3 JR4 JR3 JR,4 J(0,1)2%x52

*

e~ (127“) Yy

mivtm; 3 w; 2
T my ( my +m (my +m]) \/35 ( =t (v ’L)*)2+I+I ) ) r2ai(1 _T)aj
(1— R)2>itast2 groi [2%9 JiiB5;(v,v.,1,1,,r,R,0)dodrd RAI,dv,dIdv
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Furthermore, if y;; >0, we use assumption (2.6) on B;; together with the inequality
(’U _,U*)2"/ij 4 [ _,_I;Yf?j <cEYi,

and if —1 <~;; <0, we use assumption (2.7). In both cases, using the inequality

Im,g(:u?l](,u U*) +[+[*) i:EOLi,

we get

||k HL2 <C/ / / / / )Eal_a]-"_’Y’LJ
Ry JR3 JR, 01)2xs2

71 —r(1—R) “” (v—vy) +I+I*)7ijf

(4.5)

m;

1 (miv+mju
2

* m R [ Mij 2
mit+m; +(m7;+ij)\/u7]( ](U v*)2+1+1) )

(&

20 (1 =) (1= R)?i+e T2 R T [2% dodrd RAIdv,dIdv.

Perform the change of variable I%E:I+I*+%|v—v*|2, then as dI=dFE, (4.5)
becomes

|I<:”||L2<c/ // // W2 (r, R) B~
01)2xs2 R3JRy JR3JR,
o omyoo _my (mivimjus m; SR 2
e I ) U* r(1-R)E Pl ( mi+m; +(m,3+mj)\/ Hij EU)

2% (1—7)% (1= R)2*+% T2 R 1, [2* dIdvd I, dv,drd Rdo

m.g
70/ / / / lI!2 7, R E— i o *7ijffr(lfR)Ex
o2 Jr3 Jr, JR,
2

my ((mivimvs m; &
_my /2R p
[/ / e 2( mytm +(7ni+77lj) Tij J) dvdeo | x
S2 JR3

r205(1 — )%~ 1(1 = R)2+os L R12% 4 BT, dv,drdR.

Let V = Mivtmiv. + 2 2R B, then

m;+m; (mi+mj)

|1k ||L2<c/ // / W2, (r, R) BT gl gl r (1= B
0,1)2JR3 JR; JRy
[ / / - dVdo]
S2 JR3

@i (1 =)~ 1(1 = R)2*i+o H 1 R12% 0 Bd T, dv,drd R.

Therefore,

flase [ Wi

)

/ Eei—eitvii—r(I-R)IEq g
R

r2% (1 —r)% =11 - R)** T RdrdR

<c / W (r, R)r®i o1 (1 — )%~ H(1 — R)* 2% %5 RdrdR,
(0,1)2
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with ¢>0. The lemma is thus proved. O This implies that Ko is a Hilbert-Schmidt
operator.

Compactness of (K3);. The proof of the compactness of (Ks3); (3.5) is very similar to
that of (Kg);. The operator (K3); which has the explicit form

mlm])%

(K (v, )=
29)s T(c + 1)1/2T (o + 1)1/2(2m) 3

J

i Vs i 2R
/gj(mv—Hmv n m (MJ( —U*)2+I+I*>O'
A m;+m; (mi+my) \| pij \ 2

r(l— R)[””(v—v*)2+1+1*])x

n

1

my (mivtm v

6717*7%(14)(173)(“” (v—v.)>4I+1) -T2 E*TJ(W

Wm;'i%ﬁ\/iﬁ(“;] (v—v.)?+I1+L)o)"
P (1— ) (1— R)™ et RL/2[o4/2 1% () =e4/2 B, drd Rdod ], dw,.

inherits the same form as (Kz);, with a remark that the new coordinates (z,y) € R3 x R,
the we use to obtain the kernel form of (K3); are

:mv—&-mjv " m; ( (v v*) +I+I*)0
m;+my; (mi+my) \| paj \ 2

:r(1—R)[“2”(v v +1+L].

The Jacobian of the transformation

h:R3x R, —h(RP xR, ) CR3 xR,

<v*,1*>H<x,y>=<mZ”+mJ” - \/ (Blwv-v)?+1+1.)0

mit+m; - (mitmg) |\ i

r(1-RB) B 00 )? +1+1*}>,

is calculated to be

j:

r(1 1— R) (minj:jmj )3'

For the kernel of K3 to be L? integrable, the final computations require

)

/ W2 (r, R)r?i =177 (1= )T R(1 = R)* 2 < oo, (4.6)
(0.1)2

Applying the change of variable r+— 1 —r, and using the symmetry assumption (2.8) of
U,;, (4.6) is satisfied by (2.10).
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5. Properties of the Collision Frequency We give in this section some prop-
erties of v. The first is the coercivity property, which implies that £ is a Fredholm
operator, and we prove the monotonicity of v which depends on the choice of the colli-
sion cross section B. The latter property is used for locating the essential spectrum of
L.

PrROPOSITION 5.1 (Coercivity of v Id). With the assumption (2.5), there exists
c(ay,05) >0 such that

Vi +]7ii/2+1), 1=1,...,n,

n
g clag,a5)(Jv
J=1

for any v;; >0. As a result, the multiplication operator v; Id is coercive.
Proof. The collision frequency (3.2) is

3
n 2
2

m; m;
vilo, )= ————— / B I r® (1—r) (1 — R)™ Tt R/ 2e~ 1 == vs
(v,1) ;F(aﬁl)(%ﬁ i (1-=r)*(1-R)

drdRdodI,.dv,,

where by (2.5) we get

n
vi(v,I) > ZC o, O // |[v— v, 'Y’J—|—I’Y”/2) —zjvfdv*
j=1 S2 JR3
n mog
>3 s (19024 [ fou e 57 au.).
Jj=1

where ¢ is a generic constant. We consider the two cases, [v| >1 and |v|<1. If [v|>1
we have

(o]~ vl dv. )

(v, 1) Zi al,aj)([’m/z /

lual <50

PI\%: I

Il
_

lu.|<3

_my .2
e 2 ”*dm)

J

3

> clai,ay) (o] + 17972 4 1).
1

J
For |v| <1,

n

vi(v,I)> (ai,aj)(w/%r/ (|v*|_|v|)%je*%vfdv*)
[vs|>2

1
c(ai,ocj)<1%j/2+/ e~ do, )
[v.]22

'Yij).

<.
Il

Pl\%:

1

.
Il

c(as, o) (1+ 17972 +[v

E\%S

.
Il
-
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The result is thus proved. We give now the following proposition, which is a gen-
eralization of the work of Grad [26], where he proved that the collision frequency of
monatomic single gases is monotonic based on the choice of the collision cross section
Bij.

PROPOSITION 5.2 (monotonicity of v;). Under the assumption that

/ r(1—7)% (1—R)* Tt RY2B,.(|V|,I,I,,r,R,0)drdRdo
j=1 (0,1)2x 52

is increasing (respectively decreasing) in |V| and I for every I, the collision frequency
of the i-th species v; is increasing (respectively decreasing), where |V|=|v—uy|.

In particular, for Mazwell molecules, where Z?:l Bi; is constant in |V| and I, v; is
constant. On the other hand, for collision cross-sections of the form

Bij (0,00, T, Lyt Ro0) = By, R) (Jo = v, 4 79/ 4 1277
the integral (5.2) is increasing, and thus v; is increasing, where v;; >0, and ®;; is a
positive function such that
q)ij (’I",R) = (I)ji(l — ’I",R),
and

Oy (r, R)r®i (1—7)% (1— R)*+uHiRY2 e [1((0,1)2).

In fact, if ®;; for instance satisfies
@ (r, R)ro+ 01 (1)~ (1= Ry 20t Re L1((0,1)?)

then this collision cross section satisfies our main assumptions (2.5) and (2.6).
Proof. We remark first that v; is a radial function in |v| and I. In fact, we perform
the change of variable V' =v — v, in the integral (3.2), where the expression of v; becomes

3

n mj my

(o], 1) = J Bi;(IV|,I,1.,r,R,0)e” 2
(o], 1) ;F(aj+1>1/2<%)g/A (VL L Roo)e

(v—V)2—1,

I (1—7)% (1 — R)* 1 RY2drd Rdod,dV,
(5.1)
where A=(0,1)2x S? xR, xR3. The integration in V in the above integral (5.1) is
carried out in the spherical coordinates of V', with fixing one of the axes of the reference
frame along v, and therefore, the above integral will be a function of |v| and I.

The partial derivative of v; in the vy direction, where k=1,2,3, is

ov; 2 U — Vs OB ™5 2
L= E * Y (|v—vi|, I, L,m,R,0)e” 2 vl
j=1"4

()'Uk- "U*'U*‘ ()"U*'U*|
2 lO‘7 le% ] [e% ] a;ta;+1 1/2 ( )
m T '( 7“) J( R) v J R

B drdRdodI,.dv,.
I(a;+1)Y/2(2m)2
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Perform the change of variable V =v—wv, in (5.2), then

Bu; v 0By vy
i i I.1, s5(v=V)i—I.
= Z/ g (VL L Reo)e

m]?I* Tpei(1—r)% (1 — R)*test1 R1/2
T(a+1)1/2(2m)3

drdRdodl.dV

and thus,

3

81/ v- V@B] _lih_V)2—
4 % 1.1, s(v=V)i—1I.
e Z/A (VI L Ro)e

2] i aq( —T)aj(l—R)ai+a-7+1Rl/2

5 drdRdodI.dV
Dy + 1)1 (2m)?
Applying Fubini’s theorem, we write (5.3) as
3 n
V= = (|V| I,I.,r,R,0)drdRdo | x
kz::l dv; Jz::l Ry xR3 LJ(0,1)2x52 3\‘/\

mi L0 (1= ) (1= Ryt RV oy
[(o;+1)1/2(27)3 \4

The partial derivative of v; along I is

e 2=V lqrav.

81/, Z/ m2[ Ipe( 7r)aj(1,R)ai+aj+1R1/2
D(a; +1)/2(2m)}

aB
(|V| I.I.,r,R,0)e~ 7 =V’ -1 4rd Rdod L, dV
_ n / m]z I* .7,,,0”(1_T)aj(l_R)ai—i-aj-&-lRl/Q (54)
o rexmy D(a;+1)1/2(27)2
/ 9B (IV|,1,1,,r,R,0)drdRdc
(0,1)2x 82 ol

e~ W=V =Lqr qv.

When v-V >0, the exponential in the integral (5.3) is greater than when v-V <0, and
so the term v-V doesn’t affect the sign of the partial derivatives of v;. Therefore, the
sign of the partial derivative of v; along |v| has the same sign as

3
m; ( (1—r)*(1—R)™ oB;;
V|,1,I.,r,R,0)drdRdo.
Z/0 ,1)2x 52 ( j+1)1/2 6|V|(‘ ‘ )

It’s clear as well that the partial derivative of v; with respect to I (5.4) has the same
sign as

3
n m2(1-r)%(1-R .
/ jA-n® =R 88”(\V\,I,I*,T,R,a)drdea.
i=1 (071)2><512 F(CVJ+1)1/2 I
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As a result, for a collision cross-section B;; satisfying the condition that the integral

mﬂ%(l_r)aj(l_R)ajB V|.I.I,.r.R.0)drdRd
\/(071)2><S2 F(Ol]+1)1/2 Z](| |7 s s, T 70) r g

is increasing (respectively decreasing) in |V] and I, the collision frequency is increasing
(respectively decreasing). O
In this appendix, we aim to write the collision operator (2.3) in an equivalent form.

The derivation of the latter is a result of subsequent changes of variables, see (.5). The
final result sought is the Jacobian of the following map:

T:R®xR% x(0,1)>x 5?5 R xR% xR3 xRy

.5
(U7U*7I’I*7T’R7a)H(,U’G7E7I”U/7I/)’ ( )

MU+ Vs

e For this transformation, the following Jacobians
i J

where g=v—v, and G=
are elementary:

J(U7’L)*I7I*,T,R,U)'—)(Q,G,I7I*7’I‘,R,0’) = 17

and

J9.G.1,1. 7, R,0) (9.6, 1, E,r,R,0) = L- (.6)

Equation (.6) is due to the fact that only E is a function of I,. What remains in deducing
the Jacobian of T is calculating the Jacobian of the transformation (¢,G,I,E,r,R,c)—
(v,G,I,E v I'). As an intermediate step we define

— M . u=r(1-R),
m;+m; Mij . ( )

which induces the Jacobian

1 m; (1-R) [2E
J(g,G,1,E,r,R,a)H(g,G,I,E,A,u,a)=§7mi+mj VE

Thus the final sub-transformation is (g9,G,I,E,\,u,0)— (v,G,I,E,v',I'), where specif-
ically,

vV'=G+Xo, and I'=pkFE.
It’s clear that

o)— o) —
(9,6, 1, BN 1,0)(9.G.LEAI o) =

and for v’ we have

m; )2 2RE

J( ’ 1T :)\2 =
9,:G.LENI,0)—(g,G,1,E ', I")
m;+m; Wij

)

mj
m1+mj

since (\,0) is the spherical representation of v/ —G. As v= g+ G, then the Jaco-

bian

m; 3
Jg.G.1.E v T} GIE’I’:(i)'
(0,615 106t i) = (o
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Finally, combining the preceding transformations, the Jacobian of T is

2 . 6
JT:£3<L> Ri(1-R)E%.
,U'Ej m;+my;
In other words,
mj

dvdv,dIdI,drdRdo = Q (

6 1 5
- ) Ri(1-R)E}dvdGAIdEWdT’.
K

m;+m;

The equivalent model of (2.3), based on the above computations is therefore

Q1= [

1 £l
(I/f;_]},’;j - I‘Z’GJ; ) Wi (v, 1,0, I',G,E) dGAE dv'dI,

(R¥XR4)2
where
%
Hij (g +mj\© . a8 s
Wij(v,l,v',l',G,E):\/%(Tjj) (I')* (I, IL)* E=3=*=% B, (v,v,,I,1,,r, R,0),

(-7)

where I, =I.(v,I,G,E), I.=I.(v',I',G,E), v, =v,(G,v'), vi=v.(G,v), o =0(v,G),
R=R(V,E,G), and r=r(I',v',E,G). Moreover, W;; in (.7) is clearly microre-
versible, and the measure dEdGdvdIdv’dl’ is obviously invariant if time is re-

versed.
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