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Abstract

The stationary Boltzmann equation for weak forces in the context
of a two component gas is considered in the slab. An existence theo-
rem is proved when one component satisfies a given indata profile and
the other component satisfies diffuse reflection at the boundaries in a
renormalized sense. Weak L1 compactness is extracted from the con-
trol of the entropy production term. Trace at the boundaries are also
controled.
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1 Introduction and setting of the problem.

This paper is devoted to the stationary Boltzmann equation for a two com-
ponent gas in the slab in the situation of soft forces. Stationary solutions are
of interest as candidates for the time asymptotics of evolutionary problems.
The two components satisfy different boundary conditions. One component
(the A component) is supposed to have a given indata profile and the other
component (the B component) is supposed to boundary conditions of diffuse
reflection type.

From a theoritical point of view, the problem of the existence of solutions
in the situation of the Boltzmann equation for single component gas was
studied in ([7], [8]). In ([7]), the authors prouve the existence of weak
solutions for hard forces and of renormalized solutions in the situation of soft
forces. The solutions are constructed for a given fixed mass for boundary
conditions of given indata profiles and for the geometry of a slab. In ([8]),
the existence of solutions is shown for hard forces, for boundary conditions
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of diffuse reflection type and for the geometry of a slab. The solution is also
constructed for a given weighted mass. The case of the Povzner equation
for a one component gas with diffuse-reflection boundary conditions in the
case of hard and soft forces is investigated in ([16]). For the geometry
of two coaxial rotating cylinders an existence theorem is proved in ([9])
in the situation of hard forces. The problem of multi-component gases is
investigated in [10], where the existence of weak solutions is performed for
hard forces when the weighted mass of each component is fixed as in [7,
8]. The case of a mixture of two gases is also considered in [11] when the
Knudsen number tends to 0. The solution of the system is obtained as a
Hilbert expansion plus a rest term which is rigorously controled.

From a physical point of view, the problems of evaporation condensation
for multi-component gases was studied in ([17]). A binary mixture of vapor
and non condensable gas is considered in contact with an infinite plane of
a condensed vapor. The non condensable gas is supposed to be close to the
condensed phase. The problem is solved numericaly when the Boltzmann
operator is replaced by the BGK operator. The physical context is described
in those papers. In the situation where the Knudsen number tends to 0, this
problem has been already studied in ([3, 1]) where two types of behaviour
were pointed out. In a first situation the macroscopic velocity of the two
gases is 0 ([3, 23]). That means physically that evaporation and condensation
stop for the A component. But the Hilbert term of order 1 of the velocity
of the A component keeps an influence at the hydrodynamical level. This is
the ghost effect as defined for a one component gas in ([18]) and for a two
component gas in ([3, 23, 22]). In a second case the B component becomes
negligeable and accumulates in a thin layer at the boundaries called Knudsen
layer ([4]).

More precisely, we consider in this paper the stationary Boltzmann prob-
lem in a slab for a two component gas when the slab is represented by the
interval [−1, 1]

ξ
∂

∂x
fA(x, v) = Q(fA, fA + fB)(x, v),

ξ
∂

∂x
fB(x, v) = Q(fB, fA + fB)(x, v),

x ∈ [−1, 1], v ∈ R3. (1.1)

The nonnegative functions represent the distribution functions fA and fB

of the A and of the B component and ξ is the velocity component
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The collision operator Q is the Boltzmann operator

Q(f, g)(x, v) =
∫

R3

∫
S2

B(v − v∗, ω)[f ′g′∗ − fg∗]dωdv∗,

= Q+(f, g)(x, v)−Q−(f, g)(x, v),

where Q+(f, g)−Q−(f, g) is the splitting into gain and loss term,

f∗ = f(x, v∗), f
′
= f(x, v

′
), f

′
∗ = f ′(x, v∗)

v
′
= v − 〈v − v∗, ω〉ω, v

′
∗ = v∗ + 〈v − v∗, ω〉ω.

For a more general introduction to the Boltzmann equation for multi-component
gases see ([12]). 〈v − v∗, ω〉 denotes the Euclidean product in R3. Let ω be
represented by the polar angle (with polar axis along v−v∗) and the azimu-
tal angle φ. The function B(v− v∗, ω) is the kernel of the collision operator
Q taken for weak forces as |v − v∗|βb(θ), with

−3 < β < 0, b ∈ L1
+([0, 2π]), b(θ) ≥ c > 0 a.e.

Denote the collision frequency by

ν(x, v) =
∫

R3
v∗×S2

B(v − v∗, ω)f(x, v∗)dv∗dω.

In this paper, we study the case of soft forces for a two component gas
in a slab with given indata profile on both side of the domain for the A
component and diffuse reflection boundary conditions for the B component.
The vapor will be called the A component and the noncondensable as will
be called the B component. The boundary conditions for the A component
are

fA(−1, v) = kM−(v), ξ > 0, fA(1, v) = kM+(v), ξ < 0, (1.2)

where k is a nonnegative constant which is a part of the unknown and will be
determined during the resolution of the problem. The boundary conditions
for the B component are

fB(−1, v) = (
∫

ξ′<0
|ξ′|fB(−1, v′)dv′)M−(v), ξ > 0,

fB(1, v) = (
∫

ξ′>0
ξ′fB(1, v′)dv′)M+(v), ξ < 0. (1.3)
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M+ and M− are given normalized Maxwellians

M−(v) =
1

2πT 2
−

e
− |v|2

2T− and M+(v) =
1

2πT 2
+

e
− |v|2

2T+ .

Consider the stationary Boltzmann problem in a slab for a two component
gas

In this paper, mild, weak and renormalized solutions (fA, fB) to the sta-
tionary problem (1.1, 1.2, 1.3) can be formulated as follows when Q−(fA,f)

1+fA ,
Q+(fA,f)

1+fA , Q−(fB ,f)
1+fB , Q+(fB ,f)

1+fB ∈ L1
loc.

Definition 1.1. Let MA and MB be given nonnegative real numbers. (fA, fB)
is a mild solution to the stationary Boltzmann problem with the β-norms MA

and MB, if fA and fB ∈ L1
loc((−1, 1)× R3,

∫
(1 + |v|)βfA(x, v)dxdv = MA,∫

(1 + |v|)βfB(x, v)dxdv = MB, and there is a constant k > 0 such that

fA(1 + sξ, v) = kM−(v) +
∫ s

− 2
ξ

Q(fA, f)(1 + τξ, v)dτ, ξ > 0, s ∈]− 2
ξ
, 0[,

fA(−1 + sξ, v) = kM+(v) +
∫ s

− 2
ξ

Q(fA, f)(−1 + τξ, v)dτ, ξ < 0, s ∈]
2
ξ
, 0[,

fB(−1 + sξ, v) =
(∫

ξ′<0
fB(−1, v′)dv′

)
M−(v)

+
∫ s

2
ξ

Q(fB, f)(−1 + τξ, v)dτ, ξ < 0, s ∈]
2
ξ
, 0[,

fB(1 + sξ, v) =
(∫

ξ′>0
ξ′fB(1, v′)dv′

)
M+(v)

+
∫ s

− 2
ξ

Q(fB, f)(1 + τξ, v)dτ, ξ > 0, s ∈]− 2
ξ
, 0[.

Definition 1.2. Let MA and MB be given nonnegative real numbers. (fA, fB)
is a weak solution to the stationary Boltzmann problem with the β-norms
MA and MB, if fA and fB ∈ L1

loc((−1, 1) × R3), ν ∈ L1
loc((−1, 1) × R3),∫

(1 + |v|)βfA(x, v)dxdv = MA,
∫

(1 + |v|)βfB(x, v)dxdv = MB, and there is
a constant k > 0 such that for every test function ϕ ∈ C1

c ([−1, 1]×R3) such
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that ϕ vanishes in a neiborhood of ξ = 0, and on {(−1, v); ξ < 0}∪{(1, v); ξ >
0}, ∫ 1

−1

∫
R3

(ξfA
∂ϕ

∂x
+ Q(fA, fA + fB)ϕ)(x, v)dxdv

= k

∫
R3,ξ<0

ξM+(v)ϕ(1, v)dv − k

∫
R3,ξ>0

ξM−(v)ϕ(−1, v)dv,∫ 1

−1

∫
R3

(ξfB
∂ϕ

∂x
+ Q(fB, fA + fB)ϕ)(x, v)dxdv,

=
∫

ξ′<0
|ξ|M+(v)ϕ(1, v)dv(

∫
ξ′>0

ξ′fB(1, v′)dv′)

−
∫

ξ′>0
ξM−(v)ϕ(−1, v)dv(

∫
ξ′<0

ξ′fB(−1, v′)dv′).

Let g be defined for x > 0 by

g(x) = ln(1 + x).

Definition 1.3. Let MA and MB be given nonnegative real numbers. (fA, fB)
is a renormalized solution to the stationary Boltzmann problem with the β-
norms MA and MB, if fA and fB ∈ L1

loc((−1, 1)×R3), ν ∈ L1
loc((−1, 1)×R3),∫

(1 + |v|)βfA(x, v)dxdv = MA,
∫

(1 + |v|)βfB(x, v)dxdv = MB, and there is
a constant k > 0 such that for every test function ϕ ∈ C1

c ([−1, 1]×R3) such
that ϕ vanishes in a neiborhood of ξ = 0 and on {(−1, v); ξ < 0}∪{(1, v); ξ >
0}, ∫ 1

−1

∫
R3

(ξg(fA)
∂ϕ

∂x
+

Q(fA, fA + fB)
1 + fA

ϕ)(x, v)dxdv

=
∫

R3,ξ<0
ξg(kM+(v))ϕ(1, v)dv −

∫
R3,ξ>0

g(ξkM−(v))ϕ(−1, v)dv,∫ 1

−1

∫
R3

(ξg(fB)
∂ϕ

∂x
+

Q(fB, fA + fB)
1 + fB

ϕ)(x, v)dxdv,

=
∫

ξ<0
ξg

(
(
∫

ξ′>0
ξ′fB(1, v′)dv′)M+(v)

)
ϕ(1, v)dv

−
∫

ξ>0
ξg

( ∫
ξ′<0

ξ′fB(−1, v′)dv′)M−(v)
)
ϕ(−1, v)dv.

Remark 1. By arguing as in [14], it can be shown that the concepts of
renormalized and mild solutions are equivalent.

5



The main result of this paper is the following

Theorem 1.1. Given β with −3 < β < 0, there is a renormalized solution
to the stationary problem with β-norms equal to one.

This paper is organized as follows. The second section of this paper
deals with a construction of approximate solutions to the problem and with
the passage to the limit in the sequence of approximations. The passage to
the limit in the traces is also performed. Denote that the proof of the weak
compactness of the gain term is not obtained by arguing as in the situation
of a one component gas ([7, 14]). It will be given by lemma 2.1. In section
3, some extensions of Theorem 1.1 are made. In particular, the case where
MA and MB have any positive values is considered.

2 Approximations with fixed total masses

This section is devoted to the proof of Theorem 1.1. First a solution
(f r,µ

A , f r,µ
B ) to an approached problem is constructed by arguing as in [10].

Next, the passage to the limit is performed in the renormalized form of the
approached problem when r tends to 0 and µ tends to infinity. The compact-
ness of (f r,µ

A , f r,µ
B ) and of the loss terms is obtained by classical arguments.

But the weak compactness of the gain term cannot be directly obtained
(Lemma 2.1). Finally the passage to the limit in the traces isn performed.

By reasoning as in ([10]), we can show that there are (f r,µ
A , f r,µ

B ) satisfying

ξ
∂

∂x
f r,µ

A =
∫

R3
v×S2

χrBµ(v − v∗, ω)f r,µ
A (x, v′)f r,µ(x, v

′
∗)dv∗dω

−f r,µ
A

∫
R3

v∗×S2

χrBµ(v − v∗, ω)f r,µ(x, v∗)dv∗dω, (x, v) ∈ (−1, 1)× R3
v,

f r,µ
A (−1, v) = kAM−(v), ξ > 0, f r,µ

A (1, v) = kAM+(v), ξ < 0, (2.1)

ξ
∂

∂x
fµ

B =
∫

R3
v∗×S2

Bµ(v − v∗, ω)fµ
B(x, v′)fµ(x, v

′
∗)dv∗dω

−fµ
B

∫
R3

v∗×S2

Bµ(v − v∗, ω)fµ(x, v∗)dv∗dω, (x, v) ∈ (−1, 1)× R3
v,

fµ
B(−1, v) = M−(v)

∫
ξ<0

|ξ|fµ
B(−1, v)dv, ξ > 0,

fµ
B(1, v) = M+(v)

∫
ξ>0

ξfµ
B(1, v)dv, ξ < 0, (2.2)
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with ∫
max(

1
µ

,min(µ, (1 + |v|)β)fµ
A(x, v)dxdv = 1

and ∫
max(

1
µ

,min(µ, (1 + |v|)β)fµ
B(x, v)dxdv = 1.

χr is a C∞
0 function with range [0, 1] invariant under the transformation J ,

J(v, ω, v∗) = (v′,−ω, v′∗)

and satisfying

χr(v, v∗, ω) = 1 if |ξ| > r, |ξ∗| > r, |ξ′| > r, |ξ′∗| > r,

χr(v, v∗, ω) = 0 if |ξ| < r

2
, |ξ∗| <

r

2
, |ξ′| < r

2
, |ξ′∗| <

r

2

and the modified collision kernel Bµ is defined by max( 1
µ min(B,µ)).

Let (rj)j∈N with limj→+∞ rj = 0 and (µj)j∈N with limj→+∞ µj = +∞,
f j

A = f
rj ,µj

A and f j
B = f

rj ,µj

B .
The passage to the limit when j → +∞ is now performed in the renormal-
ized formulations of the equations (2.1, 2.2) satisfied by (f j

A, f j
B).

A positive number δ being fixed, let ϕ be a test function vanishing for |δ| ≤ δ
and for |v| ≥ 1

δ . Since f j = f j
A+f j

B satisfies the Boltzmann equation for a one
component gas, it can be shown from [7] that f j and

∫
R3×S2 |v−v∗|βf jdv∗dω

are weakly compact in L1([−1, 1] × {v ∈ R3; |ξ| ≥ δ, |v| ≤ 1
δ})). The weak

compactness of f j
A, f j

B, Q−
j (f j

A, f j), Q−
j (f j

B, f j) follows from the inequalities

fA ≤ f, fB ≤ f,
Q−(f j

A, f j)

1 + f j
A

≤
∫

R3×S2

|v − v∗|βf jdv∗dω

Q−(f j
B, f j)

1 + f j
B

≤
∫

R3×S2

|v − v∗|βf jdv∗dω.

Here, the weak compactness of Q+(fj
A,fj)

1+fj
A

and Q+(fj
B ,fj)

1+fj
B

cannot be directly

obtained from the weak compactness of the loss term in the renormalized
form as in ([7, 14]). Hence we need to show the following lemma.

Lemma 2.1. Q+(fj
A,fj)

1+fj
A

and Q+(fj
B ,fj)

1+fj
B

are weakly compact in

L1([−1, 1]× {v ∈ R3; |ξ| ≥ δ, |v| ≤ 1
δ}).
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Before giving the proof of Lemma 2.1 let us recall that∫
R3

Q(f j
A, f j

A) ln(f j
A)dv +

∫
R3

Q(f j
A, f j

B) ln(f j
A)dv

+
∫

R3

Q(f j
B, f j

A) ln(f j
B)dv +

∫
R3

Q(f j
B, f j

B) ln(f j
B)dv ≤ 0.

This estimate is shown in [2]. For the sake of clarity we will give a proof of
this result. Indeed ∫

R3

Q(f j
A, f j

A) ln(f j
A)dv =

∫
R3×R3×S2

Bj(v − v∗, ω)

(
f j

A(x, v′)f j
A(x, v′∗)− f j

A(x, v)f j
A(x, v∗)

)
ln

( f j
A(x, v)f j

A(x, v∗)

f j
A(x, v′)f j

A(x, v′∗)

)
dvdv∗dω∫

R3

Q(f j
B, f j

B) ln(f j
B)dv =

∫
R3×R3×S2

Bj(v − v∗, ω)

(
f j

B(x, v′)f j
B(x, v′∗)− f j

B(x, v)f j
B(x, v∗)

)
ln

( f j
B(x, v)f j

B(x, v∗)

f j
B(x, v′)f j

B(x, v′∗)

)
dvdv∗dω∫

R3

Q(f j
A, f j

B) ln(f j
A) + Q(f j

B, f j
A) ln(f j

B)dv =
∫

R3×R3×S2

Bj(v − v∗, ω)

(
f j

A(x, v′)f j
B(x, v′∗)− f j

A(x, v)f j
B(x, v∗)

)
ln

( f j
A(x, v)f j

B(x, v∗)

f j
A(x, v′)f j

B(x, v′∗)

)
dvdv∗dω.

By arguing as for the case of the one component gas, it follows that the
terms

IAA(f j
A, f j

A) =
∫

R3×S2

Bj(v − v∗, ω)
(
f j

A(x, v′)f j
A(x, v′∗)− f j

A(x, v)f j
A(x, v∗)

)
ln

( f j
A(x, v)f j

A(x, v∗)

f j
A(x, v′)f j

A(x, v′∗)

)
dv∗dω,

IBB(f j
B, f j

B) =
∫

R3×S2

Bj(v − v∗, ω)
(
f j

B(x, v′)f j
B(x, v′∗)− f j

B(x, v)f j
B(x, v∗)

)
ln

( f j
B(x, v)f j

B(x, v∗)

f j
B(x, v′)f j

B(x, v′∗)

)
dv∗dω,

IAB(f j
A, f j

B) =
∫

R3×S2

Bj(v − v∗, ω)
(
f j

A(x, v′)f j
B(x, v′∗)− f j

A(x, v)f j
B(x, v∗)

)
ln

( f j
A(x, v)f j

B(x, v∗)

f j
A(x, v′)f j

B(x, v′∗)

)
dv∗dω,

8



are bounded in L1

Proof. (Lemma 2.1) By proceeding as for the case of a one component gas,
it holds that

Q+(f j
A, f j) ≤ KQ−(f j

A, f j) +
1

lnK
IAA(f j

A, f j
A)

+
1

lnK

∫
R3×S2

Bj(v − v∗, ω)
(
f j

A(x, v′)f j
B(x, v′∗)− f j

A(x, v)f j
B(x, v∗)

)
ln

( f j
A(x, v)

f j
A(x, v′)

)
dv∗dω,

Q+(f j
B, f j) ≤ KQ−(f j

B, f j) +
1

lnK
IBB(f j

B, f j
B)

+
1

lnK

∫
R3×S2

Bj(v − v∗, ω)
(
f j

A(x, v′)f j
B(x, v′∗)− f j

A(x, v)f j
B(x, v∗)

)
ln

( f j
A(x, v)

f j
A(x, v′)

)
dv∗dωdω.

The two previous inequalities lead to

Q+(f j
A, f j)

1 + f j
A

+
Q+(f j

B, f j)

1 + f j
B

≤ K
Q−(f j

A, f j)

1 + f j
A

+ K
Q−(f j

B, f j)

1 + f j
B

+
1

lnK

(
IAA(f j

A, f j
A) + IBB(f j

B, f j
B) + IABf j

A, f j
B)

)
.

Hence the weak compactness of Q+(fj
A,fj)

1+fj
A

and Q+(fj
B ,fj)

1+fj
B

follow by classical

arguments as for the one component case ([7]).

Denote by fA and fB the respective weak limits of f j
A and f j

B in L1.
Now, the aim is to pass to the limit in the boundary terms (1.3) i.e to prove
the weak convergence in L1({v ∈ R3

v, ξ > 0}) ( resp. L1({v ∈ R3
v, ξ < 0}))

of f j
B(1, .) ( resp. f j

B(−1, .)) to fB(1, .) (resp. fB(−1, .)). First, the fluxes∫
ξ>0 ξf j

B(1, v)dv and
∫
ξ<0 |ξ|f

j
B(−1, v)dv are controlled in the following way.

From (2.2) written in the exponential form, it holds that

f j
B(x, v) ≥ f j

B(−1, v)e
−

R 0

− 1+x
ξ

R
R3

v∗×S2 Bjfj(x+sξ,v∗)dv∗dωds
, ξ >

1
2
,

f j
B(x, v) ≥ f j

B(1, v)e
−

R 0
1−x

ξ

R
R3

v∗×S2 χjBjfj(x+sξ,v∗)dv∗dωds
, ξ < −1

2
. (2.3)
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Recall that,

νj(x, v) =
∫

R3
v∗×S2

χjBjf j(x, v∗)dv∗dω.

For v satisfying ξ > 1
2 or ξ < −1

2 ,
∫ 1
−1

νj(z,v)
|ξ| dz is uniformly bounded from

above. Hence, by using the definition of the boundary conditions (1.3) in
(2.3), it holds that

f j
B(x, v) ≥ cM−(v)

∫
ξ<0

|ξ|f j
B(−1, v)dv , ξ >

1
2
,

f j
B(x, v) ≥ cM+(v)

∫
ξ>0

ξf j
B(1, v)dv , ξ < −1

2
.

So ∫
{ξ> 1

2
}∪{ξ<− 1

2
}
max(

1
µ

,min(µ, (1 + |v|)β)f j
B(x, v)dxdv

≥
∫
{ξ> 1

2
}
max(

1
µ

,min(µ, (1 + |v|)β)M+(v)dv

∫
ξ>0

ξf j
B(1, v)dv

+
∫
{ξ<− 1

2
}
max(

1
µ

,min(µ, (1 + |v|)β)M−(v)dv

∫
ξ<0

|ξ|f j
B(−1, v)dv.

f j
B being non negative, we have for µ big enough

c

∫ 1

−1

∫
R3

v

max(
1
µ

,min(µ, (1 + |v|)β)f j
B(x, v)dxdv

≥
∫

ξ>0
ξf j

B(1, v)dv +
∫

ξ<0
|ξ|f j

B(−1, v)dv.

Since
∫ 1
−1

∫
R3

v
max( 1

µ ,min(µ, (1+|v|)β))f j
B(x, v)dxdv = 1, the fluxes

∫
ξ>0 ξf j

B(1, v)dv

and
∫
ξ<0 |ξ|f

j
B(−1, v)dv are bounded uniformly w.r.t j.

Furthermore, the energy fluxes are controlled. Indeed, by conservation of
the energy for f j , it holds that∫

ξ>0
ξv2f j

B(1, v)dv +
∫

ξ<0
|ξ|v2f j

B(−1, v)dv

≤
∫

ξ>0
ξv2f j(−1, v)dv +

∫
ξ<0

|ξ|v2f j(1, v)dv.
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The definition of the boundary conditions (2.1) and (2.2) yield∫
ξ>0

ξv2f j
B(1, v)dv +

∫
ξ<0

|ξ|v2f j
B(−1, v)dv

≤ (kj +
∫

ξ′<0
|ξ′|f j

B(−1, v′)dv′)
∫

ξ>0
ξv2M−(v)dv (2.4)

+(kj +
∫

ξ′>0
ξ′f j

B(1, v′)dv′)
∫

ξ<0
|ξ|v2M+(v)dv.

The right-hand side of (2.4) being bounded, it follows that∫
ξ>0

ξv2f j
B(1, v)dv +

∫
ξ<0

|ξ|v2f j
B(−1, v)dv ≤ c.

Therefore the entropy fluxes are controled. Indeed, f j = f j
A + f j

B satisfies
the following equation

ξ
∂

∂x

(
f j(log(f j)− 1)

)
= Qj(f j , f j)log(f j). (2.5)

By using a Green’s formula and an entropy estimate in (2.5), leads to∫
ξ>0

ξf j
B(1, v) log f j

B(1, v)dv +
∫

ξ<0
|ξ|f j

B(−1, v) log f j
B(−1, v)dv

≤ (
∫

ξ′>0
ξ′f j

B(1, v′)dv′ + kj)∫
ξ<0

|ξ|M+(v)log(M+(v)(
∫

ξ′>0
ξ′f j

B(1, v′)dv′ + kj))dv

+(
∫

ξ′<0
|ξ′|f j

B(−1, v′)dv′ + kj)∫
ξ>0

M−(v) log(M−(v)(
∫

ξ′<0
|ξ′|f j

B(−1, v′)dv′ + kj))dv.

Hence the Dunford-Pettis criterion ([13]), f j
B(1, .) is weakly compact in

L1({v ∈ R3
v, ξ > 0}). Let one of its subsequence still denoted by f j

B(1, .),
converging weakly to some g+ in L1({v ∈ R3

v, ξ > 0}). It remains to show
that g+ = fB(1, .). Let gd be defined by

gd(x) =
1
d

ln(1 + d x). (2.6)
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f j
B being a weak solution to (2.2), it comes that

ξ
∂

∂x
gd(f

j
B) =

Q(f j
B, f j)

1 + d f j
B

.

Denote that by weak compactness of Q(fj
B ,fj)

1+fj
B

, Q(fj
B ,fj)

1+d fj
B

is also weakly com-

pact. Consider a test function ϕ vanishing on {|ξ| ≤ δ} ∪ {|v| ≥ 1
δ} and

satisfying ϕ(x, v) = ϕ1(x)ϕ2(v) with ϕ1 = 1 in a neighborhood of 1.∫
ξ>0

ξf j
Bϕ(1, v)dv =

∫
ξ>0

ξgd(f
j
B)ϕ(1, v)dv +

∫
ξ>0

ξ(f j
B − βd(f

j
B))ϕ(1, v)dv

The fluxes being controled, it holds that

lim
d→0

∫
ξ>0

ξ
∣∣f j

B(1, v)− gd(f
j
B)(1, v)

∣∣dv = 0,

uniformly w.r.t j. So, η being given, we can chose d > 0 such that uniformly
w.r.t j,∣∣ ∫

ξ>0
ξ(f j

B − gd(f
j
B))ϕ(1, v)dv

∣∣ ≤ η,
∣∣ ∫

ξ>0
ξ(fB − gd(fB))ϕ(1, v)dv

∣∣ ≤ η.

Let us show that∫
ξ>0

ξgd(f
j
B)ϕ(1, v)dv →

∫
ξ>0

ξgd(fB)ϕ(1, v)dv.

By definition of the trace ([5], [10]),

gd(f j)(1, v) = lim
ε0→0

1
ε0

∫ ε0

0
gd(f(1− ε, v))dε

But
(
ϕgd(f

j
B)

)
satisfies the equation

ξ
∂(ϕ gd(f

j
B))

∂x
= ξ

∂ϕ

∂x
gd(f

j
B) +

Qj(f
j
B, f j)

1 + df j
B

ϕ. (2.7)

So, by integrating (2.7) on [1− ε, 1]×R3
v and by using a Green’s formula, it

holds that

| 1
ε0

∫
R3

v

∫ ε0

0
(gd(f

j
B)(1, v)− gd(f

j
B)(1− ε, v))ϕ2(v)dvdε|

≤ 1
ε0

∫ ε0

0

∫
R3

v

∫ 1

1−ε0

∣∣Qj(f
j
B, f j)

1 + d f j
B

(x, v)ϕ(x, v)
∣∣dxdvdε

+
1
ε0

∫ ε0

0

∫
R3

v

∫ 1

1−ε0

∣∣gd(f
j
B)(x, v)ξ

∂

∂x
ϕ(x, v)

∣∣dxdvdε. (2.8)
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By weak compactness of (f j
B) and Qj(f

j
B ,fj)

1+d fj
B

in L1([−1, 1]×{|ξ| ≥ δ, |v| ≥ 1
δ},

there is ε̃0 > 0, such that for ε0 < ε̃0 and uniformly w.r.t j,

1
ε0

∫ ε0

0

∫
R3

v

∫ 1

1−ε0

∣∣Qj(f
j
B, f j)

1 + d f j
B

(x, v)ϕ(x, v)
∣∣dxdvdε ≤ η,

1
ε0

∫ ε0

0

∫
R3

v

∫ 1

1−ε0

∣∣βd(f
j
B)(x, v)ξ

∂

∂x
ϕ(x, v)

∣∣dxdvdε ≤ η.

But by weak compactness of gd(f
j
B)(1, v), gd(f

j
B)(1, v) is converging weakly

in L1 to some gd. By weak compactness of gd(f
j
B)(1− ε, v) in

L1([−1, 1]× {v ∈ R3, |ξ| ≥ δ, |v| ≤ δ})∫
R3

v

∫ ε0

0
ξ gd(f

j
B)(1− ε, v)ϕ2(v)dvdε →

∫
R3

v

∫ ε0

0
ξ gd(fB)(1− ε, v)ϕ2(v)dvdε

So

| 1
ε0

∫ ε0

0

∫
R3

v

ξ(gd − gd(fB))ϕ2(v)dvdε| ≤ η.

Hence, gd and gd(fB) are equal on the sets {v ∈ R3, |ξ| ≥ δ, |v| ≤ δ} for all
δ > 0 and so a.e.
From here, by arguing as in ([14]), we can prove that (fA, fB) satisfies the
mild form or the renormalized form of (1.1, 1.2, 1.3). �

3 Some extensions.

This section is devoted to some extensions to Theorem [?] in particular in
the situation of multi-component gases. The results are similar to those
obtained in [10]. By reasoning as in [10], the following extensions can be
proved.

Corollary 3.1. Given β with −3 < β < 0, MA > 0 and MB > 0, there is a
renormalized solution to the stationary problem with β-norms MA and MB.

Corollary 3.2. Given β with −3 < β < 0, MA1 ....MANA
and MB1 ....MBNB

there is a renormalized solution fA1 ...fBNB
to the stationary problem with

respective β-norms MA1 , ...,MBNB
.

Remark that the case of a one component gas with one boundary condition
of the type (1.2) and another of the type (1.3) can also be solved. It comes
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back to the diffuse-reflection problem solved in ([8]) in the case of soft forces.
Furthermore, this problem can be generalized to several components by
reasoning as in the proof of Corollary 3.2.
Theorem 1.1 can also be generalized to the case of a convex combination of
boundary conditions of the type (1.2) and (1.3),

ξ
∂

∂x
f = Q(f, f), (x, v) ∈ (−1, 1)× R3

v,

f(−1, v) = a(
∫

ξ<0
|ξ|f(−1, v)dv)M−(v) + (1− a)kM−(v) , ξ > 0,

f(1, v) = a(
∫

ξ>0
ξf(1, v)dv)M+(v) + (1− a)kM+(v) , ξ < 0, (3.1)

a ∈ [0, 1].

Corollary 3.3. Given β with −3 < β < 0, M > 0 there is a renormalized
solution to the stationary problem (3.1) with the β-norm M .
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