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Abstract

The aim of this article is to construct a BGK-type model for poly-
atomic gases which gives in the hydrodynamic limit the proper trans-
port coefficient. Its construction relies upon a systematic procedure:
minimizing Boltzmann entropy under suitable moments constraints
([20, 9]). The obtained model corresponds to the ellipsoidal statis-
tical model introduced in [2]. We also study the return to equilibrium
of its solutions in the homogeneous case.
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1 Introduction.

Classically the monatomic Boltzmann equation is used for describing rarefied
gases. But in realistic cases polyatomic gases must be considered. In this
case the density function depends on the velocity of particles but also on
their internal energy (rotational, vibrational . . . ) and the density function
writes f = f(t, x, v, I) with (t, x, v, I) ∈ R+×R

3×R
3×R+. The Boltzmann

equation for this density is still

( ∂

∂t
+ v · ∇x

)

f = Q(f, f).

where Q(f, f) is some quadratic collision term which can take different forms
([18, 29, 8, 15]). But those models are very demanding in computer resources
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(see e.g [4]). Therefore it is of interest to look for simplified models that
preserve important properties of the former. The simplest one is the so-
called BGK model introduced by Bhatnagar, Gross and Krook ([5]). It
writes

RBGK(f) = ρ (M− f), (1.1)

where M = M(t, x, v, I) is the Maxwellian distribution defined by

M(v, I) =
ρΛδ

(2πRTeq)3/2(RTeq)
δ
2

exp

(

−|v − u|2
2RTeq

− I
2

δ

RTeq

)

(1.2)

with

ρ(t, x) =

∫

R3×R+

fdvdI, u(t, x) =
1

ρ

∫

R3×R+

v fdvdI, (1.3)

Teq =
2

(3 + δ)ρR

∫

R3×R+

(
1

2
|v − u|2 + I

2

δ ) fdvdI. (1.4)

δ is the total number of molecular internal degrees of freedom of the gas and
R = k

m , k being the Boltzmann constant and m the molecular mass. Finally

Λ−1
δ =

∫

R+

e−I
2
δ dI.

Other important definitions are the total energy E

E(t, x) =

∫

R3×R+

(
1

2
|v|2 + I

2

δ )fdvdI, (1.5)

and the entropy functional H

H(f) =

∫

R3×R+

f ln fdvdI. (1.6)

This model enjoys many important properties of the Boltzmann equation:
mass, momentum and energy E are conserved and it is entropy dissipative.
But it suffers a deficiency in the hydrodynamical limit at the Navier-Stokes
level. Its Prandtl number Pr is incorrect. Let us recall that Pr is defined
by

Pr =
γ

γ − 1

Rµ

κ

2



where γ is the ratio of specific heats (γ =
Cp

Cv
) which is connected to δ by

the relation

γ =
δ + 5

δ + 3
.

µ and κ are respectively the first viscosity and the thermal conductivity.
For most gases we have Pr < 1 while Pr = 1 for the BGK model. It
is therefore of interest to look for relaxation models that do not have this
drawback. Before proceeding further on let us recall an important fact
proved by Toscani ([33]) and Collet ([14]). The definition of H is not merely
the extension to polyatomic gases of the entropy functional for monatomic
Boltzmann equation (see [11]) but it is the unique Lyapunov functional for
the kinetic equation

( ∂

∂t
+ v · ∇x

)

f = ρ (M− f). (1.7)

This is a consequence of a variational principle. Let Cf be defined by

Cf = {g ≥ 0 /

∫

R3×R+

(1, v,
1

2
|v|2 + I

2

δ )gdvdI = (ρ, ρu,E)}. (1.8)

Then there exists a unique (strictly) convex functional -namely H- such that
M is the (unique) extremal point in Cf (remark that conservation laws for
the BGK model are equivalent to M ∈ Cf ). This will explain the choice of
entropy H below. Now the idea is to look for a ”new” relaxation term of
the form

R(f) = λ(G− f), (1.9)

where λ is a parameter and G is a function which are seek so as to obtain
in the hydrodynamic limit the correct transport coefficients -the two vis-
cosities µ and αµ and thermal conductivity κ- and thus the right Prandtl
number. λ and G depend on macroscopic values of f . Moreover G is the
extremal point in a set Kf of the entropy functional. Kf is included in Cf to
ensure conservation laws and it also contains constraints on other moments
(
∫

mi(v, I) gdvdI)i of g. More precisely

∫

mi(v, I)R(f)dvdI = −λi

∫

mi(v, I) fdvdI, ∀i

where (λi)i are strictly positive rates. Those constraints are chosen bas-
ing on physical considerations: in the hydrodynamic limit each moment
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∫

mi(v, I) fdvdI becomes very small and measures in some sense the depar-
ture from local equilibrium. Thus (λi)i are connected to transport coeffi-
cients. So the whole procedure consists in

1. choosing the set of moments (mi(v, I))i and thus defining Kf ,

2. finding the extremal point G of Kf with respect to the entropy,

3. defining all parameters λ and (λi)i by computation of the hydrody-
namic limit of (1.7) (with R(f) instead of RBGK(f)) and comparison
with the true Navier-Stokes equation so as to recover the correct trans-
port coefficients.

Entropy minimization principles as well as the idea of using different BGK-
type relaxation terms were first considered by Levermore ([20]) in the context
of monatomic gases. But in his work the different models could only reach
Prandtl numbers larger than 1. Then one of the author ([30]) has proposed
to introduce a single relaxation term R(f) that fits with the collision oper-
ator QMax(f, f) for monatomic Maxwellian molecules in a weak sense: one
adds in Cf the constraints that moments of R(f) coincide with those of
QMax(f, f) up to any chosen order (in this case the fluid limit is ”correct”).
Finally the approach we present here was proposed by the authors in the
case of monatomic gases ([9]) who recovered the classical ellipsoidal statis-
tical model by Holway ([17]).
The paper is divided as follows. In section 2 we recall some physical back-
grounds about polyatomic gases. Section 3 is devoted to finding additional
moments constraints so as to define Kf . In section 4 we address the problem
of finding the extremal point G in Kf with respect to the entropy functional
H. Since this problem is subjected to the so-called realizability conditions
(see Junk ([25, 26]) and one of the author ([30])) we prove that it has a
unique solution under necessary and sufficient conditions on the relaxation
rates (Theorem 4.1). Then we compute the hydrodynamical limit of the
model and set the values of λ, (λi)i) by comparison with the true Navier-
Stokes system of equations. This allows to recover the proper transport
coefficients and defines entirely (1.9). Moreover (1.9) turns out to be the
ES-BGK relaxation model for polyatomic gases introduced in Andries&al
([2]). In the next section we study the return to equilibrium for the ES-
BGK model (Theorem 5.1) in the homogeneous case. It is based on a sharp
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estimate of the relative entropy

H(f |M) =

∫

f ln(
f

M) dv dI. (1.10)

Finally this result is illustrated numerically in the case of monatomic gases
(section 6). The reason of this simplification is that we want to compare
the L1-return to equilibrium (and also the relative entropy) between the ES-
BGK model and the true Boltzmann equation. Those comparisons are not
possible in the case of polyatomic gases since there exist only Monte-Carlo
methods to solve such problem (except the method by Bahi [4]). We also
introduce in this section a new BGK model that allows to recover the proper
viscosity for any kind of molecule interaction.

2 Physical backgrounds.

We have already defined the macroscopic moments ρ, u,E and Teq in
(1.3,1.5). Recall firstly the conservation laws for the BGK model
∫

R3×R+

(1, v,
1

2
|v|2 + I

2

δ )MdvdI =

∫

R3×R+

(1, v,
1

2
|v|2 + I

2

δ ) fdvdI. (2.1)

Remark that due to mass and momentum conservation the conservation of
total energy is equivalent to that of the internal energy

∫

R3×R+

(
1

2
|c|2 + I

2

δ )MdvdI =

∫

R3×R+

(
1

2
|c|2 + I

2

δ ) fdvdI (2.2)

where c = v−u. This definition is equivalent to that of the specific internal
energy

e =
1

ρ
E − 1

2
|u|2 =

3 + δ

2
RTeq. (2.3)

e is naturally splitted into two parts e = etr + eint with

etr =
1

2ρ

∫

R3×R+

|c|2 fdvdI, eint =
1

ρ

∫

R3×R+

I
2

δ fdvdI. (2.4)

Those energies correspond to the translational and internal energies of the
particles. Temperatures are associated to them

Ttr =
2

3R
etr, Tint =

2

δR
eint. (2.5)

Finally the opposite of the stress tensor Θ is defined by

Θ =

∫

R3×R+

c⊗ cfdvdI. (2.6)
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3 Setting of the problem.

The purpose of this paper is to construct a relaxation type term of the form

R(f) = λ(G− f),

where parameter λ and function G are to be fitted to the proper transport
coefficients -the two viscosities µ and µα and thermal conductivity κ. This
requires a particular definition of set of constraints Kf which will define G
(G ∈ Kf ) through a variational principle. So let us determine Kf . Remark
firstly that macroscopic quantities introduced in the previous section are
moments of f related to the polynomial space

P = span
[

1, v, v ⊗ v, I
2

δ

]

. (3.1)

We will show in the next section that this polynomial space is well adapted
to the variational problem defined below. Secondly conservation laws hold
if and only if G ∈ Kf ⊂ Cf . That is

∫

R3×R+

(1, v,
1

2
|v|2 + I

2

δ ) g dvdI =

∫

R3×R+

(1, v,
1

2
|v|2 + I

2

δ ) f dvdI. (3.2)

Again conservation of total energy can be replaced to that of specific energy
using mass and momentum conservation

∫

R3×R+

(
1

2
|c|2 + I

2

δ ) g dvdI =

∫

R3×R+

(
1

2
|c|2 + I

2

δ ) f dvdI. (3.3)

Then a mathematical and physical consideration is that f must tend to M in
the homogeneous case. Since M is isotropic we set an additional constraint

∫

R3×R+

(

c⊗ c− 1

3
|c|2Id

)

λ(g − f) dvdI

= −λ1

∫

R3×R+

(

c⊗ c− 1

3
|c|2Id

)

f dvdI, (3.4)

where λ1 is a positive relaxation coefficient. Here Id is the identity matrix
in R

3. Finally following Borgnakke and Larsen ([6]) we take into account
physical requirement that translational and internal energies tend to the
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specific internal energy e
∫

R3×R+

(1

3
|c|2 − 2

3 + δ
(
|c|2
2

+ I
2

δ )
)

λ(g − f) dvdI

= −λ2

∫

R3×R+

(1

3
|c|2 − 2

3 + δ
(
|c|2
2

+ I
2

δ )
)

f dvdI

= −λ2

(

∫

R3×R+

1

3
|c|2 fdvdI − ρRTeq

)

, (3.5)

where λ2 is a positive relaxation coefficient (here the last equation is obtained
by using the definition of internal energy (2.3)). Now we are able to set our
variational problem
”Find G solution to the minimization problem

G = min
g∈Kf

H(g) (3.6)

where Kf is the set of functions g ≥ 0 such that (3.2),(3.4),(3.5) hold.”

Remark that only two unknown parameters λ1

λ and λ2

λ appear in (3.4) and
(3.5) which means that these two relations let us with an additional degree of
freedom. Setting θ = λ2

λ and using (3.3) constraint (3.5) can be formulated
as follows

∫

R3×R+

1

3
|c|2gdvdI = (1 − θ)

∫

R3×R+

1

3
|c|2f dvdI + θρRTeq.

Equation (3.4) can be transformed into
∫

R3×R+

c⊗ c g dvdI =
1

3

∫

R3×R+

|c|2g dvdI

+ (1 − λ1

λ
)

∫

R3×R+

(c⊗ c− 1

3
|c|2Id)f dvdI.

In order to compare the present work with other works about the ellipsoidal
statistical model for polyatomic gases we set

λ1

λ
= 1 − ν(1 − θ). (3.7)

and obtain
∫

R3×R+

c⊗ c g dvdI = (1 − θ)
(

(1 − ν)ρRTtrId+ νΘ)
)

+ θρRTeqId

= ρT . (3.8)

This means that this tensor is defined entirely in terms of macroscopic quan-
tities depending only on f . This will make easier the computation of G.
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4 Construction of the relaxation model.

The aim of this section is to construct the relaxation model. It is performed
in three steps.

1. Derive necessary and sufficient conditions on the values of θ and ν
such that (3.6) possesses a solution. Give the shape of its solution G.

2. Define relaxation rates λ1,λ2 and λ such as to recover proper transport
coefficients in the hydrodynamic limit up to Navier-Stokes level.

3. Comparison with the ellipsoidal statistical model for polyatomic gases
([2]).

4.1 Solution to the minimization problem (3.6).

Our first concern is to solve minimization problem (3.6). Let us recall that
such a minimization problem is subjected to the so-called realizability con-
dition. For this problem we refer to the papers by Junk ([26]) and Schneider
([30]). A natural condition for realizability is Kf 6= ∅.

Lemma 4.1. Let χ be a symmetric definite positive tensor of order two and
consider the set K of functions g ≥ 0 s.t.

∫

gdvdI = ρ,
1

ρ

∫

vgdvdI = u,
δ

2Rρ

∫

|v − u|2gdvdI = T,

∫

(
|v − u|2

2
+ I

2

δ )gdvdI = E (4.1)

for some (ρ, u, T,E) in R
∗
+ × R

3 × R
∗
+ × R

∗
+ with E > 2Rρ and

1

ρ

∫

R3

c⊗ c gdvdI = χ.

Then K is not empty.

Proof. The proof is given in appendix A.

It is clear that condition ”χ is symmetric definite positive” in the above
lemma imposes conditions on ν and θ in the minimization problem. As we
are going to see those those conditions are also sufficient to ensure that the
problem (3.6) possesses a solution for each density function f in the weighted
L1-space

L1
2 = {f/ (1 + |v|2 + I

2

δ )f ∈ L1}.
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Theorem 4.1. Let f (f 6= 0) be a nonnegative function in L1
2, ν ∈ [−1

2 , 1[
and θ ∈ [0, 1]. Then minimization problem (3.6) admits a unique solution
G defined by

G(v, I) =
ρΛδ

√

det(2πT )(RTeq)
δ
2

exp
(

− 1

2
〈c,T −1c〉 − I

2

δ

RTrel

)

. (4.2)

where
Trel = θTeq + (1 − θ)Tint.

Conversely if Kf 6= ∅ for all nonnegative functions f ∈ L1
2 (f 6= 0) then ν ∈

[−1
2 , 1[, θ ∈ [0, 1] and (3.6) admits a unique solution for each nonnegative

function in L1
2.

Proof. (Theorem 4.1.)
Step 1: It is easy to see that

ν ∈ [−1

2
, 1[ and θ ∈ [0, 1] ⇒ T ∈ S+

3 (R),

therefore Kf 6= ∅ according to the above lemma. Let now m(v, I) be a
generating vector basis of P and consider the set Λ defined with

Λ = {η ∈ R
11/ exp(η.m(v, I)) ∈ L1}.

Then λ 6= ∅ and λ ∩ ∂λ = ∅. This can be readily checked by writing any
polynomial p(v, I) ∈ P as

p(v, I) = a+ b.v + vT .A.v + cI
2

δ ,

with (a, b,A, c) ∈ R×R
3×S3(R)×R. Then exp(p(v, I)) ∈ L1(R3×R if and

only if −A ∈ S+
3 (R) and c < 0. Then according to [26] there exists a unique

solution to (3.6) which is of the form G(v) = exp(m(v, I)) with m(v, I) ∈ P.
In this particular case the solution G can be computed explicitly using (3.2)
and (3.8). Remark that this first step can also be obtained in a similar way
using Theorem 2 in [30].

Step 2: In the sequel we set ρ = 1 and R = 1 for the sake of clarity.
Let f be a nonnegative function (f 6= 0) in L1

2 and define Ttr and Teq by
(2.4), (2.3). Then Kf 6= ∅ implies (see (3.7))

0 <

∫

R3×R+

1

3
|c|2gdvdI = (1 − θ)Ttr + θTeq. (4.3)
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It is always possible to find a sequence of nonnegative functions fn ∈ L1
2

such that

T n
tr =

1

3

∫

|c|2fndv dI =
1

3
fn

c → 0 as n→ ∞

while

T n
eq = Teq =

2

3 + δ

∫

(
|c|2
2

+ I
2

δ )fn dvdI =
2

3 + δ
(
1

2
fn

c + fn
I )

is fixed. Then (4.3) writes

T n
tr + θ(Teq − T n

tr) =
1

3
fn

c + θ
( 2

3 + δ
(
fn

c

2
+ fn

I ) − 1

3
fn

c

)

> 0. (4.4)

Suppose now that θ = 1 + ε > 1 for small ε then

2(1 + ε)fn
I < (1 − εδ

3
)fn

c

which is not possible for n big enough. Hence θ ≤ 1.
Now let us consider constraint (3.8) and denote with (Θi)i=1...3 the eigen-
values of Θ and with (τi)i=1...3 the eigenvalues of T . On one side one has

Θi ∈]0, 3Ttr[, ∀i = 1 . . . 3

and on the other side τi > 0, ∀ = 1 . . . 3. It is clear that Θ and T can be
diagonalized in the same basis so that (3.8) leads to

(1 − θ)
(

(1 − ν)Ttr + νΘi

)

+ θTeq > 0, ∀i = 1 . . . 3.

It is always possible to find a sequence of functions (fn) such that
T n

tr = Ttr > 0 is fixed while for a given index i one has Θn
i → 0. Hence

by taking θ = 0 in the previous equation we get (1 − ν)Ttr > 0 and thus
1 < ν. In the same way letting Θn

i tend to 3Ttr we get (1 + 2ν)Ttr ≥ 0 and
so ν ≥ −1

2 .

Remark 1. The maximal degree 2 (in v) of P ensures existence and unique-
ness of the solution to minimization problem (3.6). A maximal degree of
order 3 would remove this result. But P seems not well adapted to the re-
quirement of finding right thermal conductivity κ since it involves moment
of density function of degree 3. Nevertheless we will show in the next section
that constraints related to P are sufficient to recover at the hydrodynamic
level Navier-Stokes equations with proper transport coefficients.

Remark 2. This model is entropic as proved by Andries &al ([2]). This
can also be obtained by generalizing the proof given in [9].
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4.2 Definition of λ1, λ2 and λ.

In this part we determine the hydrodynamic limit of the equation
(

∂

∂t
+ v · ∇x

)

f =
λ

ε
(G− f) (4.5)

so as to recover the Navier-Stokes transport with proper transport coeffi-
cients -the two viscosities α and αµ and the thermal conductivity κ. This
will define relaxation coefficients λ1, λ2 and λ. Here ε is the Knudsen num-
ber defined as the ratio between the mean free path and a typical length
scale (see [11] for a discussion about this nondimensional number). Recall
that the Navier-Stokes system of equations writes

∂t





ρ
ρui

E



+ ∂xj
·





ρuj

ρuiuj + Pδij
Euj + Puj



 = ε ∂xj
·





0
σij

uiσij + κ∂xj
T





where the pressure is given by the polytropic law

P = ρRT = (γ − 1)ρe,

total energy by

E =
1

2
ρ|u|2 + ρe,

and viscosity tensor by

σij = µ (∂xj
ui + ∂xi

uj − αdiv(u)δij).

The hydrodynamic limit of (4.5) can be obtained using the classical Chapman-
Enskog expansion. This consists in letting ε → 0 and expanding f with
respect to ε

f = f (0) + εf (1) + ε2f (2) + . . . (4.6)

Since G depends on f one also has

G = G(0) + εG(1) + ε2G(2) + . . . , (4.7)

whereG(i) are functions of moments of (f (j))j=1...i. f
(0) = G(0) is a Maxwellian

distribution as a consequence of H-theorem (remark 1). Assuming that this
function has the same first moments as f(t, x, v, I) then
f (0) = G(0) = M(t, x, v, I) and the following orthogonality relations hold
∫

(

1, v,
1

2
|c|2 + I

2

δ

)

f (1) dvdI =

∫

(

1, v,
1

2
|c|2 + I

2

δ

)

G(1) dvdI = 0. (4.8)
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Here equations on internal energies are obtained using the same argument
as for equation (3.3). Then we are going to determine λ1, λ2 and λ by using
the set of constraints (3.2),(3.5),(3.4) and equation (4.5) at order 0

(

∂

∂t
+ v · ∇x

)

M = λ(G(1) − f (1)). (4.9)

Multiplying this equation with (1, v, 1
2 |v|2 + I

2

δ ) and integrating it over v
and I gives the Euler system of equations. This system is used to compute
the left-hand side of (4.9) only in terms of space derivatives (see e.g [19])

(

∂

∂t
+ v · ∇x

)

M =

(

c
(c2 + 2I

2

δ

2RTeq
− 5 + δ

2

)

· ∇(lnTeq)

+
1

RTeq

(

(c⊗ c− 1

3 + δ
(|c|2 + 2I

2

δ ) Id
)

: D(u)

)

M (4.10)

where D(u) is defined with

D(u) =
1

2
(∇xu+ ∇xu

t) − 1

3
div(u) Id.

Then
∫

vivj

( ∂

∂t
+ v · ∇x

)

MdvdI = P
(∂ui

∂xj
+
∂uj

∂xi
− 2

3 + δ
div(u) δij

)

. (4.11)

Here

P = ρRTeq (4.12)

since the Euler system of equations yields Teq = T . Now expanding relation
(3.5) at order 1 (with G instead of g) and using (4.9) one finds that the trace
of Θ(1) satisfies the relations

∫

|c|2f (1)dvdI = − 1

λ2

∫

|c|2( ∂
∂t

+ v · ∇x)MdvdI

= − 1

λ2

∫

|v|2
( ∂

∂t
+ v · ∇x

)

MdvdI.

Here last equation is obtained by using orthogonality relations (4.8) together
with (4.9). Comparing this with (4.11) gives on one hand

∫

|c|2f (1)dvdI = − P

λ2

2

3 + δ
div(u).
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But on the other hand the trace of −Θ(1) must be equal to that of stress
tensor σij

µ(2 − 3α)div(u).

So that

λ2 =
P

µ

2

3 + δ

1

2 − 3α
. (4.13)

Correspondingly using relation (3.4), the traceless part of −Θ(1)

−
∫

cicj f
(1)dvdI =

1

λ1

∫

cicj (
∂

∂t
+ v · ∇x)M dvdI

= − P

λ1

(∂ui

∂xj
+
∂uj

∂xi

)

i 6= j

must equate the traceless part of stress tensor σij so that

λ1 =
P

µ
. (4.14)

Finally notice that the first polynomials in the right hand side of equation
(4.10) are nothing but the Hermite polynomials H3

i (c, I) with respect to M.
Hence they are orthogonal to P for the scalar product

∫

φψMdvdI. This
makes easier the computation of

∫

H3
i (c, I) (G(1) − f (1)dvdI = − 1

λ

∫

H3
i (c, I)(

∂

∂t
+ v · ∇x)M dvdI

= − 1

λ

[

Pui

(∂ui

∂xj
+
∂uj

∂xi
− 2

3 + δ
div(u) δij

)

+
5 + δ

2λ
PR∂xi

T
]

where we the last equation is deduced from (4.10). On the other hand com-
paring this expression with the Navier-Stokes term for thermal conductivity
one obtains

λ =
5 + δ

2

PR

κ
. (4.15)

This last definition together with (4.13),(4.14) define entirely the relaxation
model (1.9).
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4.3 Comparison with the ellipsoidal statistical model

Let us recall (see (3.7)) that

ν =
1

1 − θ
(1 − λ1

λ
).

Therefore using (4.14)

λ =
λ1

1 − θν + ν
=

P

µ(1 − ν + θν)

so that R(f) also writes

R(f) =
P

µ(1 − ν + θν)
(G− f) (4.16)

This turns out to be the ellipsoidal statistical model found in [2] for poly-
atomic gases.

Remark 3. The Prandtl number of this model is

Pr =
5 + δ

2

Rµ

κ
=

λ

λ1
=

1

1 − ν + θν
.

For example, in the situation of diatomic gases we have the experimental
values Pr = 5

7 and θ = 1
5 . Hence ν = −1

2 .

5 Return to equilibrium.

We consider in this part the behavior of the solution to the space homoge-
neous equation

∂

∂t
f = λ(G− f) (5.1)

when t tends to infinity. We show that the relaxation rates λ1, λ2 have still
an influence on the asymptotic behavior of f .
The idea is to derive a rate on the decay of relative entropy H(f |G) (1.10)
together with a Gronwall lemma. The main result of this section is the
following theorem.

Theorem 5.1. For λ1 and λ2 defined in (4.14) and (4.13) let us put
λ3 = min(λ1, λ2). Then for all f solution to (5.1), we have

‖f −M‖L1R3×R+
(t) = O(e−λ3t). (5.2)

where M has the same definition as usual (1.2) dropping out the space de-
pendance.
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Proof. By derivation of the relative entropy (1.10) it holds that

∂

∂t

(

f ln
f

G

)

=
( ∂

∂t
f
)

ln
f

G
+
( ∂

∂t
f
)

− f
∂
∂tG

G
.

We have two cases: θ = 0 and 0 < θ ≤ 1. We choose to treat the second
case which is more complicated. Let us first show that

‖∂tG

G
‖∞ = O(e−λ3t). (5.3)

Let (τ1, τ2, τ3) (resp. Θ1,Θ2,Θ3) be the eigenvalues of T (resp. Θ). Then
∂
∂t

G

G has the expression

∂
∂tG

G
=

2

δ

∂
∂tTrel

Trel
+

1

2
(
τ ′1
τ1

+
τ ′2
τ2

+
τ ′3
τ3

) +
(

〈1
2
c,
∂

∂t
(T −1)c〉 − I

2

δ
∂

∂t
(

1

Trel
)
)

.

Using (3.5) we obtain after multiplication of (5.1) by 1
3 |c|2 − 2

3+δ ( |c|
2

2 + I
2

δ )
and integration

(Ttr − Teq)
′ = −λ2(Ttr − Teq). (5.4)

So

Ttr − Teq = O(e−λ2t). (5.5)

On the other side multiplying the equation (5.1) by c ⊗ c − 1
3 |c|2Id and

integrating on R
3 × R+ we have according to (3.4)

(

Θ −RTtrId
)′

= −λ1

(

Θ −RTtrId
)

. (5.6)

Therefore Θ(t) satisfies

(

Θ −RTtrId
)

= O(e−λ1t). (5.7)

The symmetric tensor Θ(0) can be diagonalized as Θ(0) = P t∆(0)P where
∆(0) is the diagonal matrix whose terms are (θ1(0), θ2(0), θ3(0)).
From to the relations (3.8, 5.7), T (t) can be diagonalized in the same basis
as Θ(t) and Θ(0). Then T (t) = P tD(t)P , where D is the diagonal matrix
whose terms are (τ1, τ2, τ3). Therefore

τi = (1 − θ)
(

(1 − ν)RTtr + νΘi

)

+ θRTeq (5.8)
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and

τ ′i
τi

=
(1 − θ)

(

(1 − ν)λ(Teq − Ttr) Id+ λ1ν(Ttr − Θi)
)

(1 − θ)
(

(1 − ν)Ttr + νΘi

)

+ θTeq
.

As θ 6= 0 by putting λ3 = min(λ1, λ2) and by using (5.5, 5.7), it holds that

τ ′i
τi

= O(e−λ3t).

As

∂

∂t
(

1

T
2

δ

rel

) =
2

δ

T ′
rel

T
2

δ
+1

rel

and T ′
rel = (1 − θ)T ′

int, it holds that

∂

∂t
(

1

T
2

δ

rel

) =
2

3
(1 − θ)λ2

Teq − Ttr

T
2

δ

rel

.

Hence from (5.5)

∂

∂t
(

1

T
2

δ

rel

) = O(e−λ2t).

Moreover

〈c, ∂
∂t

(T −1)c〉 = 〈c, ∂
∂t

(D−1)c〉 = −
3
∑

i=1

τ ′i
τ2
i

|ci|2.

Therefore

∂
∂tG

G
=
T ′

rel

Trel
(−2

δ
+

I
2

δ

T δ
rel

) − 1

2

3
∑

i=1

τ ′i
τi

(1 +
|ci|2
τi

)

and (5.3) follows.
Now let us finish the proof of Theorem 5.1. By integrating (5.1) and by
using mass conservation, it holds that

∂

∂t

(

∫

R3

f ln(
f

G
)dv
)

= λ

∫

R3

(G− f) ln(
f

G
)dv −

∫

R3

f
∂
∂tG

G
dv.
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As G ln( f
G) ≤ 0, it holds that

∂

∂t
H(f |G) ≤ −λH(f |G) + h(t)

with

h(t) = −
∫

R3×R+

f
(

(−2

δ
+

I
2

δ

T δ
rel

)
2

3
(1 − θ)λ2

Teq − Ttr

Trel
)

−1

2

3
∑

i=1

(1 +
|ci|2
τi

(1 − θ)
(

(1 − ν)λ(Teq − Ttr) + λ1ν(Ttr − Θi)
)

(1 − θ)
(

(1 − ν)Ttr + νΘi

)

+ θTeq
)
)

dvdI.

So the relative entropy H(f |G) satisfies the inequality

∂

∂t
H(f |G)(t) ≤ −λ

(

H(f |G)(t) −H(f |G)(0)
)

+ h(t) − λH(f |G)(0).

According to Gronwall lemma it comes that

H(f |G)(t) ≤ h(t) −
(

1 − tλH(f |G)(0)
)

+

∫ t

0
h(s)ds

−
∫ t

0

∫ u

0
h(s)ds h(s)e−λsdu.

Hence as H(f |G)(0) ≥ 0, we get for t big enough

H(f |G)(t) ≤ h(t) +

∫ t

0
h(s)ds −

∫ t

0

∫ u

0
h(s) ds e−λsdu.

According to Lemma 5.3, h satisfies

‖h‖∞ = O(e−λ3t).

Therefore H(f |G) satisfies the estimate

H(f |G) = O(e−λ3t). (5.9)

Therefore from Czsisar-Kullback ([13]) inequality we get

2H(f |G) ≥ 1

ρ
‖f −G‖2

L1(t) (5.10)

(the factor ρ is added because of the normalization) and the estimate (5.9)
gives

‖f −G‖2
L1(t) = O(e−λ3t). (5.11)
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Moreover in order to estimate ‖G−M‖L1(t), we consider the relative entropy

H(G|M) =

∫

R3

G ln
( G

M

)

dvdI.

By using the expressions of G and M , H(G|M) has the expression

H(G|M) =

∫

G
(

ln(
(RTeq)

3

2

√

det(τ)
) +

|c|2
2RTeq

− 1

2
〈c, τ−1c〉 +

I
2

δ

R
(

1

Teq
− 1

Trel
)
)

dv.

(5.12)

The second term of (5.12) can be computed as follows

|c|2
2RTeq

− 1

2
〈c, τ−1c〉 =

3
∑

i=1

c2i
2R

( 1

Teq
− 1

τi

)

=

3
∑

i=1

c2i
2RTeqτi

(

τi − Teq

)

= O(e−λ3t).

According to the definition of Trel, Teq and of (5.5)

1

Teq
− 1

Trel
= O(e−λ3t).

In order to estimate ln(
(RTeq)

3
2√

det(τ)
), we use that θi(t) has the expression

θi(t) = Ae−λ1t +RTtr and Teq has the expression Teq = Ttr +Be−λ2t. Hence
we get

ln(
(RTeq)

3

2

√

det(τ)
) = O(e−λ3t)

Therefore

H(G|M) = O(e−λ3t).

Then from Czsisar-Kullback ([13]) inequality we get

‖G−M‖L1 = O(e−λ3t). (5.13)

And the estimates (5.11, 5.13) lead to (5.2).
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6 Numerical study.

In this section we want to illustrate theorem 5.1 by computing in the homoge-
neous case the L1-convergence to equilibrium for different types of molecular
interactions and different models -namely the BGK, the ES-BGK and the
true Boltzmann equation. Remark that it does not exists a single Boltzmann
equation for a chosen type of molecular interaction (see e.g [18, 29, 8, 15]).
Moreover solving such an equation requires to use Monte-Carlo method due
to its prohibitive deterministic computational cost [4]. For such method it
is neither possible to estimate a L1-convergence nor to compute a relative
entropy. For those reasons we shall consider only monatomic gases. Now let
us recall in this case different modelings:

1. the BGK model (we divide it by the molecular mass m as for the
Boltzmann collision operator)

RBGK =
ρ

m
(M̃(v) − f(t, v)) (6.1)

with M̃

M̃(v) =
ρ

(2πRT )3/2
exp

(

−|v − u|2
2RT

)

. (6.2)

For the sake of simplicity we still denote M̃ by M.

2. The ES-BGK model

RES−BGK =
ρRT

µ(1 − ν)

(

G− f
)

(6.3)

where G is defined by (4.2) together with the relations (2.4, 2.3, 2.6,
3.8),

3. the Boltzmann collision operator

RBE =
1

m

∫

R3×S2
+

(f ′f ′∗ − ff∗)B(θ, g)dθdεdv∗, (6.4)

with

v′ = v − n(n · g), v′∗ = v∗ − n(n · g), g = v − v∗.

n is the unit vector such that

g · n =
cos(θ)

|g|
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and the integral over the half sphere means g · n > 0. Finally B(θ, g)
is the cross section.

It is well known that the BGK operator was designed for Maxwellian molecules
that is when B(θ, g) = B(θ). Here we propose to replace this operator with

R̃BGK =
ρRT

µ
(M(v) − f(v)) (6.5)

This model will be discussed later on (see section 6.3).
We choose to compute the relaxation time for the argon (R = 208) with two
different initial data and two different cross sections. The initial data are

1. an anisotropic Gaussian function

f(0, v) = f1(v) =
ρ

(2πRT0)
3

2

exp
(

−
v2

x

2 + v2
y + 2v2

z

2RT0

)

with ρ ≃ 10−5kg/m3 and T0 = 234K. Then

u =
1

ρ

∫

f1(v) vdv = 0m/s, T =
1

3ρR

∫

|v − u|2f(v)dv = 273K.

2. the sum of two Maxwellian functions

f(0, v) = f2(v) =
ρ

2

( 1

(2πRT1)
3

2

exp(−
(vx − 400)2 + v2

y + v2
z

2RT1
)

+
1

(2πRT2)
3

2

exp(−
v2
x + v2

y + v2
z

2RT2
)
)

with T1 = 30K and T2 = 300K. Then

ux = 200m/s, uy = uz = 0m/s, T = 229.1K.

We choose to do all computations using discrete velocity models (DVM).
This enables to compute the L1-convergence and even the relative entropy
which is not possible with DSMC. For the BGK and the ES-BGK numerical
method we just use a simple Euler scheme. Recall that one can compute the
exact solution for the homogeneous Boltzmann equation and that implicit
schemes were designed by L.Mieussens ([22, 23]) for those models. The
reasons for this are one that we require accuracy in time and two because
DVM for the Boltzmann equation do not enable implicit scheme. In this case
we refer to [16, 31] for the computation of the quadratic integral collision
operator. Comparisons with other quadrature formula such as [28, 21] give
the same results. Now we are going to treat the case of Maxwellian molecules
and Hard Spheres.
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6.1 Maxwellian Molecules.

In this case the cross section in the Boltzmann collision operator depends
only on θ: B(θ, g) = β(θ). We choose to take β(θ) = cos(θ) which is well
suited for the quadrature formula ([16]). Then the viscosity can be easily
computed ([11]) and µ = 2kT . Comparing the different models it is easy to

see that a factor ρ2

m appears in (6.5, 6.3, 6.4). Hence we can define a rescaled
time with t′ = ρ

mt.
For the numerical calculations, we use 20 × 20 × 20 velocities with bounds
[−1000, 1000]3 (in m/s).
Figures 1 and 2 show the L1-convergence to equilibrium with initial data
f1 and f2. The main feature in both test cases is the exponential decay
of ‖f − M‖L1 for each model (time in logarithmic scale). First of all this
illustrates Theorem 5.1 for the ES-BGK model but it is also the result proved
in [3, 35] for the homogeneous Boltzmann equation for Maxwellian molecules
with cut-off (the velocity domain is bounded).
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Figure 1: L1-convergence to equilibrium.

Comparisons between the rates of relaxation of ||f−M||L1 and of the rel-
ative entropy H(f |M) -e.g with initial data f1, see figure 3- for the ES-BGK
and Boltzmann collision operators illustrate perfectly the Csiszàr-Küllback
inequality (5.10) and show that it is quite optimal. This is an important
tool that is used in Theorem 5.1 for the ES-BGK model. As concerns the
Boltzmann equation the same inequality is used but the essential result is
the inequality

H(Q+(f, f)) ≤ H(f) (6.6)
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Figure 2: L1-convergence to equilibrium.

for Maxwellian molecules. This result was proved by C.Villani ([34]). Again
the difference between the slopes fits perfectly with the theory.
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Figure 3: L1-convergence and relative entropy.

6.2 Hard Sphere.

In this case the cross section B is equal to σ2|(v − v∗) · n| where σ is the
molecular diameter.
In this context it is proved in [12] that the viscosity µ is given as a first
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approximation by the expression

µ =
5

16σ2

(

kmRT

π

) 1

2

=
5m

16σ2

(

RT

π

) 1

2

.

Hence

ρRT

µ
=

5

16
ρ
σ2

m
(RTπ)

1

2 .

Recall that in the hard sphere case the Boltzmann equation is given by

RBE =
σ2

m

∫

R3×S2

|(v − v∗) · n|(f ′f ′∗ − ff∗)dv∗dn. (6.7)

where n belongs to the whole unit sphere. Hence one can define the rescaled

time t′ = ρσ2

m t.
Figures 4 and 5 show the L1-convergence to equilibrium with initial data f1

and f2 in the hard-sphere case. Since there is still a cut-off, the result proved
in [3, 35] remains valid and decay of ‖f −M‖L1 in time is still exponential.
Finally figure 6 shows the the rates of relaxation of ||f −M||L1 and of the

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.0005  0.001  0.0015  0.002  0.0025  0.003  0.0035  0.004

R
et

ur
n 

to
 e

qu
ili

br
iu

m

Time

BGK
ES-BGK

HS

Figure 4: L1-convergence to equilibrium.

relative entropy H(f |M) with initial data f1. In this case the estimate (6.6)
is no longer valid but the convergence rates still show the importance of the
Csiszàr-Küllback inequality.

6.3 Discussion.

Remark that if we use the classical BGK model (6.1) we do not recover the
true viscosity. The reason for this is quite simple. Let us write the BGK
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Figure 5: L1-convergence to equilibrium.
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Figure 6: L1-convergence to equilibrium.
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model as a relaxation operator of the form

RBGK =
1

τ
(M − f)

where τ is the relaxation rate. Then using the Chapman-Engskog expansion
we remark that this relaxation rate appears only in the space derivatives and
the viscosity is given by

µ = τρRT = kT.

This viscosity is not far from that obtained with the modified BGK model
(6.5) for Maxwellian molecules: µ = 2kT . Remark however that the rate of
the L1-convergence to equilibrium obtained with the second model fits better
with the Boltzmann equation. But for other type of molecular interaction
the classical BGK model is not well adapted to any kind of computations.
With the modified BGK model one recovers the true viscosity µ though this
model suffers the same deficiency as the classical one: the Prandtl number
Pr = 5

2
Rµ
κ is equal to 1 contrarily to physical case where Pr ≃ 2

3 . Nonethe-
less the convergence slopes are approximatively of the same order as the
ES-BGK model (up to the factor 1

(1−ν) = 2
3).

Observe that the modified BGK model and the ES-BGK model are essen-
tially constructed -beside classical properties such as conservation laws and
H-theorem- so as to give the proper viscosity (and heat conduction coef-
ficient in the second case) for small Knudsen number. This means that
there convergence rates to equilibrium is connected with the behavior of the
moments

∫

f A(V ) (respectively
∫

f B(V )). It is clear for the Boltzmann
equation that the behavior of those moments is not the main factor of the
convergence rate to equilibrium except when the solution is closed to equi-
librium. In this case the analysis of the spectrum of the linearized operator
L shows the importance of those moments ([11]). But in the cases we have
chosen to treat, all convergence slopes show an important correlation with
all models and henceforth with the above moments.
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Paris 1986.

[11] C.Cercignani. The Boltzmann equation and its applications. Scottish
Academic Press, 1988, 40-103.

[12] S.Chapman-T.G.Cowling. The Mathematical Theory of non-uniform
gases. Cambridge Mathematical Library, third edition, 1970.

[13] I.Csiszár. I-divergence geometry of probability distributions and mini-
mization problems Sanov property. Ann.Probab 3, 146-158, 1975.

[14] J.F.Collet Extensive Lyapounov functionals for moment-preserving evo-
lution equations. C.R.A.S. Ser.I 334 (2002) p. 429-434.
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APPENDIX A: Proof of lemma 4.1.

For any function h ∈ L2
1 consider the function gα,β defined with

gα,β =
1

Iα,β

1

det(χ)
1

2β
δ
2

h
(

− α〈v − u, χ−1(v − u)〉 − βI
2

δ

)

with

Iα,β =
1

ρ

∫

R3×R+

1

det(χ)
1

2β
δ
2

h
(

− α〈v − u, χ−1(v − u)〉 − βI
2

δ

)

dvdI.

Then one easily see that gα,β has the same mass and momentum as f . Next,
in order to get the relation

∫

R3×R+

I
2

δ gα,β dvdI =
δ

2
ρRTrel

we put β
δ
2 = δ

2ρTrel. Check that the constraint w.r.t. |c|2

2 +I
2

δ is also satisfied.
The fourth relation of (4.1) is equivalent to

∫

R3×R+

|c|2
2
gαβdvdI =

3 + δ

2
ρRTeq −

δ

2
ρRTrel.
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χ being being symmetric definite and nonnegative such that χ = S2.

∫

R3×R+

|S c|2 h(−α |c|2 − βI
2

δ )dvdI =
tr(χ)

α
5

2

∫

R3×R+

|S c1|2 h(|c|2 − βI
2

δ )dvdI,

Iα,β =
1

ρα
3

2

∫

R3×R+

h(−|c|2 − βI
2

δ )dc.

By choosing α such that

α =
2

3

Tr(χ)

Trel

∫

R3×R+
|c1|2h(−|c|2 − βI

2

δ )dcdI
∫

R3×R+
h(−|c|2)dcdI

the fourth relation of (4.1) is obtained. Therefore Cf 6= ∅.
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