Manuscript submitted to doi:10.3934 /XX XXXXXXX
AIMS Journal

MODELLING AND NUMERICAL STUDY OF THE POLYATOMIC
BITEMPERATURE EULER SYSTEM

DENISE AREGBA-DRIOLLET

Univ. Bordeaux, CNRS, Bordeaux INP
IMB, UMR 5251, F-33400 Talence
France

STEPHANE BRULL*

Univ. Bordeaux, CNRS, Bordeaux INP
IMB, UMR 5251, F-33400 Talence
France

(Communicated by the associate editor name)

ABSTRACT. This paper is devoted to the study of the bitemperature Euler
system in a polyatomic setting. Physically, this model describes a mixture of
one species of ions and one species of electrons in the quasi-neutral regime.
We firstly derive the model starting from a kinetic polyatomic model and per-
forming next a fluid limit. This kinetic model is shown to satisfy fundamental
properties. Some exact solutions are presented. Finally, a numerical scheme
is derived and proved to coincide with an approximation designed in [3] and
extended to second order and two space dimensions in [6]. Some numerical
tests are presented.

1. Introduction. This work is devoted to the modelling and the numerical ap-
proximation of the nonconservative polyatomic bitemperature Euler system in the
context of plasma physics. Physically, this model describes the interaction of one
species of ions and one species of electrons, under the quasi-neutrality assumption.

The aim of this paper is more precisely to provide a construction and an approx-
imation of the polyatomic Euler bitemperature system. This model is constituted
of conservative equations for the mass and the momentum and two nonconservative
equations for ionic and electronic energies. It is a variant of the system consid-
ered in [23]. The nonconservativity is due to source-terms but also to the presence
of products of the velocity by pressure gradients. In Inertial Confinement Fusion
applications, high temperature solutions involve shocks, for which those noncon-
servative products have to be determined. This can be done by defining paths, as
proposed by Dal Maso, Le Floc’h and Murat ([24]). However, it is shown in [1] that
the numerical adaptation of this theory given in [36] is delicate.

In order to compute physically consistent shocks, one can use an underlying
kinetic system. This approach was usefully adopted in [3] for the monoatomic case.
The model is constituted by a kinetic system coupled with Ampere and Poisson
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equations. Moreover, this construction leads to a kinetic numerical scheme starting
from a semi-discretization in space and time of the kinetic model. A DVM approach
of this model has also been considered in [20] together with an asymptotic preserving
discretisation toward the bitemperature Euler system. However relaxation schemes
and discrete BGK schemes have been developed in the polytropic situation for a
general v law including the polyatomic case in [3], [6]. Tt seems important to consider
situations where each species has its own - constant. Note that for smooth solutions,
global in time existence has been proved under the condition that these constants
are distinct, (see [5]).

We construct in this paper an extension of the model developed in [3] to a
polyatomic setting with a continuous energy variable. This model is based on the
use of several attractors like in [15] and is shown to satisfy an H theorem. We refer
to [10], [13], [14], [19], [11], [34] for other BGK models for polyatomic gas mixtures.

In the present paper, the derivation is based again on an hydrodynamic limit
performed from an underlying polyatomic kinetic model. In the present case, the
unknowns of the kinetic equations are the distribution functions f (¢, z, v, I) depend-
ing on time ¢, space z, velocity v and of one-dimensional internal energy parameter
I > 0. This energy parameter collects vibrational and rotational energies. Ki-
netic models with continuous energy variables have been introduced in [16] where
the motivation was to develop a Monte-Carlo method. In [17], the authors de-
rived a mesoscopic model of Boltzmann type associated to the previous microscopic
model. This collision operator satisfies fundamental properties (H theorem, ...).
The generalization to mixtures has been performed in [26]. In [9], a compressible
Navier-Stokes model has been derived for mixture of monoatomic and polyatomic
gases. For some applications of such models we refer to [35], [38], [29]. In [35] the
authors analyse the shock wave structure of some polyatomic gases. So by using an
ESBGK model ([2], [21]) they show the presence of a double layer structure that
is specific to the polyatomic setting. We mention that in [27], [30], the authors
develop polyatomic models with a discrete internal energy variable.

As observed in [37], [3], it is possible to find an underlying kinetic model where
the force term is related to the nonconservative terms. One advantage of the kinetic
model, is its conservative form. In the present paper, the kinetic model describing
the interspecies interaction is a two component polyatomic BGK model based on
one continuous internal energy variable coupled with Ampere and Poisson equations.
Hence starting from a standard semi-discretization of this model, the hydrodynamic
limit leads to a numerical scheme for the bitemperature model. It must be noted
that the obtained scheme is the same as the one obtained in section 3.2 of [3]. In
this article however the scheme was obtained by a very different method involving
models developed in [7] which are not based on a physically realistic kinetic approx-
imation of the equations. The novelty here is that our polyatomic BGK model gives
a physical justification to it in the general case where v, and +; may be distinct.
In [4] diffusive terms have been constructed from a Chapman-Enskog expansion up
to order 1 leading to a Navier-Stokes type model. This last model generalizes the
model that is studied in [22]. In [31], the authors perform a Chapman-Enskog ex-
pansion by introducing a small parameter representing the ratio between electronic
and ionic molecular masses. They obtain an hyperbolic system with a parabolic
regularisation on the electrons. The structure of shock wave solutions for this last
model is considered in [39].
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The plan of the paper is the following. Section 2 deals with the presentation
of the different models that are used in this paper. In particular, we detail the
eigenstructure of the bitemperature system. In section 3, the fluid model is obtained
starting from the polyatomic model. In section 4 exact solutions for the model are
computed and in section 5, the numerical scheme is developed. The last part is
devoted to some numerical tests in 1D and 2D configurations.

2. The mathematical models.
2.1. The bitemperature Euler system.

2.1.1. The fluid model. The bitemperature Euler system reads
Op + 0z(pu) =0,
i (pu) + 0u(pu® + pe +pi) = 0,
NEe + Oz (u(&e + pe)) — u(ciOzpe — ceOupi) = Vei(Ti — Te),
KE; + 0y (w(&; + pi)) + u(ciOupe — ceOupi) = —vei(T; — Te),

(1)

where p > 0 represents the total density of the plasma, u is the average velocity
of the plasma, & and &; are the total electronic and ionic energies. T, and T;
represent the electronic and ionic temperatures. The coefficient v.; is nonnegative.
The physically realistic formulas which are given in [33] make the source term very
stiff.

One has

p = pe+pi (2)
where pe = neme, p; = ny;m; are electronic and ionic densities, electronic and ionic
concentrations n. and n; being assumed to be linked by Z = n./n; > 1. Z is

considered as constant. This situation corresponds to the quasi-neutral regime. m,
and m; represent the electronic and ionic masses. The mass fractions

c/g:p—ﬁ, B=e,i (3)

are then constant and ¢, and ¢; are given by

ZMe

Co= —r—
m; + Zm,’

C; = 1-— Ce. (4)
The total energies are linked to the internal electronic and ionic energies by

1 .
Es = ppep + §p5u2, B €{e,i}.

The electronic and ionic pressures and temperatures are related by p. = n kT,
and p; = n;kpT;. The electronic and ionic internal energies are then given by
kg kg
ce=——"+"—1Te, ei=—""F-7—T;

(Ve — D)me (vi — 1)m;

where 7., € [1,3], and kp is the Boltzmann constant.

In the following we denote U = (p, pu, &, E;), Ug = (pg, psu, Es).
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2.1.2. Hyperbolicity and characteristic fields. We complete here the calculations
presented in [5]. The system is rewritten by using the variables V = (p,u, €., £;):

Oip + udyp + pOzu = 0,
Oyu + udyu + p_la,,(pe +0)0up 4 p 0e.DeOre 4+ p L0z, piOuei = 0,

Oree + udyee + p, ' pedou = p; 'wei(Ti — To), )
Orei + udpe; + p; ' pidau = p; wei(T. — To).
The matrix of the system (5) writes
0 P 0 0
AV) =ulit | P (%%96 +pi) p.;?pe p %epe p gsipi )
0 p; ' pi 0 0
We get 4 eigenvalues
AM=u—a, l=Xl3=u, M=u-+ta,
where
a= [ (s — egep. (7)

B=e,i

The value of a given by (7) corresponds to the global sound velocity which yields
for the classical Euler system /vp/p. The eigenvectors associated to the eigenvalue
u are equal to

0 —p

T2 = 0 , T3 = 0
—(vi — Ve €e

(76 - ]-)Ce Ei

This system is then hyperbolic diagonalisable. The fields 2 and 3 are linearly de-
generate. Consider now the fields 1 and 4. The eigenvectors are

—p p
—(ve — Dee ’ 1”4(V) - (7e — 1)ee
—(vi — Dei (7i — ey

T1 (V) -

and

AL (V) (V) = Ay(V) - ra(V) = % Y (s — D3+ Deges) > 0. (8)
B=e,i

Hence the fields 1 and 4 are genuinely nonlinear.

2.2. The kinetic model. In this section, we generalize the BGK model considered
in [3] to a polyatomic setting with a continuous energy variable. We firstly precise
the notations and next introduce the BGK model that is proved to satisfy the right
conservation properties and an H theorem.
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2.2.1. Notations. Kinetic models for a mixture of two polyatomic gases are de-
scribed by two distribution functions fs of species 3 depending on time ¢t € RY,
space = € R3, velocity v € R and on internal energy I € R..
Hydrodynamic quantities of species 8 are defined for ag > 0 by
1

ng = / fol® dvdl,  ug=— vfsl® dvdl,
R3 xR ng JR3xR,

2
&5 = / (mg—e + 1) f5 % dvdl,
R3xR4 2

and
1, 5 .
Es = 5PBUB + 3 +ag | ngkgls, B=e,i.
Velocities and temperatures of the mixture u and T are defined by
1
u = ;(peue + pivi), 9)
T (5 + ac)nekpTe + (5 + ai)nikpTi + §peul + 3piu; — %PUZ. (10)
(3 + ac)neks + (3 + a;)nikp
The parameters a, and «; are related to v, and 7; by the formula ([26])
1 1
’YS g + ae ’yl % + az
For example in the diatomic case, we have a, = a; = 0. The values a, = o; = —1

correspond to v, = 7; = 5/3 which is a monoatomic mixture.
Define the entropy of the mixture by

Moo fO = Halh) + Wl ), with Ha(f) = [ (fatn(f) = f)1° doal
xRy
(11)
and the entropy flux by
(I)(fev fz) = (Ds(fe) + (I)s(fi)v with q)s(fﬁ) = /1%3 " v(fﬁ ln(fﬁ) - fﬁ)laﬁ dvdl.
X4
(12)
2.2.2. A polyatomic BGK model. In this section we consider the following kinetic
model for 3 € {e; i},
O fs(t,z,v,I) + v-Vyfs(t,z,v,I)+ %E -V fa(t,z,v,1)
B

1 1 —
= %(Mﬁ*fﬁ(t,if,’(),]))‘i’%(M/B(fe,fl)*fﬂ(t,a?,’l],])),
(13)
with
My = ng 1 oxp (v—wp)® T , (14)

(2m i Tg)2 Qp(Th) 2kpat kpTh

E— N ng 1 _(vfu#)2_ I
Mg(fe, fi) = (or e )8 Q,g(T#)eXp< TP kpTF ) (15)
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where

+o00 I
Qs(T) = / I exp(———=)dI, ag>0.

As suggested in [32] and developed in [3] the definition of u# and T# as
# %ﬁpeue + ipzuz

u” = (16)
.,-11 Pe + %pl

and

T# - .,_1’. (% + ae)nekBTe + T%e(g + az)nszTz
(5 + ae)nekp + (5 + cwi)nikp

(17)
1 7opeu + fopiui — (o pe + 7opi) (u?)?
2 }H(g + ae)nekp + i(% + ai)nikp

gives the conservations of impulsion and total energy for the model (13, 14, 15).

These definitions allow in particular to consider a model such that the molecular

mass ratios of the species are different. This situation corresponds to the case

Tei 7é Tie-

The model (13, 14, 15, 16, 17) is coupled to Ampere and Poisson equations
through the electric field F as

J
E=-=> 1
at 507 ( 8)
v, E=" (19)
€0

J represents the plama current, p the total charge and gq is the permittivity. j and
p are defined by

p = / (qefejae + qifijal) dvdl = Nede + NiGi, (20)
]R3><R+

J / V(gefel™ + qi fil ™) dvd] = neqeue + niqiu;. (21)
R3xR4

When one of the two components is monoatomic the model has to be slightly modi-

fied. In [8], the authors study for moments systems the link beween polyatomic and

monoatomic models. The connexion between monoatomic and polyatomic models

can be made by passing to the limit in some parameters. When the two components

are monoatomic we refer to [3].

In the case of one monoatomic component and one polyatomic component the
model has to be clearly written. Consider for example that electrons are monoatomic
whereas ions remain polyatomic. In that case, the model is described with the dis-
tributions f.(¢,z,v) and f;(t,x,v,I). In that case, the model reads

Ocfe(t,z,v) +v-Vyfe(t,x,v) + %E -V fe(t,z,v)
‘ . (22)
= Tl (Me — fe(t,z,v)) + Ti (Me(feafi) - fe(tax’v)) )
Ofi(t,z,v, 1)+ v -V fi(t,z,v, 1)+ %E Vo filt,z,v,1)
' (23)

= = (Mo il 0, 1) + — (Milfer f) — filtsm,0,7))
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with
Ne (v —u,)?
M, = ———— - |, 24
(2rkeT,)} eXp( 2kp 2L ) (24)
- B Ne (v —u#)?
Mc(fe, fi) = Wexp <—w>- (25)

The hydrodynamic quantities of the monoatomic species are computed as

1 2
Ne = fedv, ue= vfedv, & :/ meU fedv.
R3 Ne JRr3 R3 2

The total impulsion pu and the total energy £ for the system reads

pu = / mev fo dv + / myv f; 1% dvdl,
R3 R3XR
02

2
E= [ mL fodv+ / (ms =+ 1) f;1% dudl.
2 R3 xRy

- 2
In that case u* is given by (16) and T# becomes

- :%%n;;kBTe + %(g + ag)nkpT;
3nckp + - (3 + ai)nikp

| Lrpeut + mopiid — (aope + 7op0) (W)’

S T S

Tie

(26)

As previously, u# and T# are defined in such a way that the conservation of im-
pulsion and total energy are satisfied. M; and M;(fe, f;) are given by (14, 15).
In the present case the definitions of j and p given in (20, 21) become

/ Gofodv + / G I dvdl,
R3 R3xR

j o= / vqefedv+/ v f; 1% dvdI
R3 R3XR

and the electric field is still given by (18, 19). For the sake of conciseness, we
continue the presentation only for a two polyatomic species mixture. However, the
following steps can be easily adapted when one of the components is monoatomic.

7

2.2.3. Properties of the model.

Proposition 1. The model (13, 14, 15, 16, 17) conserves the mass per species, the
total impulsion and the total energy.

The proof is straighforward and based as in [3] on the definition of the fictitious
quantities (16, 17).
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Theorem 2.1. The model (13, 14, 15, 16, 17) satisfies an H theorem. The model
satisfies the entropic inequality

Tl (Me(fe) - fe)ln(fe) 1% dodl + l (Ml(fz) _ fl) ln(fi) 1% dodl
e JRIxRy Ti JRIXR,
+7_i (ﬂe(f&fi) 7fe)1n(fe) Iac d’l}d]
et JR3 xR,
+ = (Mi(fe, fi) — fi)In(fi) 1% dvdI < 0.

Tie JR3 xR,

The equality holds in the above equation if and only if there exists (ne,ni, u, T) €
R%r x R® x R, such that

ng 1 (v—u)? I _
M = 3 5, T 7 7> sy
o (%ﬁgﬂ2QdTYﬂp< 2hp L kT pelad

An important feature of the polyatomic model (13, 14, 15, 16, 17) is that it
satisfies an entropy dissipation property that is compatible with the macroscopic
one. The entropy dissipation property has already been obtained in [3] for the
system (1), starting directly from the fluid system. In the present case, we are
able to show that the entropy of the system (1) is compatible with the Boltzmann
entropy, see subsection 3.3.

3. Construction of the fluid model.

3.1. Scaling on the one dimensional BGK model. Suppose that the system
(13, 14, 15, 16, 17) is space homogeneous in two directions. So we assume that
the system is even in vy and vs. Hence, the distribution function fg of species 3
depends on time t € Ry, space x € R, velocity v = (v1,v2,v3) and on the energy
variable I € R,. The model (13, 14, 15, 16, 17) can be rewritten in this case

1 __
Oufs + 0dus + B Sy = My~ Jy) + (M~ fo), B0

mg
&E:—é, (27)
p
8xE = 572’

where ¢ is a nonnegative parameter proportional to the Knudsen number. In that
case, Maxwellian distributions (14, 15) become

ng 1 (v1 —ug)? +v3 +vj I

Mg = exp | — — , 28
? (QW%iﬂb)% Q5(Tp) P ngg%, kpTs (28)
#\2 2 2
ng 1 (v1 —uj)? +v3 +v3 I
M e Ji) = ex — — 29
plfe, 52 wgwﬁ%@ﬂp< 2y 7 kpt# )

where u# and T# are defined in (16) and (17).
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3.2. Hydrodynamic limit.

Proposition 2. The system (27, 28, 29, 16, 17) converges formally to the noncon-
servative bitemperature Fuler system where E is given by generalized Ohm’s law
1 1 Neq n;q;
—Oupe — —Oupi = ("t Mp o P g B= L ngE  (30)
Pe Pi Pe Pi PepPi PePi

and
o kB(g +ae)(% +ai)neni (31)
Tie(g + e)ne + Tm‘(g +ag)n;

Vei

Proof. Performing a Chapman-Enskog expansion, it comes that each component of
the species is expanded as

fa=Mpg+egs, Bee i} (32)
so that
/ g3 I1%% dvdl =0, / v1 gg I*? dvdl = 0, (33)
R3XR4 R3 xR}

1
/ (=mpv? + I)ggI*® dvdl = 0. (34)

R3XR4 2
Moreover, Gauss equation in (27) implies that n;¢; = —neq. + O(e2). So, n. =

Zn; + O(e?). Ampere equation then gives u, = u; + O(e?) = u. Plugging (32) into
the first equation of (27) leads to

1 —
Mg + v10:Mps + L EO, Mg = —gs + — (Ms — Mg) + O(e) (35)
mp 736

for {8 6} € {e;i}, B #0.

Mass conservation equation is obtained by integrating w.r.t v and I. The equa-
tion of the conservation of the impulsion is then recovered by taking the second
moment of (35). Moreover, proceeding as in [3], we get Ohm’s law (30). Next the
energy equation on the electrons writes

1
/ (O Me + 010, M) (=mev? 4+ I)I% dvdl
R3xR4 2

1
+ / % 5o, M, (mev® + I)I% dvdl
R3xRy Mg 2
1 _ 1
- (Mo — M,) (§mEU2 + I)I% dvdl.

Tei JR3XR,

Moreover a direct computation gives
— 1 5
/ (Mo — M.) (zmev® 4+ 1) I% dvd] = (= + ae)nkp(T? —T.).
RS xRy 2 2
So, according to the relation (10) defining T', we get
— 1
/ (Mo — M,) (zmev® + 1) 1% dvdl
RS xR 2

5 5
5t ae)ne (5 +a;)n;
= 22 e)ne (5 52) ——kp(Ti —T.)
Tie(5 + Qe)Ne + Tei(5 4 ai)n;

and v,; is given by (31). O
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3.3. Entropy dissipation. As proved in [3], the system (1) owns a dissipative
entropy-entropy flux pair

n="ne+m, Q=un (36)
where
PB (v8 — Dppes :
ng = — In +C|, B=el. 37
P ms(hs - 1) [ ( g (7

Here, C' is a nonegative constant. With the same method as in [3] we can prove

Theorem 3.1. Let (n,Q) be defined by (36)-(37). n is a strictly conver dissipative
entropy for system (1) and Q is the related entropy fluz. More precisely, any smooth
solution of the system satisfies the following equality:

On(td) +0:QU) =~z (T~ 1) (39)

If U is a weak solution of system (1) obtained as the hydrodynamic limit of the
kinetic model, then it satisfies the following inequality

Vei 2
atn(u) =+ 81@(“) S —m(Ti - Te) . (39)

As in [3], the inequality (39) is obtained by using the proof of the H theorem
(Theorem 2.1).

4. Some exact solutions. We compute contact discontinuities and rarefaction
waves for system (1) in the homogeneous case v.; = 0. As u is a double eigenvalue
we have contact discontinuities of two kinds. Moreover the computation of the
rarefaction waves is different from the one for the classical Euler system.

4.1. Contact discontinuities. A contact discontinuity is a weak solution U =
(p, pu, Ee, E;) of (1) such that u is a constant and
pr if x < ut, &1 if x < ut,

& t) = . =e,i.
8(@, Eppif x > ut €t

t) =
plz1) prif £ > ut

Here, pr., pr, €8,1., £3,r are constant. In that case the homogeneous system related
to (1) can be written under the conservative form:

Oep + Oz (pu) = 0,
Oy (pu) + 95 (pu® + pe +pi) =0,
hEe + 0 (u(Ee + ce(pe +pi))) =0,
KEi + 0z (w(&; + ci(pe +pi))) = 0.
Rankine-Hugoniot jump conditions are
[u] =0, [pe+pi] =0.

One can realize those conditions by taking [p] = 0 or not. In the first case, nontrivial
contact discontinuities are obtained with nonequal left and right values of the ionic
and electronic pressures. This case is specific to the bitemperature model. The case
[p] # 0 appears also in contact discontinuities for the 3 x 3 monotemperature Euler
system.

For contact discontinuities there is no entropy dissipation:

D) + 2.Q(U) = 0.
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4.2. Rarefaction waves. A rarefaction wave is a selfsimilar continuous, piecewise
C? solution of (1) with v,; = 0. As we look for a smooth solution, we may use the
variable V = (p,u,¢e.,&;). The rarefaction waves are given by solutions V(z,t) =

W (%) of the homogeneous system related to (5) that is, denoting y = z/t:

{=yI + AW ()} W' (y) =0 (41)

where A is given by (6). Rarefaction waves are closely related to the integral curves
of the eigenvectors of A, as soon as the fields are genuinely nonlinear, see [18] for
example. Let us consider the eigenvalue Ay = u + a with a given by (7), with the
eigenvector r4 satisfying (8). We solve the ODS

(&) = ra(®(€)), @(0) =Wr.

We set Wgr = ®(&) with & > 0 and ¥(&) = A, (P(&)). ¥ is an increasing monotone
function. We set

Wr, sty < )‘+(WL)7
W(y) = |®(¥7H(y) if A(Wi) <y <A (Wr),
Wr sty > Ay (Wg).
We have W € C°(R) and (41). Hence we have to solve for & > 0:
p'(&)  =p(8),
u'(§)  =a(§), (p(0),u(0),¢(0),£:(0)) = Wr..
ep(€) =15 —Des(§), B=e,i.
We find
p(E)  =pret,
W (€) Z\/ZVB('W _ 1)Cﬁgﬁ’Le(7afl)£’ (42)
B
e5(€) :€B7Le(%—1)§7 B=e,i.
As

(vs — Dmg

T = ko

ep and  pg = (v — D)pseg,
we have also:
Ts(€) = Tp,.e D8 et pg(€) = ps,re?, B =e,i.

If v; # 7. we cannot parametrize the rarefaction curves by the pressure as one does
for the monotemperature Euler system. Hence from (42), the rarefaction curves can
be parametrized as follows

Y1
P P
=In(— |, eg=¢ .
¢ <PL) gk (PL)

Y1
p
T =T, — .
S (PL)

We retrieve the fact that pr > pr,. We have also pg > pg 1, and the specific entropy
by species is constant. It is defined by

bs
Ps

So
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For all &:

5p(&) = Sp(0), B=e,i
hence

Sg,. =S8,r, B =e,i.

5. Numerical approximation. In this section we derive a numerical scheme
starting from a semi-discretization of the kinetic model. In [3], this approach has
been developed for a monoatomic gas mixture. We follow the lines of [3] and ob-
tain the scheme for the polyatomic case. For the sake of completeness we give the
details.

First we recall that for Pg defined by

mg

Ps(fs) = / mgvr | £ 1 dvdl (43)
R3xRy (mg +1)
one has
Ps(fg) =Ug;, Ps(viMp(Ug;)) = Fs(Ug ), (44)

where Fj is the flux of 3 x 3 Euler equations with g pressure law.

The spatial discretisation is defined by the step Az and the cells C} :]xj;% s Tjy1 [.
We consider that Ax is constant whereas the time step At: tg =0, t41 = t, + At
can be variable.

We use a finite volume approach: for any unknown V(z,t), we look for the
approximation V" of the average of V' at time ¢,, on the cell C;. Suppose that U™
is known (n > 0).

First step. For § = e,i we set

pg,j = CBP? (45)

and U[{j. = (b5 j+Pp U7+ Ep,g)- fo (v, 1), f*(v,I) are computed by projection on the
maxwellian states:

Vj, fg,j(val) = Mﬁ(Ug,j7v7I)7 B = 6, Z (46)

Second step. We solve the transport equations 0;fz + v10.fs = 0 by using a
numerical flux hg ;41 (v, 1) = hg(f3,;(v,1), f3,j4+1(v,1),v,I). Here we choose the
HLL type flux
Ao A1 A1Ag

h I) = —_— I)— I I)— I

g ) = o (520D = 200D+ 25 a0 D) - f(0 ),

(47)

where A; <0 < Ay are distinct real constants to be fixed. We set for all (v, 1)

At (., .
(P jas 0 D) =BG, s (0.D)).

nt3 n
f,@,j (UaI) = fﬂ,j(v7l) - E
Remark 1. This scheme is stable for A\; < v; < Ay and appropriate CFL condition.
As we are going to integrate this formula w.r.t. v; € R, we have no chance to prove
stability at this level. The resulting macroscopic scheme owns however stability
properties that can be proven by a different way, as we shall show at the end of this
section.




POLYATOMIC BITEMPERATURE EULER SYSTEM 13

We apply P on fe, P; on f;, and obtain U, +2 and Un+2.

n+%
ot = mash = | s
g —ABUg; )= | pgy i‘m

gﬁj

Denoting for 8 = e,
Fg i1 =7FpUs;,Usjs1),  Fp(Us, V) = Pg(hp(Mp(Us), Mp(Vs),")), (48)
we have by using (44), (46) and (47)

Ao A1 A1 g
Fs(Up: V) = 1 FpUs) — 5 F6(Ve) + 5 (VE Us),
Ao — A1 Ao — A1
and A
n+ n t n n
Ug;® =Us; - Az (F B.i+3 —Fgm %)'
Hence Uﬁ+2 is computed by the HLL scheme (A < 0 < A2).

Remark 2. We could have chosen the upwind scheme to approximate the transport
equations, but it is more difficult to integrate the formulas w.r.t. vy in this case,
because the numerical flux depends on the sign of vy.

It is easy to prove the following result.

Proposition 3. For f =e,i

1 1

+ +
Pos” =o; (49)
where p is defined in (2).

Third step. We take into account the force terms and the source terms. For all
JEZ, a,pB € {ei} and B # «, we define

fistoun = 5t - s mnv st S (1 ) - 1557

(50)
and 5
n +32
Uﬁ,erl (fgd ‘- (51)
One obtains the following equations for § = e, :
+
Phy =csp;
At Atq
n+1 n+1 _n n mn mn B rn+1 n+1
Poi Us5  =PBUBS T AL (Fﬁg+2,2 FB,J‘—%,Q)_ g i P
n+1 _on mn mn
€55 =€5i~ Ay (F Bj+1.3 F,j—%,:ﬁ)
n+1 n+1Atqﬁ n+1 et m—+1 n—+1 /
— B ug; Ty 07 + AT = Tg5), B # 6.

Subsequently, it is necessary to ensure that the quasineutrality constraints are sat-
isfied, which correspond to Maxwell-Gauss and Maxwell-Ampeére equations in the
limit € — O:

k n+1 qi nt1 qie n+l, n+1 & nt+l, n+l _

moPes TP =0 mpeg ey ey vy =0,
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1
By proposition 3 the first condition is satisfied and p"+1 = p?JrQ The second
condition is equivalent to u"jl = u"Jfl = u?“ As a consequence if U"+1 =
(p"“,pg1Jr1 u ! 5"“ E"H) then U"+1 and U"+1 satisfy (45), so our notatlon

is consistent. By applylng these propertles to (5 ) for 8 = e, i, one gets:

c n+1 n+1 —c ﬂu'r; _ At mn _ Fn At de En+1 n+l
elj Uy ePity = Ay Feg+s2 ™ Fej—12 e Pej
c n+1 TL+1 c n n o At n Fz ,n . At qi En+1 n+1
Py Uy TGty T oA \Migrde T o1 m; 4 P

Hence, by multiplying the first equation by ¢; and the second equation by c., and
then by substracting one to the other, one obtains, analoguously to the continuous
case, the discrete generalized Ohm law:

nt+l 4 nt1 _ nt1 Qe nt1 _
E p 1,7 E Me p - ( J+2 1)7
where
;L+% = CZFe 1. + ceFl"]+272 (53)

Finally, defining F' Jau by
Fe,j+%,1 + F’L ]+

we get a scheme that is consistent with the Euler system (1):

Proposition 4. For anyn >0 if U™ = {U}I}jez is the approzimate solution of the
system (1) at time t,, we set

Ug,j = (cspcapfug &), B =e,i. (55)
The kinetic flur hg is defined by (A7). The numerical fluzes Fg; 1, 6;,1 and

Fj 1 are then defined by (48), (53), (54). The approzimate solution at time tn41

1s defined by the implicit scheme
p'Jrl = pj (F 1 1 F 1 ) [}

J A.’[} J—3.1
n+1 n+1 n, n A Fn _ "
Pj TP T Ay P2 T Hi-t2)o
At At
+1 _ +1
Eoi =i Ay (Fenj—&-z,S Fois 3) 4 A (‘%% - 5?—%) (56)

+ Atvey (T = T2,

At At
n+l _ n+1
& =E&— Ax (F:j+%,3 - Fi?j—%,i%) +uy Az (5;1% - 6?—%)

— Atve (T =T,

Remark 3. The scheme is implicit but easy to implement because the first two
equations of (56) give p?“ and u;”l explicitly and the two last equations can be

expressed as a linear 2 x 2 system for the unknown T, T;.

This numerical scheme is the same as the one obtained in section 3.2 of [3] and
for which a second order two-dimensional extension is presented in [6], (A1 A2 < 0).
However, in these two articles, the scheme was obtained by a very different method
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involving models developed in [7]. Those models are formally like discrete BGK
equations but are not based on a physically realistic kinetic representation of the
equations. The novelty here is that our polyatomic BGK model gives a physical
justification to it, including the case 7, # ;.

We recall that stability and entropy properties where proved in these references.
In particular, a discrete entropy inequality holds under appropriate choices of A; and
A2 and a CFL condition using the sound velocity of each species. These theoritical
conditions give rise however to too much numerical diffusion. We replace them by
using the global sound velocity defined in (7) (see [6]):

At

A1 <min(u — a) < max(u+a) < A2, max(|A1], |)\2|)A—
x

<1. (57

6. Numerical results. As pointed out in section 5, the presented scheme has
already been tested in [3] and [6]. The aim of this section is to investigate more
precisely the polyatomic case with two tests where v, = g and v; = % We make
use of the second order extension in space and time with affine reconstruction and
Heun scheme developed in [6].

6.1. Double rarefaction. We solve the bitemperature Euler system with the fol-
lowing Riemann data, whose orders of magnitude are those encountered in physical
situations:
p— =1, P+ = pP—, u— = —10000, Ut = —U_,
T.-=23x10", T..=T.,_, T,-=23x10° T,,="T,_.

We set Z = 1 and a final computation time ¢ = 4.0901 x 10~7 sec. The numerical
simulations are performed on the interval [0, 1] with 2000 cells. The values of A\
and A are computed at every time-step with the condition (57). We set ve; = 0 so
that the solution consists of two rarefaction waves propagating to left and right, the
contact discontinuity being trivial. In order to determine the analytical solution,
denoting (p, u, €., &;) the intermediate state, one has to find £ > 0 such that:

p=piet
3 3
u=u_ +/ a(s)ds = uy — / a(s)ds
0 0
eg=e P Vs, B=e,i,

with
1/2

a(s) = Z’}/ﬁ(’ﬂ; - 1)05557167(’”371)5
B
Hence we find numerically £ > 0 such that

Ug = /05 a(s)ds.

The numerical results are depicted in Figures 1 and 2. We compare the exact and
computed results for density, velocity and temperatures. As already observed in [3]
for 7. = v; = 5/3, a peak of ionic temperature happens at x = 1/2. This peak is
similar as the one observed classically for the monotemperature 3 x 3 Euler system.
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FIGURE 1. Double rarefaction. Left: density. Right: velocity.
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FiGURE 2. Double rarefaction. Left: electronic temperature.
Right : ionic temperature.

6.2. Two dimensional implosion. In this test case, we consider an implosion
problem, introduced in [28] in the monoatomic case 7. = v; = g We compared
our approach with the conservative one of this paper in [6]. Here we set v, = %
and y; = % and keep the other parameters unchanged, that is: the physical domain
is the square [—1, 1] x [—1,1]. Initial data for this Riemann problem is as follows:
p=1kgm™3 u=0ms"! and temperatures are given by:

)

|

T¢(x1,22,0) = 2,3 x 10°K, T%(z1,22,0) = 1.7406 x 10°K  if (x1)? + (22)% <
T(x1,72,0) = 2,3 x 10°K, T'(x1,29,0) = 1.7406 x 10°K  otherwise.

The relaxation frequency v,; is chosen realistically, according to the formulae given
by the NRL formulary [33]. Due to stiffness of the source term one has T, = T;
very quickly.

Thanks to symmetry properties of the problem, it is only necessary to solve it
on the quarter domain [0, 1] x [0, 1], equipped with suitable boundary conditions.

On Figure 3, are given the isovalues of the total density and of the electronic
temperature at time ¢t = 4.0901 x10~7 sec. We can see that the qualitative behaviour
is the same as in the monoatomic case, see Figure 7 of [6]. Here also one can observe
a shock propagating towards the center of the domain, a contact discontinuity, and
a rarefaction wave propagating to the exterior. However the values of densities and
temperatures are different.

When the shock front reaches the center, a peak of density occurs. This peak
occurs at time ¢t = 8.798 x 10~ "sec. in the monoatomic case, while it occurs here
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FIGURE 3. Total density (left) and electronic temperature (right)
at time ¢ = 4.0901 x 10~ "s for an implosion test case with v,; given
by the NRL formulary with a grid of 500 by 500 points.

T T
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FIGURE 4. Implosion test case with v,; given by the NRL for-
mulary with a grid of 500 by 500 points. Density along the first
bisector at 4 different times: the peak occurs for t = 9.2 x 10~ "sec.

at time ¢t = 9.2 x 10~ "sec., see Figure 4. The temperatures are also maximal at the
center when this peak occurs, as shown in Figure 5.
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