Two compressible immiscible fluids in porous media: The case where the porosity depends on the pressure.

Stéphane Brull*

Abstract

Consider a model of flow of two compressible or incompressible and immiscible phases in a three dimensional porous media. The existence of a weak solution is obtained for two compressible immiscible fluids when the porosity depends on the global pressure and on the space variable.

*ANLA, University of Toulon, avenue de l'université, 83957 La Garde, France.
Key words: porous media, compressible.
AMS Subject Classfication: 35K57, 35K55, 92D30

1 Introduction and presentation of the model

As a mathematical point of view, the study of the immiscible flow models has been investigated in ([1], [2]). In ([2]), the study is performed by using the global pressure. By this approach, the models are described with one pressure variable and several saturation variables.
The case of two incompressible phases has been investigated in ([1], [2], [4], $[8])$. In ([10]), the authors consider the case of a mixture of a compressible phase and of a incompressible phase when the porosity is independant of the global pressure. The case of two compressible phases had been performed in ([11]) when the porosity is independent of the global pressure. In ([3]), the authors proved the existence of a weak solution for two incompressible immiscible fluids when the porosity depends on the global pressure. Here,
we obtain the existence of a solution in the situation of two compressible fluids when the porosity depends on the global pressure and on the space variable.
The equations describing the immiscible displacement of two compressible fluids are given by

$$
\begin{equation*}
\partial_{t}\left(\phi \rho_{i} s_{i}\right)(t, x)+\operatorname{div}\left(\rho_{i} \mathbf{V}_{i}\right)(t, x)+\rho_{i} s_{i} f_{P}(t, x)=\rho_{i} s_{i}^{I} f_{I}(t, x), i=1,2,(\tag{1.1}
\end{equation*}
$$

where ϕ is the porosity of the medium. ρ_{i} and s_{i} are respectively the density and the saturation of the $i^{\text {th }}$ fluid. The velocity \mathbf{V}_{i} of each fluid is given by the Darcy law

$$
\mathbf{V}_{i}(t, x)=-\mathbf{K}(x) \frac{k_{i}\left(s_{i}(t, x)\right)}{\mu_{i}} \nabla p_{i}(t, x), \quad i=1,2,
$$

where \mathbf{K} is the permeability tensor of the porous medium, k_{i} the relative permeability of the $i^{\text {th }}$ phase, μ_{i} the constant i-phase's viscosity and p_{i} the i-phase's pressure. The effect of the gravity is neglected. The functions f_{I} and f_{P} are respectively the injection and production terms. By definition of saturations

$$
\begin{equation*}
s_{1}(t, x)+s_{2}(t, x)=1 . \tag{1.2}
\end{equation*}
$$

Consider the capillary pressure p_{12} defined by

$$
\begin{equation*}
p_{12}\left(s_{1}(t, x)\right)=p_{1}(t, x)-p_{2}(t, x) . \tag{1.3}
\end{equation*}
$$

Denote that the function $s \mapsto p_{1,2}(s)$ is nondecreasing $\left(\frac{p_{1,2}}{d s}(s) \geq 0\right.$ for all $s \in[0,1])$.
Therefore the unknown of the problem are the saturation of the first specy and the global pressure.
Consider now the i phase's mobility, $M_{i}\left(s_{i}\right)$, the total mobility $M\left(s_{1}\right)$ and the total velocity by the expressions

$$
\begin{equation*}
M_{i}\left(s_{i}\right)=\frac{k_{i}\left(s_{i}\right)}{\mu_{i}}, M\left(s_{1}\right)=M_{1}\left(s_{1}\right)+M_{2}\left(1-s_{1}\right), V=V_{1}+V_{2} . \tag{1.4}
\end{equation*}
$$

As in $[10,11,2]$, the total velocity can be expressed in terms of p_{2} and p_{12} as follows

$$
\mathbf{V}(t, x)=-\mathbf{K}(x) M\left(s_{1}\right)\left(\nabla p_{2}(t, x)+\frac{M_{1}\left(s_{1}\right)}{M\left(s_{1}\right)} \nabla p_{12}\left(s_{1}\right)\right) .
$$

By defining a function $\tilde{p}\left(s_{1}\right)$ such that $\frac{d \tilde{p}}{d s}\left(s_{1}\right)=\frac{M_{1}\left(s_{1}\right)}{M\left(s_{1}\right)} \frac{d p_{12}}{d s}\left(s_{1}\right)$, the global pressure p writes $p=p_{2}+\tilde{p}$. As in [2], V satisfies the relation

$$
\mathbf{V}(t, x)=-\mathbf{K}(t, x) M\left(s_{1}\right) \nabla p(t, x)
$$

So the expression of each phase velocity is given by

$$
\begin{equation*}
\mathbf{V}_{i}=-\mathbf{K} M_{i}\left(s_{i}\right) \nabla p-\mathbf{K} \alpha\left(s_{1}\right) \nabla s_{i} \tag{1.5}
\end{equation*}
$$

where

$$
\alpha\left(s_{1}\right)=\frac{M_{1}\left(s_{1}\right) M_{2}\left(s_{1}\right)}{M\left(s_{1}\right)} \frac{d p_{12}}{d s}\left(s_{1}\right) \geq 0
$$

The density depends on the pressure of the respective fluid and the porosity depends on the space variable and on the pressure. Suppose that the density and the porosity depend only on the global pressure p. This assumption is valid if the capillary pressure p_{12} is low compared to the pressure of the gases p_{1} and p_{2}. So we can assume that $\rho_{i}=\rho_{i}(p)$ and $\phi=\phi(x, p)$.
By taking (1.5) into account, the system (1.1, 1.5) can be transformed into

$$
\begin{align*}
\left.\partial_{t}\left(\phi \rho_{i} s_{i}\right)(t, x)-\operatorname{div}\left(\mathbf{K} \rho_{i} M_{i}\left(s_{i}\right) \nabla p\right)\right)(t, x)- & \operatorname{div}\left(\mathbf{K} \rho_{i} \alpha\left(s_{1}\right) \nabla s_{i}\right)+\rho_{i} s_{i} f_{P}(t, x) \\
& =\rho_{i} s_{i}^{I} f_{I}(t, x), i=1,2 \tag{1.6}
\end{align*}
$$

with the condition (1.2).
Let $T>0$ be fixed and Ω be a bounded set of $\mathbb{R}^{d}(d \geq 1)$. Consider the sets $\left.Q_{T}=\right] 0, T\left[\times \Omega\right.$ and $\left.\Sigma_{T}=\right] 0, T[\times \partial \Omega$.
The solutions to (1.1) have to satisfy the following boundary conditions. The boundary $\partial \Omega$ writes as $\partial \Omega=\Gamma_{1} \cup \Gamma_{i m p}$ with mes $\left(\Gamma_{1}\right)>0$. Here Γ_{1} denotes the injection boundary of the second phase and $\Gamma_{i m p}$ the imprevious one.

$$
\begin{array}{r}
s(t, x)=0, p(t, x)=0 \text { on } \Gamma_{1} \\
\mathbf{K} \nabla p \cdot n=\mathbf{K} \alpha\left(s_{1}\right) \cdot n=0 \text { on } \Gamma_{i m p} \tag{1.7}
\end{array}
$$

where n is the outward normal to the boundary $\Gamma_{i m p}$. The pressure is kept constant (shifted at zero) during the time on the region of injection. The initial conditions for the pressure and the saturation are

$$
\begin{align*}
& p(0, x)=p^{0}(x) \text { in } \Omega \tag{1.8}\\
& s_{1}(0, x)=s_{1}^{0}(x) \text { in } \Omega \tag{1.9}
\end{align*}
$$

Next we shall perform the following assumptions on the system
(H1) The tensor $\mathbf{K} \in\left(W^{1, \infty}(\Omega)\right)^{d \times d}$ and there are nonnegative constants k_{0} and k_{∞} such that
$\|\mathbf{K}\|_{\left(L^{\infty}(\Omega)\right)^{d \times d}} \leq k_{\infty}$ and $\langle\mathbf{K}(x) \xi, \xi\rangle \geq k_{0}|\xi|^{2}$ for all $\xi \in \mathbb{R}^{d}$ a.e $x \in \Omega$.
(H2) The functions M_{1} and $M_{2} \in \mathcal{C}^{0}\left([0, T] ; \mathbb{R}_{+}\right)$, satisfy $M_{1}\left(s_{1}=0\right)=0$ and $M_{2}\left(s_{2}=0\right)=0$. Moreover, there is a nonegative constant m_{0} such that, for all $s_{1} \in[0,1]$,

$$
M_{1}\left(s_{1}\right)+M_{1}\left(1-s_{1}\right) \geq m_{0}
$$

(H3) $\left(f_{P}, f_{I}\right) \in\left(L^{2}(\Omega)\right)^{2}, f_{P}, f_{I} \geq 0$ a.e $(t, x) \in Q_{T}, s_{i}^{I} \geq 0(i=1,2)$ and $s_{1}^{I}+s_{2}^{I}=1$ a.e in $(t, x) \in Q_{T}$.
(H4) The densities $\rho_{i}(i=1,2)$ and the porosity $\phi \in \mathcal{C}^{2}(\mathbb{R})$, are non decreasing with respect to the variable x and there are $\rho_{m}>0, \rho_{M}>, \phi_{m}>0$, $\phi_{M}>$ such that $\rho_{m} \leq \rho_{i}(p) \leq \rho_{M}$ for all p and $\phi_{m} \leq \phi(x, p) \leq \phi_{M}$ for all p and $x \in \Omega$. Moreover $\partial_{p}\left(\phi \rho_{1}\right)$ and $\nabla\left(\phi \rho_{1}\right)$ are bounded.
(H5) The function $\alpha \in \mathcal{C}^{0}\left([0,1] ; \mathbb{R}_{+}\right)$and there is a constant η such that $\alpha(x) \geq \eta$.
(H6) The functions $k(p)=\int_{0}^{p} \nabla \phi(x, q) d q, k_{2}(p)=\int_{0}^{p} \phi(x, q) d q$ and $k_{3}(p)=\int_{0}^{p} \Delta(x, q) d q$ are bounded.
f_{I} and f_{P} are respectively the injection and production term. Denote that the assumption $(H 6)$ is not performed in $([10,11])$ because in those papers the porosity ϕ does not depend on the p variable.
Define next

$$
\beta(s)=\int_{0}^{s} \alpha(z) d z
$$

and the Sobolev space

$$
H_{\Gamma_{1}}^{1}(\Omega)=\left\{u \in H^{1}(\Omega) ; u=0 \text { on } \Gamma_{1}\right\},
$$

together with the norm $\|u\|_{H_{\Gamma_{1}}^{1}(\Omega)}=\|\nabla u\|_{\left(L^{2}(\Omega)^{d}\right)}$.
Define $g_{1}(x, p)=\int_{0}^{p} \phi(x, q) \rho_{2}(q) d q$ and $g_{2}(x, p)=\int_{0}^{p} \phi(x, q) \rho_{1}(q) d q$. The functions $\mathcal{H}_{1}(x, p)$ and $\mathcal{H}_{2}(x, p)$ defined by

$$
\begin{align*}
& \mathcal{H}_{1}(p, x)=\rho_{1}(p) g_{1}(p) \phi(p)-\int_{0}^{p} \phi(q)^{2} \rho_{1}(q) \rho_{2}(q) d q \tag{1.10}\\
& \mathcal{H}_{2}(p, x)=\rho_{2}(p) g_{2}(p) \phi(p)-\int_{0}^{p} \phi(q)^{2} \rho_{1}(q) \rho_{2}(q) d q \tag{1.11}
\end{align*}
$$

satisfy $\frac{\partial}{\partial p} \mathcal{H}_{i}(x, p)=\frac{\partial}{\partial p}\left(\rho_{i} \phi\right)(x, p) g_{i}(x, p), \mathcal{H}_{i}(0)=0, \mathcal{H}_{i}(p) \geq 0$ for all p, and \mathcal{H}_{i} is bounded. Multiply (1.6) taken for $i=1$ by g_{1} and (1.6) taken for $i=2$ by g_{2}, add the two equations and integrate on Ω lead to

$$
\begin{array}{r}
\frac{d}{d t} \int_{\Omega} s_{1} \mathcal{H}_{1}(x, p) d x+\frac{d}{d t} \int_{\Omega} s_{1} \mathcal{H}_{2}(x, p) d x \\
+\int_{\Omega} \rho_{1}(p) \rho_{2}(p) \phi(x, p)\left(M_{1}\left(s_{1}\right)+M_{2}\left(s_{2}\right)\right) \mathbf{K} \nabla p \cdot \nabla p d x \\
+\int_{\Omega} \mathbf{K} \nabla p \cdot\left(\rho_{1} M_{1}\left(s_{1}\right) \int_{0}^{p} \nabla \phi(x, q) \rho_{2} d q-\rho_{2} M_{2}\left(s_{2}\right) \cdot \int_{0}^{p} \nabla_{x} \phi(x, q) \rho_{1} d q\right) d x \\
+\int_{\Omega} \mathbf{K} \alpha_{1}\left(s_{1}\right)\left(\rho_{1}+\rho_{2}\right) \int_{0}^{p} \nabla \phi(x, q) \rho_{2} d q \cdot \nabla s_{1} d x \\
\\
+\int_{\Omega}\left(\rho_{1}(p) g_{1}(p) s_{1}+\rho_{2}(p) g_{2}(p) s_{2}\right) f_{P} d x \\
\\
=\int_{\Omega}\left(\rho_{1}(p) g_{1}(p) s_{1}^{I}+\rho_{2}(p) g_{2}(p) s_{2}^{I}\right) f_{I} d x
\end{array}
$$

The main result of this paper is the following
Theorem 1.1. Let $(H 1)-(H 6)$ hold. Let s_{i}^{0}, p^{0} be defined almost everywhere in Ω. Then there exists $\left(s_{1}, p\right)$ satisfying
$0 \leq s_{i}(t, x) \leq 1$ a.e in $Q_{T}, s_{i} \in L^{2}\left(0, T ; H_{\Gamma_{1}}^{1}\right), \phi(p) \rho_{i}(p) s_{i} \in \mathcal{C}^{0}\left(0, T ; L^{2}(\Omega)\right), i=1,2$,
the boundary conditions (1.7), the initial conditions $(1.8,1.9)$ and the weak formulation for all $\varphi \in L^{2}\left(0, T ; H_{\Gamma_{1}}^{1}\right)$,

$$
\begin{align*}
&\left\langle\partial_{t}\left(\phi \rho_{i} s_{i}\right), \varphi\right\rangle+\int_{Q_{T}} \rho_{i}(p) M_{i}\left(s_{i}\right) \mathbf{K} \nabla_{x} p \cdot \nabla \varphi d x d t \\
& \quad+\int_{Q_{T}} \mathbf{K} \rho_{i}(p) \alpha\left(s_{1}\right) \nabla s_{i} \cdot \nabla \varphi d x d t+\int_{Q_{T}} \rho_{i}(p) s_{i} f_{P} \varphi d x d t \\
& \quad=\int_{Q_{T}} \rho_{i}(p) s_{i} f_{I} \varphi d x d t . \quad i=1,2 \tag{1.12}
\end{align*}
$$

Remark 1. If one of the phase is compressible, Theorem 1.1 still holds and constitutes a generalization of the results given in ([10]) in the case of one compressible phase and one incompressible phase. This is mainly due to $\partial_{p} \phi>0$.

Remark 2. Assumption (H5) avoids the degeneracies in 0 and in 1 for α. By reasoning as in ([11]), the problem of degeneracies can also been considered.

This paper gives a generalization of the strategies developped in [10, 11]. The method is extended to the situation where the porosity depends on the global pressure p and on the space variable x. The situation when the porosity depends on the global pressure has only been considered in [3] for two incompressible flows. Denote that the case where ϕ depends only on p can be solved by arguing as in [11] by changing ρ_{1} and ρ_{2} into $\phi \rho_{1}$ and $\phi \rho_{2}$. This paper is organized as follows. The second section is devoted to the resolution of an elliptic system which is a discretized version of (1.6). Section 3 deals with the passage to the limit in this discretized equation.

2 Study of a nonlinear elliptic system.

As in ([11]), consider the following equation which is discretized in time,

$$
\begin{align*}
& \frac{\left(\phi \rho_{i}\right)(x, p) s_{i}-\phi^{*} \rho_{i}^{*} s_{i}^{*}}{h}-\operatorname{div}\left(\mathbf{K} \rho_{i}(p) M_{i}\left(s_{i}\right) \nabla p\right)-\operatorname{div}\left(\mathbf{K} \rho_{i}(p) \alpha\left(s_{1}\right) \nabla s_{i}\right) \\
&+\rho_{i}(p) s_{i} f_{P}=\rho_{i}(p) s_{i}^{I} f_{I}, \quad i=1,2 \tag{2.1}
\end{align*}
$$

together with the boundary conditions (1.7) and the initial conditions (1.8, $1.9)$ in the Hilbert space $L^{2}(\Omega)$. Let \mathcal{P}_{N} in $L^{2}(\Omega)$ be the projector on the first N eigenvectors of the operator

$$
p \mapsto-\operatorname{div}(\mathbf{K} \nabla p)
$$

defined on $H_{\Gamma_{1}}^{1}(\Omega)$ for the boundary conditions (1.7). Let Z be defined by

$$
Z(s)= \begin{cases}0 & \text { for } s \leq 0 \\ s & \text { for } s \in[0,1] \\ 1 & \text { for } s \geq 1\end{cases}
$$

For $N>0$ and $\varepsilon>0$ fixed, consider $\left(p^{N, \epsilon}, s_{1}^{N, \epsilon}\right)$ solution to

$$
\begin{align*}
& \frac{\left(\phi \rho_{1}\right)\left(x, p^{N, \varepsilon}\right) Z\left(s_{1}^{N, \varepsilon}\right)-\phi^{*} \rho_{1}^{*} s_{1}^{*}}{h} \\
&-\mathcal{P}_{N}^{*} \operatorname{div}\left(\mathbf { K } \left(\frac { \rho _ { 1 } (x , p ^ { N , \varepsilon }) } { (\phi \rho _ { 2 }) (x , p ^ { N , \varepsilon }) } M _ { 1 } (s _ { 1 } ^ { N , \varepsilon }) \left(\nabla \mathcal{P}_{N}\left(\int_{0}^{p^{N, \varepsilon}} \phi \rho_{2}(x, q) d q\right)\right.\right.\right. \\
&\left.-\int_{0}^{p^{N, \varepsilon}} \nabla \phi(x, q) \rho_{2}(q) d q\right) \\
&\left.-\operatorname{div}\left(\mathbf{K} \rho_{1}\left(p^{N, \varepsilon}\right) \alpha\left(s_{1}^{N, \varepsilon}\right) \nabla s_{1}^{N, \varepsilon}\right)\right)+ \rho_{1}\left(p^{N, \varepsilon}\right) Z\left(s_{1}^{N, \varepsilon}\right) f_{P} \\
&=\rho_{1}\left(p^{N, \varepsilon}\right) s_{1}^{I} f_{I} \tag{2.2}
\end{align*}
$$

$$
\begin{array}{r}
\frac{\left(\phi \rho_{2}\right)\left(x, p^{N, \varepsilon}\right) Z\left(s_{2}^{N, \varepsilon}\right)-\phi^{*} \rho_{2}^{*} s_{2}^{*}}{h}-\operatorname{div}\left(\mathbf{K} \rho_{2}\left(p^{N, \varepsilon}\right)\left(M_{2}+\varepsilon\right) \nabla p^{N, \varepsilon}\right) \\
-\operatorname{div}\left(\mathbf{K} \rho_{1}\left(p^{N, \varepsilon}\right) \alpha\left(s_{1}^{N, \varepsilon}\right) \nabla s_{2}^{N, \varepsilon}\right)+\rho_{2}\left(p^{N, \varepsilon}\right) Z\left(s_{2}^{N, \varepsilon}\right) f_{P} \\
=\rho_{2}\left(p^{N, \varepsilon}\right) s_{2}^{I} f_{I}, \tag{2.3}
\end{array}
$$

together with the boundary condition (1.7) and the initial conditions (1.8, 1.9). \mathcal{P}_{N}^{*} is the adjoint operator of \mathcal{P}_{N} for the scalar product of $L^{2}(\Omega)$. First, the existence of solutions to $(2.2,2.3)$ is performed in the following proposition where the dependence of solutions on parameters N and ε is omitted.
Proposition 1. Let $\phi^{*} \rho_{i}^{*} s_{i}^{*} \in L^{2}$. Then there exits $\left(s_{1}, p\right) \in H_{\Gamma_{1}}(\Omega) \times$ $H_{\Gamma_{1}}(\Omega)$, solution to (2.1) in the following weak sense

$$
\begin{array}{r}
\int_{\Omega} \frac{\left(\phi \rho_{1}\right)(x, p) Z\left(s_{1}\right)-\phi^{*} \rho_{1}^{*} s_{1}^{*}}{h} \varphi d x \\
+\int_{\Omega} \frac{\rho_{1}(p)}{\left(\phi \rho_{2}\right)(x, p)} M_{1}\left(s_{1}\right) \mathbf{K}\left[\nabla_{x} \mathcal{P}_{N}\left(\int_{0}^{p}\left(\phi \rho_{2}\right)(x, q) d q\right)\right. \\
\left.-\int_{0}^{p^{N, \varepsilon}} \nabla \phi(x, q) \rho_{2}(q) d q\right] \cdot \mathcal{P}_{N}(\nabla \varphi) d x \\
+\int_{\Omega} \mathbf{K} \rho_{1}(p) \alpha\left(s_{1}\right) \nabla s_{1} \cdot \nabla \varphi d x+\int_{Q_{T}} \rho_{1}(p) Z\left(s_{1}\right) f_{P} \varphi d x \\
=\int_{Q_{T}} \rho_{1}(p) s_{1}^{I} f_{I} \varphi d x \tag{2.4}
\end{array}
$$

$$
\begin{array}{r}
\int_{\Omega} \frac{\left(\phi \rho_{2}\right)(x, p) Z\left(s_{2}\right)-\phi^{*} \rho_{2}^{*} s_{2}^{*}}{h} \xi d x+\int_{\Omega} \rho_{2}(p)\left(M_{2}+\varepsilon\right) \mathbf{K} \nabla_{x} p \cdot \nabla \xi d x \\
+\int_{\Omega} \mathbf{K} \rho_{1}(p) \alpha\left(s_{1}\right) \nabla s_{2} \cdot \nabla \xi d x+\int_{Q_{T}} \rho_{2}(p) Z\left(s_{2}\right) f_{P} \xi d x \\
=\int_{Q_{T}} \rho_{2}(p) s_{2}^{I} f_{I} \xi d x \tag{2.5}
\end{array}
$$

for all $(\varphi, \xi) \in H_{\Gamma_{1}}(\Omega) \times H_{\Gamma_{1}}(\Omega)$.
Proof. (Proposition 1.) Consider s_{1} solution to

$$
\begin{gather*}
\frac{\left(\phi \rho_{1}\right)(x, \bar{p}) Z\left(\bar{s}_{1}\right)-\phi^{*} \rho_{1}^{*} s_{1}^{*}}{h} \\
-\mathcal{P}_{N}^{*} \operatorname{div}\left(\mathbf{K}\left(\frac{\rho_{1}(x, \bar{p})}{\left(\phi \rho_{2}\right)(x, \bar{p})}\right) M_{1}\left(\bar{s}_{1}\right)\left(\nabla \mathcal{P}_{N}\left(\int_{0}^{\bar{p}}\left(\phi \rho_{2}\right)(x, \bar{q}) d q\right)-\int_{0}^{\bar{p}} \nabla \phi(x, q) \rho_{2}(q) d q\right)\right) \\
-\operatorname{div}\left(\mathbf{K} \rho_{1}(\bar{p}) \alpha\left(\bar{s}_{1} \nabla s_{1}\right)\right)+\rho_{1}(\bar{p}) Z\left(\bar{s}_{1}\right) f_{P}=\rho_{1}(\bar{p}) s_{1}^{I} f_{I} . \tag{2.6}
\end{gather*}
$$

For $s_{2}=1-s_{1}$, let p be solution to

$$
\begin{align*}
& \frac{\left(\phi \rho_{2}\right)(x, \bar{p}) Z\left(\bar{s}_{2}\right)-\phi^{*} \rho_{2}^{*} s_{2}^{*}}{h}-\operatorname{div}\left(\mathbf{K} \rho_{2}(\bar{p})\left(M_{2}\left(\bar{s}_{2}\right)+\varepsilon\right) \nabla p\right) \\
& -\operatorname{div}\left(\mathbf{K} \rho_{1}(\bar{p}) \alpha\left(\bar{s}_{1}\right) \nabla s_{1}\right)+\rho_{2}(\bar{p}) Z\left(\bar{s}_{2}\right) f_{P}=\rho_{2}(\bar{p}) s_{2}^{I} f_{I} \tag{2.7}
\end{align*}
$$

The map \mathcal{T} is well defined on $L^{2}(\Omega)$ by using succesively the Lax Milgram theorem in (2.6) and in (2.7).

Lemma 2.1. \mathcal{T} is a continous and compact map from L^{2} into itself.
Proof. (Lemma 2.1.) Consider a sequence $\left(\bar{s}_{1, n}, \bar{p}_{n}\right)$ bounded in $L^{2}(\Omega) \times L^{2}(\Omega)$. The sequence $\left(s_{1, n}, p_{n}\right)$ satisfies

$$
\begin{align*}
& \int_{\Omega} \frac{\left(\phi \rho_{1}\right)\left(x, \bar{p}_{n}\right) Z\left(s_{1, n}\right)-\phi^{*} \rho_{1}^{*} s_{1}^{*}}{h} \varphi d x \\
&+\int_{\Omega} \frac{\rho_{1}\left(x, \bar{p}_{n}\right)}{\left(\phi \rho_{2}\right)\left(x, \bar{p}_{n}\right)} M_{1}\left(s_{1}\right) \mathbf{K}\left(\nabla_{x} \mathcal{P}_{N}\left(\int_{0}^{\bar{p}_{n}}\left(\phi \rho_{2}\right)(x, q) d q\right)\right. \\
&\left.-\int_{0}^{\bar{p}_{n}} \nabla \phi(x, q) \rho_{2}(q) d q\right) \cdot \mathcal{P}_{N}(\nabla \varphi) d x \\
&+\int_{\Omega} \mathbf{K} \rho_{1}\left(\bar{p}_{n}\right) \alpha\left(s_{1, n}\right) \nabla s_{1, n} \cdot \nabla \varphi d x+ \int_{Q_{T}} \rho_{1}\left(\bar{p}_{n}\right) Z\left(s_{1}\right) f_{P} \varphi d x \\
&=\int_{Q_{T}} \rho_{1}\left(\bar{p}_{n}\right) s_{1}^{I} f_{I} \varphi d x \tag{2.8}
\end{align*}
$$

$$
\begin{array}{r}
\int_{\Omega} \frac{\left(\phi \rho_{2}\right)\left(x, \bar{p}_{n}\right) Z\left(s_{2, n}\right)-\phi^{*} \rho_{2}^{*} s_{2}^{*}}{h} \xi d x+\int_{\Omega} \rho_{2}\left(\bar{p}_{n}\right)\left(M_{2}+\varepsilon\right) \mathbf{K} \nabla p_{n} \cdot \nabla \xi d x \\
+\int_{\Omega} \mathbf{K} \rho_{1}\left(\bar{p}_{n}\right) \alpha\left(s_{1}\right) \nabla s_{2, n} \cdot \nabla \xi d x+\int_{Q_{T}} \rho_{2}\left(\bar{p}_{n}\right) Z\left(s_{2, n}\right) f_{P} \xi d x \\
=\int_{Q_{T}} \rho_{2}\left(\bar{p}_{n}\right) s_{2}^{I} f_{I} \xi d x \tag{2.9}
\end{array}
$$

for all $(\varphi, \xi) \in H_{\Gamma_{1}}(\Omega) \times H_{\Gamma_{1}}(\Omega)$.
So by taking $\varphi=s_{1, n} \in H_{\Gamma_{1}}(\Omega)$ in (2.8) and by using the assumptions (H5) and (H6), it holds that

$$
\int_{\Omega}\left|\nabla s_{1, n}\right|^{2} d x \leq C+C\left\|s_{1, n}\right\|_{L^{2}(\Omega)}^{2}+C \| \nabla \mathcal{P}_{N}\left(\int_{0}^{p_{n}}\left(\phi \rho_{2}\right)(q) d q \|_{L^{2}(\Omega)}^{2}\right.
$$

where C is independent of n. So

$$
\begin{aligned}
\left\|\mathcal{P}_{N}\left(\phi\left(x, \bar{p}_{n}\right) \rho_{2}\left(\bar{p}_{n}\right) \nabla \bar{p}_{n}\right)\right\|_{L^{2}(\Omega)} & \leq C_{N}\left\|\int_{0}^{\bar{p}_{n}} \phi(x, q) \rho_{2}(q) d q\right\|_{L^{2}(\Omega)} \\
& \leq C_{N} \rho_{M} \phi_{M}\left\|\bar{p}_{n}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

So from the Poincarre inequality, $\left(s_{1, n}\right)_{n \in \mathbb{N}}$ is uniformly bounded in $H_{\Gamma_{1}}^{1}(\Omega)$. By taking $\xi=p_{n}$ in (2.9), it holds that

$$
\varepsilon \int_{\Omega}\left|\nabla p_{n}\right|^{2} d x \leq C\left(1+\left\|\nabla s_{1, n}\right\|_{L^{2}(\Omega)}^{2}\right)
$$

By using the Poincarre inequality, $\left(p_{n}\right)_{n \in \mathbb{N}}$ is bounded in $H_{\Gamma_{1}}^{1}(\Omega)$. Hence \mathcal{T} is a compact map in $L^{2}(\Omega) \times L^{2}(\Omega)$.

Lemma 2.2. There exists $r>0$ such that if $\left(s_{1}, p\right)=\lambda \mathcal{T}\left(s_{1}, p\right)$ with $\lambda \in] 0,1[$, then

$$
\left\|\left(s_{1}, p\right)\right\|_{L^{2}(\Omega) \times L^{2}(\Omega)} \leq r
$$

Proof. (Lemma 3.8.) Assume $\left(s_{1}, p\right)=\lambda \mathcal{T}\left(s_{1}, p\right)$. Then $\left(s_{1}, p\right)$ satisfies

$$
\begin{aligned}
& \lambda \int_{\Omega} \frac{\left(\phi \rho_{1}\right)(x, p) Z\left(s_{1}\right)-\phi^{*} \rho_{1}^{*} s_{1}^{*}}{h} \varphi d x \\
&+\lambda \int_{\Omega} \frac{\rho_{1}(p)}{\phi \rho_{2}(p)} M_{1}\left(s_{1}\right) \mathbf{K}\left(\mathcal{P}_{N}\left(\left(\phi \rho_{2}\right)(p) \nabla p\right)\right. \\
&\left.-\int_{0}^{p} \nabla \phi(x, q) \rho_{2}(q) d q\right) \cdot \nabla_{x} \mathcal{P}_{N} \varphi d x \\
&+\int_{\Omega} \mathbf{K} \rho_{1}(p) \alpha\left(s_{1}\right) \nabla s_{1} \cdot \nabla \varphi d x+\int_{Q_{T}} \rho_{1}(p) Z\left(s_{1}\right) f_{P} \varphi d x \\
&=\lambda \int_{Q_{T}} \rho_{1}(p) s_{1}^{I} f_{I} \varphi d x
\end{aligned}
$$

$$
\begin{array}{r}
\lambda \int_{\Omega} \frac{\left(\phi \rho_{2}\right)(x, p) Z\left(s_{2}\right)-\phi^{*} \rho_{2}^{*} s_{2}^{*}}{h} \xi d x+\int_{\Omega} \rho_{2}(p)\left(M_{2}+\varepsilon\right) \mathbf{K} \nabla p \cdot \nabla \xi d x \\
+\int_{\Omega} \mathbf{K} \rho_{1}(p) \alpha\left(s_{1}\right) \nabla s_{2} \cdot \nabla \xi d x+\lambda \int_{Q_{T}} \rho_{2}(p) Z\left(s_{2}\right) f_{P} \xi d x \\
=\lambda \int_{Q_{T}} \rho_{2}(p) s_{2}^{I} f_{I} \xi d x \tag{2.10}
\end{array}
$$

for all $(\varphi, \xi) \in H_{\Gamma_{1}}(\Omega) \times H_{\Gamma_{1}}(\Omega)$.
By setting $\varphi=g_{1}(x, p)=\int_{0}^{p} \phi(x, q) \rho_{2}(q) d q \in H_{\Gamma_{1}}^{1}(\Omega)$ and
$\xi=g_{2}(x, p)=\int_{0}^{p} \phi(x, q) \rho_{1}(q) d q \in H_{\Gamma_{1}}^{1}(\Omega)$ and by adding the two quantities, it holds that

$$
\begin{array}{r}
\left.\left.\frac{\lambda}{h} \int_{\Omega}\left(\phi \rho_{1}\right)(p) Z\left(s_{1}\right)-\phi^{*} \rho_{1}^{*} s_{1}^{*}\right) g_{1}(p)+\left(\left(\phi \rho_{2}\right)(p) Z\left(s_{2}\right)-\phi^{*} \rho_{2}^{*} s_{2}^{*}\right) g_{2}(p)\right) d x \\
+\lambda \int_{\Omega} \frac{\rho_{1}(p)}{\left(\phi \rho_{2}\right)(p)} M_{1}\left(s_{1}\right) \mathbf{K} \mathcal{P}_{N}\left(\left(\phi \rho_{2}\right)(p) \nabla p\right) \cdot \mathcal{P}_{N}\left(\left(\phi \rho_{2}\right)(p) \nabla p\right) d x \\
+\int_{\Omega} \frac{\rho_{1}(p)}{\left(\phi \rho_{2}\right)(p)} M_{1}\left(s_{1}\right) \mathbf{K} \mathcal{P}_{N}\left(\int_{0}^{p} \phi(x, p) \rho_{2}(q) d q\right) \cdot \nabla_{x} \mathcal{P}_{N}\left(\int_{0}^{p} \phi(x, p) \rho_{2}(q) d q\right) d x \\
+\int_{\Omega} \mathbf{K} \alpha\left(s_{1}\right) \nabla s_{1} \cdot\left(\int_{0}^{p} \nabla \phi(x, q)\left(\rho_{2}(q)-\rho_{1}(q) d q\right)\right) d x \\
+\int_{\Omega} \rho_{2}(q)\left(M_{2}+\varepsilon\right)|\nabla p|^{2} d x \\
+\int_{\Omega} \mathbf{K} \rho_{1}(p) \alpha\left(s_{1}\right) \nabla s_{1} \cdot \nabla \varphi d x+\int_{Q_{T}}\left(\rho_{1}(p) Z\left(s_{1}\right) g_{1}(p)+\rho_{2}(p) Z\left(s_{2}\right) g_{2}(p)\right) f_{P} d x \\
=\lambda \int_{Q_{T}}\left(\rho_{1}(p) s_{1}^{I} f_{I} g_{1}(p)+\rho_{2}(p) s_{2}^{I} f_{I} g_{2}(p)\right) d x
\end{array}
$$

So we get the estimate

$$
\begin{array}{r}
\varepsilon \int_{\Omega}|\nabla p|^{2} d x \leq\left|\int_{\Omega} \mathbf{K} \rho_{1}(p) \alpha_{1}\left(s_{1}\right) \nabla s_{1} \cdot\left(\int_{0}^{p} \nabla \phi(x, q)\left(\rho_{2}(q)-\rho_{1}(q)\right) d q\right)\right| \\
+\lambda\left|\int_{\Omega} \frac{\rho_{1}(p)}{\left(\phi \rho_{2}\right)(x, p)} M_{1}\left(s_{1}\right) \mathbf{K}\left(\int_{0}^{p} \nabla_{x} \phi(x, p) \rho_{2}(q) d q\right) \cdot \nabla_{x} \mathcal{P}_{N}\left(\int_{0}^{p}\left(\phi \rho_{2}\right)(q) d q\right)\right| d x \\
+\left|\int_{\Omega} \rho_{2}(p)\left(M_{2}+\varepsilon\right) \nabla p \cdot\left(\int_{0}^{p} \nabla \phi(x, q) \rho_{2}(q) d q\right) d x\right| \\
+c\left(\left\|f_{P}\right\|_{L^{2}(\Omega)}^{2}+\left\|f_{I}\right\|_{L^{2}(\Omega)}^{2}+\left\|\phi^{*} \rho_{1}^{*} s_{1}^{*}\right\|+\left\|\phi^{*} \rho_{2}^{*} s_{2}^{*}\right\|\right) . \tag{2.11}
\end{array}
$$

Remark 3. Denote that ε garantees that there is $k>0$ such that $\left(M_{2}+\varepsilon\right) \geq k . M_{2}$ does not satisfy such an inequality because $M_{2}(1)=0$.

From Green formula, it holds that

$$
\begin{aligned}
& \int_{\Omega} \frac{\rho_{1}(p)}{\left(\phi \rho_{2}\right)(x, p)} M_{1}\left(s_{1}\right) \mathbf{K}\left(\int_{0}^{p} \nabla_{x} \phi(x, p) \rho_{2}(q) d q\right) \cdot \nabla_{x} \mathcal{P}_{N}\left(\int_{0}^{p}\left(\phi \rho_{2}\right)(q) d q\right) d x \\
= & -\int_{\Omega} \operatorname{div}\left(\frac{\rho_{1}(p)}{\left(\phi \rho_{2}\right)(x, p)} M_{1}\left(s_{1}\right) \mathbf{K}\right)\left(\int_{0}^{p} \nabla_{x} \phi(x, p) \rho_{2}(q) d q\right) \mathcal{P}_{N}\left(\int_{0}^{p}\left(\phi \rho_{2}\right)(q) d q\right) \\
& -\int_{\Omega} \frac{\rho_{1}(p)}{\left(\phi \rho_{2}\right)(x, p)} M_{1}\left(s_{1}\right) \mathbf{K} \operatorname{div}\left(\int_{0}^{p} \nabla_{x} \phi(x, q) \rho_{2}(q) d q\right) \mathcal{P}_{N}\left(\int_{0}^{p} \phi(x, q) \rho_{2}(q) d q\right.
\end{aligned}
$$

with

$$
\begin{aligned}
\int_{\Omega} & \frac{\rho_{1}(p)}{\left(\phi \rho_{2}\right)(x, p)} M_{1}\left(s_{1}\right) \mathbf{K} \operatorname{div}\left(\int_{0}^{p}\left(\nabla \phi(x, q) \rho_{2}(q)\right) d q\right) \mathcal{P}_{N}\left(\int_{0}^{p} \phi(x, q) \rho_{2}(q) d q\right. \\
\quad & \int_{\Omega} \frac{\rho_{1}(p)}{\left(\phi \rho_{2}\right)(x, p)} M_{1}\left(s_{1}\right) \mathbf{K}\left(\nabla_{x} p \cdot \nabla \phi(x, p) \rho_{2}(p)\right) \mathcal{P}_{N}\left(\int_{0}^{p} \phi(x, q) \rho_{2}(q) d q\right. \\
& \int_{\Omega} \frac{\rho_{1}(p)}{\left(\phi \rho_{2}\right)(x, p)} M_{1}\left(s_{1}\right) \mathbf{K}\left(\int_{0}^{p} \Delta \phi(x, q) \rho_{2}(q) d q\right) \mathcal{P}_{N}\left(\int_{0}^{p} \phi(x, q) \rho_{2}(q) d q\right.
\end{aligned}
$$

From Cauchy-Schwartz inequality and assumption (H6), it holds that for any $\tau>0$,

$$
\begin{array}{r}
\left|\int_{\Omega} \frac{\rho_{1}(p)}{\left(\phi \rho_{2}\right)(x, p)} M_{1}\left(s_{1}\right) \mathbf{K}\left(\int_{0}^{p} \nabla \phi(x, p) \rho_{2}(q) d q\right) \cdot \nabla \mathcal{P}_{N}\left(\int_{0}^{p}\left(\phi \rho_{2}\right)(q) d q\right) d x\right| \\
\leq C+\tau\left(\|\nabla p\|_{L^{2}(\Omega)}^{2}+\|\nabla s\|_{L^{2}(\Omega)}^{2}\right)
\end{array}
$$

From the Cauchy-Schwartz inequality, it holds that for any $\tau>0$,

$$
\begin{array}{r}
\left|\int_{\Omega} \mathbf{K} \rho_{1}(p) \alpha_{1}\left(s_{1}\right) \nabla s_{1} \cdot\left(\int_{0}^{p} \nabla \phi(x, q)\left(\rho_{2}(q)-\rho_{1}(q)\right) d q\right)\right| \\
\leq \tau\left\|\nabla s_{1}\right\|^{2}+\widetilde{C}\left\|\int_{0}^{p} \nabla \phi(x, q) d q\right\|^{2} \\
\left|\int_{\Omega} \rho_{2}(p)\left(M_{2}+\varepsilon\right) \nabla p \cdot\left(\int_{0}^{p} \nabla \phi(x, q) \rho_{2}(q) d q\right) d x\right| \\
\leq \tau\|\nabla p\|^{2}+\widetilde{C}\left\|\int_{0}^{p} \nabla \phi(x, q) d q\right\|^{2}, \\
\lambda\left|\int_{\Omega} \frac{\rho_{1}(p)}{\left(\phi \rho_{2}\right)(x, p)} M_{1}\left(s_{1}\right) \mathbf{K} \mathcal{P}_{N}\left(\left(\phi \rho_{2}\right)(p) \nabla p\right) \cdot \mathcal{P}_{N}\left(\int_{0}^{p} \nabla \phi(x, p) \rho_{2}(q) d q\right) d x\right| \\
\leq \lambda \tau\|\nabla p\|^{2}+\widetilde{C}\left\|\int_{0}^{p} \nabla \phi(x, q) d q\right\|^{2} .
\end{array}
$$

Hence (2.11) leads to

$$
\begin{align*}
\int_{\Omega}|\nabla p|^{2} d x & \leq \widetilde{C}\left\|\int_{0}^{p} \nabla \phi(x, q) d q\right\|^{2}+\tau\left\|\nabla_{x} s_{1}\right\|^{2} \\
& +c\left(\left\|f_{P}\right\|_{L^{2}(\Omega)}^{2}+\left\|f_{I}\right\|_{L^{2}(\Omega)}^{2}+\left\|\phi^{*} \rho_{1}^{*} s_{1}^{*}\right\|+\left\|\phi^{*} \rho_{2}^{*} s_{2}^{*}\right\|\right) \tag{2.12}
\end{align*}
$$

Hence by taking $\xi=-s_{1}$ in (2.10), we get

$$
\begin{array}{r}
\int_{\Omega} \mathbf{K} \rho_{1}(p) \alpha\left(s_{1}\right)\left|\nabla s_{1}\right|^{2} d x=\lambda \int_{\Omega} \frac{\left(\phi \rho_{2}\right)(p) Z\left(s_{2}\right)-\phi^{*} \rho_{2}^{*} s_{2}^{*}}{h} s_{1} d x \\
+\int_{\Omega} \rho_{2}(p)\left(M_{2}+\varepsilon\right) \mathbf{K} \nabla p \cdot \nabla s_{1} d x+\lambda \int_{Q_{T}} \rho_{2}(p) Z\left(s_{2}\right) f_{P} s_{1} d x \\
+\lambda \int_{Q_{T}} \rho_{2}(p) s_{2}^{I} f_{I} s_{1} d x .
\end{array}
$$

From the Cauchy-Schwartz inequality, we get for any $\tau>0$,

$$
\int_{\Omega} \rho_{2}(p)\left(M_{2}+\varepsilon\right) \mathbf{K} \nabla p \cdot \nabla s_{1} d x \leq \tau\left\|\nabla s_{1}\right\|+\widetilde{C}\|\nabla p\| .
$$

So by chosing τ small enough, it holds that

$$
\left\|\nabla s_{1}\right\|^{2} \leq C+C\|\nabla p\| .
$$

So by using the inequality (2.14), we get

$$
\begin{aligned}
\left\|\nabla s_{1}\right\|^{2} & \leq C+\tau\left\|\nabla s_{1}\right\|^{2} \\
& +C\left(\left\|f_{P}\right\|_{L^{2}(\Omega)}^{2}+\left\|f_{I}\right\|_{L^{2}(\Omega)}^{2}+\left\|\phi^{*} \rho_{1}^{*} s_{1}^{*}\right\|+\left\|\phi^{*} \rho_{2}^{*} s_{2}^{*}\right\|\right) .
\end{aligned}
$$

Hence, by chosing τ small enough we obtain

$$
\begin{equation*}
\left\|\nabla s_{1}\right\|_{L^{2}(\Omega)} \leq C \tag{2.13}
\end{equation*}
$$

with C independent of λ and the result follows from (2.14).
Proof. (Proposition 1.) So the Leray-Schauder fixed point ([12]) theorem can be applied. This proves the existence of a solution to the system (2.4, 2.5). Then Proposition 1 is shown.

By arguing as previously with $\lambda=1$, we can prove as for (2.14) that

$$
\left\|\nabla s_{1}\right\|_{L^{2}(\Omega)} \leq C_{1}
$$

with C_{1} independant of N. Then reasonning like for the proof of 2.14 , we can prove that p satisfies

$$
\begin{align*}
\int_{\Omega}|\nabla p|^{2} d x & \leq \widetilde{C}\left\|\int_{0}^{p} \nabla \phi(x, q) d q\right\|^{2}+\tau\left\|\nabla s_{1}\right\|^{2} \\
& +c_{1}\left(\left\|f_{P}\right\|_{L^{2}(\Omega)}^{2}+\left\|f_{I}\right\|_{L^{2}(\Omega)}^{2}+\left\|\phi^{*} \rho_{1}^{*} s_{1}^{*}\right\|+\left\|\phi^{*} \rho_{2}^{*} s_{2}^{*}\right\|\right), \tag{2.14}
\end{align*}
$$

with c_{1} independant of N.
Therefore $\left(s_{1, N}, p_{N}\right)$ converge to $\left(s_{1}, p\right)$ weakly in $H_{\Gamma_{1}}^{1}(\Omega)$, strongly in $L^{2}(\Omega)$ and a.e in Ω. By arguing as in ([11]), we can pass to the limit with respect to the N variable in the system $(2.4,2.5)$. Thus the following system is obtained

$$
\left.\begin{array}{r}
\int_{\Omega} \frac{\left(\phi \rho_{1}\right)\left(x, p_{\varepsilon}\right) Z\left(s_{1, \varepsilon}\right)-\phi^{*} \rho_{1}^{*} s_{1}^{*}}{h} \varphi d x+\int_{\Omega} \rho_{1}\left(p_{\varepsilon}\right) M_{1}\left(s_{1}\right) \mathbf{K} \nabla p_{\varepsilon} \cdot(\nabla \varphi) d x \\
+\int_{\Omega} \mathbf{K} \rho_{1}\left(p_{\varepsilon}\right) \alpha\left(s_{1, \varepsilon}\right) \nabla s_{1, \varepsilon} \cdot \nabla \varphi d x+
\end{array} \int_{Q_{T}} \rho_{1}\left(p_{\varepsilon}\right) Z\left(s_{1, \varepsilon}\right) f_{P} \varphi d x\right\}
$$

$$
\begin{align*}
& \int_{\Omega} \frac{\left(\phi \rho_{2}\right)\left(x, p_{\varepsilon}\right) Z\left(s_{2, \varepsilon}\right)-\phi^{*} \rho_{2}^{*} s_{2}^{*}}{h} \xi d x+\int_{\Omega} \rho_{2}\left(p_{\varepsilon}\right)\left(M_{2}+\varepsilon\right) \mathbf{K} \nabla_{x} p_{\varepsilon} \cdot \nabla \xi d x \\
&+\int_{\Omega} \mathbf{K} \rho_{1}\left(p_{\varepsilon}\right) \alpha\left(s_{1, \varepsilon}\right) \nabla_{x} s_{2, \varepsilon} \cdot \nabla_{x} \xi d x+\int_{Q_{T}} \rho_{2}\left(p_{\varepsilon}\right) Z\left(s_{2, \varepsilon}\right) f_{P} \xi d x \\
&=\int_{Q_{T}} \rho_{2}\left(p_{\varepsilon}\right) s_{2}^{I} f_{I} \xi d x \tag{2.16}
\end{align*}
$$

for all $(\varphi, \xi) \in H_{\Gamma_{1}}(\Omega) \times H_{\Gamma_{1}}(\Omega)$.
In order to obtain compactness on the sequences p_{ε} and $s_{1, \varepsilon}$, we shall use the following lemma which furnishes uniform bounds on ∇p_{ε} and $\nabla s_{1, \varepsilon}$ with respect to ε.

Lemma 2.3. There are nonnegative constant c_{1} and c_{2} independent of ε such that

$$
\begin{array}{r}
\int_{\Omega}\left|\nabla p_{\varepsilon}\right|^{2} d x d t \leq c_{1} \\
\int_{\Omega} \alpha\left(s_{1, \varepsilon}\right)\left|\nabla s_{1, \varepsilon}\right|^{2} d x d t \leq c_{2} \tag{2.18}
\end{array}
$$

Proof. (Lemma 2.3.) By taking $\varphi=g_{1}(p) \in H_{\Gamma_{1}}^{1}(\Omega)$ in (2.15), $\xi=g_{2}(p) \in$
$H_{\Gamma_{1}}^{1}(\Omega)$ in (2.16) and by summing these quantities, it holds that

$$
\begin{aligned}
\frac{1}{h} \int_{\Omega}\left(\left((\phi \rho _ { 1 }) \left(x, p_{\varepsilon} Z\left(s_{1, \varepsilon}\right)-\right.\right.\right. & \left.\left.\phi^{*} \rho_{1}^{*} s_{1}^{*}\right) g_{1}\left(p_{\varepsilon}\right)+\left(\left(\phi \rho_{2}\right)\left(x, p_{\varepsilon}\right) Z\left(s_{1, \varepsilon}\right)-\phi^{*} \rho_{2}^{*} s_{2}^{*}\right) g_{2}\left(p_{\varepsilon}\right)\right) d x \\
& +\int_{\Omega} \rho_{1}\left(p_{\varepsilon}\right) \rho_{2}\left(p_{\varepsilon}\right)\left(M_{1}\left(s_{1, \varepsilon}\right)+M_{2}\left(s_{2, \varepsilon}\right)+\varepsilon\right) \mathbf{K} \nabla p_{\varepsilon} \cdot \nabla p_{\varepsilon} d x \\
+ & \int_{\Omega}\left(\rho_{1}\left(p_{\varepsilon}\right) Z\left(s_{1, \varepsilon}\right) g_{1}\left(p_{\varepsilon}\right)+\rho_{2}\left(p_{\varepsilon}\right) Z\left(s_{2, \varepsilon}\right) g_{2}\left(p_{\varepsilon}\right)\right) f_{P} d x \\
& =\int_{\Omega}\left(\rho_{1}\left(p_{\varepsilon}\right) s_{1}^{I} g_{1}\left(p_{\varepsilon}\right)+\rho_{2}\left(p_{\varepsilon}\right) s_{2}^{I} g_{2}\left(p_{\varepsilon}\right)\right) f_{I} d x .
\end{aligned}
$$

By using assumption (H2), we have

$$
M_{1}\left(s_{1, \varepsilon}\right)+M_{2}\left(1-s_{1, \varepsilon}\right)+\varepsilon \geq m_{0} .
$$

So there is $C>0$ independent of ε such that

$$
\int_{\Omega}\left|\nabla p_{\varepsilon}\right|^{2} d x \leq C\left(\left\|f_{P}\right\|_{L^{2}(\Omega)}^{2}+\left\|f_{I}\right\|_{L^{2}(\Omega)}^{2}+\left\|\phi^{*} \rho_{1}^{*} s_{1}^{*}\right\|_{L^{2}(\Omega)}^{2}+\left\|\phi^{*} \rho_{2}^{*} s_{2}^{*}\right\|_{L^{2}(\Omega)}^{2}\right)
$$

Therefore the inequality (2.17) is shown.
By taking $\varphi=-s_{1, \varepsilon}$ in (2.15), it holds that

$$
\begin{array}{r}
\int_{\Omega} \mathbf{K} \rho_{1}\left(p_{\varepsilon}\right) \alpha\left(s_{1, \varepsilon}\right) \nabla s_{1, \varepsilon} \cdot \nabla s_{1, \varepsilon} d x=\int_{\Omega} \frac{\left(\phi \rho_{2}\right)(p) Z\left(s_{2}\right)-\phi^{*} \rho_{2}^{*} s_{2}^{*}}{h} s_{1, \varepsilon} d x \\
+\int_{\Omega} \rho_{2}(p)\left(M_{2}+\varepsilon\right) \mathbf{K} \nabla p \cdot \nabla s_{1} d x+\int_{Q_{T}} \rho_{2}(p) Z\left(s_{2}\right) f_{P} s_{1} d x \\
+\int_{Q_{T}} \rho_{2}(p) s_{2}^{I} f_{I} s_{1} d x .
\end{array}
$$

From assumptions (H1), (H4), (H5) and by using Cauchy-Schwartz inequality, it holds that

$$
\int_{\Omega}\left|\nabla s_{1, \varepsilon}\right|^{2} d x \leq C+C_{1}\|\nabla p\|_{L^{2}(\Omega)}^{2}+C_{2}\left(\left\|f_{P}\right\|_{L^{2}(\Omega)}^{2}+\left\|f_{I}\right\|_{L^{2}(\Omega)}^{2}\right) .
$$

Then, by using (2.17), (2.18) follows.
The passage to the limit with respect to ε is performed in the following proposition.

Proposition 2. Let $s_{i}^{*} \geq 0, \rho_{i}^{*} \geq 0, \phi^{*} \geq 0$ such that $s_{i}^{*} \rho_{i}^{*} \phi^{*} \in L^{2}(\Omega)$. Then there is $\left(s_{1}, p\right) \in H_{\Gamma_{1}}^{1}(\Omega) \times H_{\Gamma_{1}}^{1}(\Omega)$ such that $0 \leq s_{i} \leq 1$ a.e. in Ω satisfying

$$
\begin{array}{r}
\int_{\Omega} \frac{\left(\phi \rho_{1}\right)(x, p) s_{1}-\phi^{*} \rho_{1}^{*} s_{1}^{*}}{h} \varphi d x+\int_{\Omega} \rho_{1}(p) M_{1}\left(s_{1}\right) \mathbf{K} \nabla p \cdot(\nabla \varphi) d x \\
+\int_{\Omega} \mathbf{K} \rho_{1}(p) \alpha\left(s_{1}\right) \nabla_{x} s_{1} \cdot \nabla \varphi d x+\int_{Q_{T}} \rho_{1}(p) s_{1} f_{P} \varphi d x \\
=\int_{Q_{T}} \rho_{1}(p) s_{1}^{I} f_{I} \varphi d x \\
\int_{\Omega} \frac{\left(\phi \rho_{2}\right)(x, p) s_{2}-\phi^{*} \rho_{2}^{*} s_{2}^{*}}{h} \xi d x+\int_{\Omega} \rho_{2}(p) M_{2}\left(s_{1}\right) \mathbf{K} \nabla p \cdot \nabla \xi d x \\
+\int_{\Omega} \mathbf{K} \rho_{1}(p) \alpha\left(s_{1}\right) \nabla s_{2} \cdot \nabla \xi d x+\int_{Q_{T}} \rho_{2}\left(p_{\varepsilon}\right) s_{2} f_{P} \xi d x \\
=\int_{Q_{T}} \rho_{2}(p) s_{2}^{I} f_{I} \xi d x \tag{2.20}
\end{array}
$$

for all $(\varphi, \xi) \in H_{\Gamma_{1}}(\Omega) \times H_{\Gamma_{1}}(\Omega)$.
The proof is analogous to the proof given in ([11]).

3 End of the proof of Theorem 1.1.

In this section, the aim is to pass to the limit when $h \rightarrow 0$ in order to get the continous problem in time. Consider $T>0, N \in \mathbb{N}^{*}$ and $h=\frac{T}{N}$. Define the sequence $\left(s_{1, h}^{n}, p_{h}^{n}\right)_{n \in \mathbb{N}}$ by

$$
p_{h}^{0}=p^{0}, \quad s_{i, h}^{0}=s_{i}^{0} \text { in } \Omega .
$$

Let $\left(f_{P}\right)_{h}^{n+1}$ and $\left(f_{I}\right)_{h}^{n+1}$ be defined by

$$
\begin{aligned}
&\left(f_{P}\right)_{h}^{n+1}=\frac{1}{h} \int_{n h}^{(n+1) h} f_{P}(\tau) d \tau, \quad\left(f_{I}\right)_{h}^{n+1}=\frac{1}{h} \int_{n h}^{(n+1) h} f_{I}(\tau) d \tau \\
&\left(s_{i}^{I}\right)_{h}^{n+1}=\frac{1}{h} \int_{n h}^{(n+1) h} s_{i}^{I}(\tau) d \tau .
\end{aligned}
$$

For all $n \in[0, N-1]$, consider $\left(s_{1, h}^{n}, p_{h}^{n}\right) \in L^{2}(\Omega) \times L^{2}(\Omega)$, with $0 \leq s_{1, h}^{n} \leq 1$ and let $\left(s_{i, h}^{n+1}, p_{h}^{n+1}\right)$ be solution to the system

$$
\begin{array}{r}
\frac{\left(\phi \rho_{1}\right)\left(x, p_{h}^{n+1}\right) s_{1, h}^{n+1}-\left(\phi \rho_{1}\right)\left(p_{h}^{n}\right) s_{1, h}^{n}}{h}-\operatorname{div}\left(\mathbf{K}\left(\rho_{1}\left(p_{h}^{n+1}\right) M_{1}\left(s_{1, h}^{n+1}\right) \nabla p_{h}^{n+1}\right)\right. \\
-\operatorname{div}\left(\mathbf{K} \rho_{1}\left(p_{h}^{n+1}\right) \alpha\left(s_{1, h}^{n+1}\right) \nabla_{x} s_{1, h}^{n+1}\right)+\rho_{1}\left(p_{h}^{n+1}\right) s_{1, h}^{n+1}\left(f_{P}\right)_{h}^{n+1} \\
=\rho_{1}\left(p_{h}^{n+1}\right)\left(s_{1}^{I}\right)_{h}^{n+1}\left(f_{I}\right)_{h}^{n+1} \tag{3.1}
\end{array}
$$

$$
\begin{gather*}
\frac{\left(\phi \rho_{2}\right)\left(x, p_{h}^{n+1}\right) s_{2, h}^{n+1}-\left(\phi \rho_{2}\right)\left(x, p_{h}^{n}\right) s_{2, h}^{n}}{h}-\operatorname{div}\left(\mathbf{K} \rho_{2}\left(p_{h}^{n+1}\right)\left(M_{2}\left(s_{2, h}^{n+1}\right)\right) \nabla p_{h}^{n+1}\right) \\
-\operatorname{div}\left(\mathbf{K} \rho_{1}\left(p_{h}^{n+1}\right) \alpha\left(s_{1, h}^{n+1}\right) \nabla s_{2, h}^{n+1}\right)+\rho_{2}\left(p_{h}^{n+1}\right) s_{1, h}^{n+1}\left(f_{P}\right)_{h}^{n+1} \\
=\rho_{2}\left(p_{h}^{n+1}\right)\left(s_{2}^{I}\right)_{h}^{n+1}\left(f_{I}\right)_{h}^{n+1} \tag{3.2}
\end{gather*}
$$

with the boundary conditions (1.7). Proposition 2 implies that the sequence is well defined.

Lemma 3.1. There is C independent of h such that

$$
\begin{gather*}
\frac{1}{h} \int_{\Omega}\left(\mathcal{H}_{1}\left(x, p_{h}^{n+1}\right) s_{1, h}^{n+1}-\mathcal{H}_{1}\left(x, p_{h}^{n}\right) s_{1, h}^{n}+\mathcal{H}_{2}\left(x, p_{h}^{n+1}\right) s_{2, h}^{n+1}-\mathcal{H}_{2}\left(x, p_{h}^{n}\right) s_{2, h}^{n}\right) d x \\
\quad+\int_{\Omega}\left|\nabla p_{h}^{n+1}\right|^{2} d x \\
\leq \tau \int_{\Omega}\left|\nabla s_{1, h}^{n+1}\right|^{2} d x+C\left(\left\|\left(f_{P}\right)_{h}^{n+1}\right\|_{L^{2}(\Omega)}^{2}+\left\|\left(f_{I}\right)_{h}^{n+1}\right\|_{L^{2}(\Omega)}^{2}\right) \tag{3.3}\\
\left.\left.\frac{1}{h} \int_{\Omega}\left(\mid \phi \rho_{1}\right)\left(p_{h}^{n+1}\right) s_{1, h}^{n+1}\right|^{2}-\left|\left(\phi \rho_{1}\right)\left(p_{h}^{n}\right) s_{1, h}^{n}\right|^{2}\right) d x+\int_{\Omega}\left|\nabla s_{1, h}^{n+1}\right|^{2} d x \\
\leq C\left(\left\|\left(f_{P}\right)_{h}^{n+1}\right\|_{L^{2}(\Omega)}^{2}+\left\|\left(f_{I}\right)_{h}^{n+1}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla p_{h}^{n+1}\right\|_{L^{2}(\Omega)}^{2}\right) \tag{3.4}
\end{gather*}
$$

Proof. (Lemma 3.1.) By reasonning as in ([11]), it holds that

$$
\begin{array}{r}
{\left[\left(\rho_{1} \phi\right)(x, p) s_{1}-\left(\rho_{1} \phi\right)\left(p^{*}\right) s_{1}^{*}\right] g_{1}(p)+\left[\left(\rho_{2} \phi\right)(p) s_{2}-\left(\rho_{2} \phi\right)\left(p^{*}\right) s_{2}^{*}\right] g_{2}(p)} \\
\geq \mathcal{H}_{1}(p) s_{1}-\mathcal{H}_{1}\left(p^{*}\right) s_{1}^{*}+\mathcal{H}_{2}(x, p) s_{2}-\mathcal{H}_{2}\left(p^{*}\right) s_{2}^{*} \tag{3.5}
\end{array}
$$

By multiplying (3.1) with $g_{1}\left(p_{h}^{n+1}\right),(3.2)$ with $g_{2}\left(p_{h}^{n+1}\right)$ by adding the two
obtained equations and by using (3.5), it holds that

$$
\begin{array}{r}
\frac{1}{h} \int_{\Omega}\left(\mathcal{H}_{1}\left(x, p_{h}^{n+1}\right) s_{1, h}^{n+1}-\mathcal{H}_{1}\left(x, p_{h}^{n}\right) s_{1, h}^{n}+\mathcal{H}_{2}\left(x, p_{h}^{n+1}\right) s_{2, h}^{n+1}-\mathcal{H}_{2}\left(x, p_{h}^{n}\right) s_{2, h}^{n}\right) d x \\
+\int_{\Omega} \rho_{1}\left(p_{h}^{n+1}\right) \rho_{2}\left(p_{h}^{n+1}\right) M\left(s_{1, h}^{n+1}\right) \mathbf{K}\left|\nabla p_{h}^{n+1}\right|^{2} d x \\
\left.+\int_{\Omega}\left(\rho_{1}\left(p_{h}^{n+1}\right) s_{1, h}^{n+1} g_{1}\left(p_{h}^{n+1}\right)+\rho_{2}\left(p_{h}^{n+1}\right) s_{2, h}^{n+1} g_{2}\left(p_{h}^{n+1}\right)\right)\left(f_{P}\right)\right)_{h}^{n+1} d x \\
\leq \int_{\Omega}\left(\rho_{1}\left(p_{h}^{n}\right)\left(s_{1}^{I}\right)_{h}^{n+1} g_{1}\left(p_{h}^{n+1}\right)+\rho_{2}\left(p_{h}^{n}\right)\left(s_{2}^{I}\right)_{h}^{n+1} g_{2}\left(p_{h}^{n+1}\right)\right) d x \\
+\left|\int_{\Omega} \mathbf{K} \rho_{1}\left(p_{h}^{n+1}\right) M_{1}\left(s_{1, h}^{n+1}\right) \nabla p_{h}^{n+1} \cdot\left(\int_{0}^{p} \nabla \phi(x, q) \rho_{2}(q) d q\right) d x\right| \\
+\left|\int_{\Omega} \mathbf{K} \rho_{1}\left(p_{h}^{n+1}\right) M_{1}\left(s_{1, h}^{n+1}\right) \nabla s_{1, h}^{n+1} \cdot\left(\int_{0}^{p} \nabla \phi(x, q) \rho_{2}(q) d q\right) d x\right| \\
+\left|\int_{\Omega} \mathbf{K} \rho_{2}\left(p_{h}^{n+1}\right) M_{2}\left(s_{2, h}^{n+1}\right) \nabla p_{h}^{n+1} \cdot\left(\int_{0}^{p} \nabla \phi(x, q) \rho_{1}(q) d q\right) d x b i g\right| \\
+\left|\int_{\Omega} \mathbf{K} \rho_{2}\left(p_{h}^{n+1}\right) M_{1}\left(s_{1, h}^{n+1}\right) \nabla s_{1, h}^{n+1} \cdot\left(\int_{0}^{p} \nabla \phi(x, q) \rho_{1}(q) d q\right) d x\right| .
\end{array}
$$

By using the Cauchy-Schwartz inequality, for any $\tau>0$ there is a nonnegtive constant \tilde{C}_{τ}, such that

$$
\begin{array}{r}
\left|\int_{\Omega} \mathbf{K} \rho_{1}\left(p_{h}^{n+1}\right) M_{1}\left(s_{1, h}^{n+1}\right) \nabla p_{h}^{n+1} \cdot\left(\int_{0}^{p} \nabla \phi(x, q) \rho_{2}(q) d q\right) d x\right| \\
\leq \tilde{C}+\tau\left\|\nabla p_{h}^{n+1}\right\|^{2}, \\
\left|\int_{\Omega} \mathbf{K} \rho_{1}\left(p_{h}^{n+1}\right) M_{1}\left(s_{1, h}^{n+1}\right) \nabla s_{1, h}^{n+1} \cdot\left(\int_{0}^{p} \nabla \phi(x, q) \rho_{2}(q) d q\right) d x\right| \\
\leq \tilde{C}+\tau\left\|\nabla s_{1, h}^{n+1}\right\|^{2}, \\
\left|\int_{\Omega} \mathbf{K} \rho_{2}\left(p_{h}^{n+1}\right) M_{2}\left(s_{2, h}^{n+1}\right) \nabla p_{h}^{n+1} \cdot\left(\int_{0}^{p} \nabla \phi(x, q) \rho_{1}(q) d q\right) d x\right| \\
\leq \tilde{C}+\tau\left\|\nabla p_{h}^{n+1}\right\|^{2}, \\
\mid \int_{\Omega} \mathbf{K} \rho_{2}\left(p_{h}^{n+1}\right) M_{1}\left(s_{1, h}^{n+1}\right) \nabla s_{1, h}^{n+1} \cdot\left(\int_{0}^{p} \nabla \phi(x, q) \rho_{1}(q) d q\right) d x \\
\leq \tilde{C}+\tau\left\|\nabla s_{1, h}^{n+1}\right\|^{2} .
\end{array}
$$

So (3.3) holds by chosing τ small enough. In order to get inequality (3.4), multiply (3.1) by $\left(\phi \rho_{1}\right)\left(p_{h}^{n+1}\right)$ and integrate on Ω. So we get that

$$
\begin{array}{r}
\frac{1}{h} \int_{\Omega}\left(\left(\phi \rho_{1}\right)\left(p_{h}^{n+1}\right) s_{1, h}^{n+1}-\left(\phi \rho_{1}\right)\left(p_{h}^{n}\right) s_{1, h}^{n}\right)\left(\phi \rho_{1}\right)\left(p_{h}^{n+1}\right) s_{1, h}^{n+1} d x \\
\quad+\int_{\Omega}\left(\mathbf{K} \rho_{1}\left(p_{h}^{n+1}\right) \alpha\left(s_{1, h}^{n+1}\right) \nabla s_{1, h}^{n+1} \cdot \nabla\left(\left(\phi \rho_{1}\right)\left(p_{h}^{n+1}\right) s_{1, h}^{n+1}\right) d x\right. \\
+\int_{\Omega} \mathbf{K} \rho_{1}\left(p_{h}^{n+1}\right) M_{1}\left(s_{1, h}^{n+1}\right) \nabla p_{h}^{n+1} \cdot \nabla\left(\left(\phi \rho_{1}\right)\left(p_{h}^{n+1}\right) s_{1, h}^{n+1}\right) d x \\
\quad+\int_{\Omega} \phi\left(p_{h}^{n+1}\right)\left(\rho_{1}\left(p_{h}^{n+1}\right)\right)^{2}\left(s_{1, h}^{n+1}\right)^{2}\left(f_{P}\right)_{h}^{n+1} d x \\
\leq \int_{\Omega} \phi\left(p_{h}^{n+1}\right)\left(\rho_{1}\left(p_{h}^{n+1}\right)\right)^{2} s_{1, h}^{n+1}\left(s_{1}^{I}\right)_{h}^{n+1}\left(f_{I}\right)_{h}^{n+1} d x
\end{array}
$$

From the relation

$$
\begin{aligned}
\nabla\left(\left(\phi \rho_{1}\right)\left(x, p_{h}^{n+1}\right)\right) & =\nabla \phi\left(x, p_{h}^{n+1}\right) \rho_{1}\left(p_{h}^{n+1}\right)+\partial_{p} \phi\left(x, p_{h}^{n+1}\right) \nabla p_{h}^{n+1} \rho_{1}\left(p_{h}^{n+1}\right) \\
& +\phi\left(x, p_{h}^{n+1}\right) \rho_{1}^{\prime}\left(p_{h}^{n+1}\right) \nabla p_{h}^{n+1}
\end{aligned}
$$

it holds that

$$
\begin{array}{r}
\frac{1}{2 h} \int_{\Omega}\left(\left|\left(\phi \rho_{1}\right)\left(p_{h}^{n+1}\right) s_{1, h}^{n+1}\right|^{2}-\left|\left(\phi \rho_{1}\right)\left(p_{h}^{n}\right) \nabla s_{1, h}^{n}\right|^{2}\right) d x \\
+\int_{\Omega} \mathbf{K}\left|\rho_{1}\left(p_{h}^{n+1}\right)\right| \phi\left(p_{h}^{n+1}\right) \alpha\left(s_{1, h}^{n+1}\right) \nabla s_{1, h}^{n+1} \cdot \nabla s_{1, h}^{n+1} d x \\
\leq \int_{\Omega} \mathbf{K} \rho_{1}\left(p_{h}^{n+1}\right)\left(\alpha\left(s_{1, h}^{n+1}\right) \frac{\partial}{\partial p}\left(\phi \rho_{1}\right)\left(p_{h}^{n+1}\right)+M_{1}\left(s_{1, h}^{n+1}\right)\left(\phi \rho_{1}\right)\left(p_{h}^{n+1}\right)\right)\left|\nabla p_{h}^{n+1} \cdot \nabla s_{1, h}^{n+1}\right| d x \\
+\int_{\Omega} \mathbf{K} \rho_{1}\left(p_{h}^{n+1}\right) M_{1}\left(s_{1, h}^{n+1}\right) \frac{\partial}{\partial p}\left(\phi \rho_{1}\right)\left(p_{h}^{n+1}\right)\left|\nabla p_{h}^{n+1}\right|^{2} d x+C\left(\left\|\left(f_{P}\right)_{h}^{n+1}\right\|^{2}+\left\|\left(f_{I}\right)_{h}^{n+1}\right\|^{2}\right)
\end{array}
$$

By using the assumptions $(H 1),(H 4),(H 5)$ the proof of Lemma 3.1 follows.

For any sequence $\left(u_{h}^{n}\right)_{n \in \mathbb{N}}$, denote

$$
\begin{align*}
u_{h}(0) & =0 \\
u_{h}(t) & \left.\left.=\sum_{n=0}^{N-1} u_{h}^{n} \chi_{] n h,(n+1) h[}(t), \quad \forall t \in\right] 0, T\right] \tag{3.6}\\
\tilde{u}_{h}(t) & =\sum_{n=0}^{N-1}\left(1+n-\frac{t}{h}\right) u_{h}^{n}+\left(\frac{t}{h}\right) n u_{h}^{n+1} \chi_{[n h,(n+1) h]}(t), \quad \forall t \in[0, T] . \tag{3.7}
\end{align*}
$$

So,

$$
\partial_{t} \tilde{u}_{h}=\frac{1}{h} \sum_{n=0}^{N-1}\left(u_{h}^{n+1}-u_{h}^{n}\right) \chi_{] n h,(n+1) h[}(t), \quad \forall t \in[0, T] \backslash\left\{\cup_{n=0}^{N} n h\right\} .
$$

Let p_{h} and s_{h} be defined as in (3.6). In the same way we define $r_{i, h}^{n}$ the function such that $r_{i, h}^{n}=\left(\phi \rho_{i}\right)\left(p_{h}^{n}\right) s_{1, h}$ and $\tilde{r}_{i, h}^{n}$ the associated function as in (3.7).

Analogously we can define the functions $f_{P, h}$ and $f_{I, h}$ associated to $f_{P, h}^{n+1}$ and $f_{I, h}^{n+1}$.

Lemma 3.2.

$$
\begin{align*}
& \left(p_{h}\right)_{h} \text { is uniformly bounded in } L^{2}\left(0, T ; H_{\Gamma_{1}}(\Omega)\right), \tag{3.8}\\
& \left(s_{1, h}\right)_{h} \text { is uniformly bounded in } L^{2}\left(0, T ; H_{\Gamma_{1}}(\Omega)\right), \tag{3.9}\\
& \left(r_{i, h}\right)_{h} \text { is uniformly bounded in } L^{2}\left(0, T ; H_{\Gamma_{1}}(\Omega)\right), i=1,2, \tag{3.10}\\
& \left(\partial_{t} \tilde{r}_{i, h}\right)_{h} \text { is uniformly bounded in } L^{2}\left(0, T ;\left(H_{\Gamma_{1}}(\Omega)\right)^{\prime}\right), i=1,2 . \tag{3.11}
\end{align*}
$$

Proof. (Lemma 3.2.) Multiply by (3.3) by h and sum from $n=0$ to $n=$ N-1,

$$
\begin{aligned}
\int_{\Omega}\left(\mathcal{H}_{1}\left(p_{h}(T)\right)\right. & \left.s_{1, h}(T)+\mathcal{H}_{2}\left(p_{h}(T)\right) s_{2, h}(T)\right) d x+\int_{Q_{T}}|\nabla p|^{2} d x d t \\
& \leq \int_{\Omega}\left(\mathcal{H}_{1}\left(p_{0}\right) s_{1, h}(0)+\mathcal{H}_{2}\left(p_{0}\right) s_{2, h}(0)\right) d x \\
+ & \tau \int_{Q_{T}}\left|\nabla s_{1, h}\right|^{2} d x d t+C\left(\left\|f_{P}\right\|_{L^{2}\left(Q_{T}\right)}^{2}+\left\|f_{I}\right\|_{L^{2}\left(Q_{T}\right)}^{2}\right) .
\end{aligned}
$$

By summing (3.4) from 0 to $n=N-1$, it holds that

$$
\begin{align*}
& \int_{\Omega} \phi\left|\rho_{1}\left(p_{h}(T)\right) s_{1, h}(T)\right|^{2} d x+\int_{Q_{T}}\left|\nabla s_{1, h}\right|^{2} d x d t \\
& \leq \int_{\Omega} \phi\left|s_{1, h}(0)\right|^{2} d x+C\left(\left\|f_{P}\right\|_{L^{2}\left(Q_{T}\right)}^{2}+\left\|f_{I}\right\|_{L^{2}\left(Q_{T}\right)}^{2}\right) \\
& \quad+\int_{Q_{T}}\left|\nabla_{x} p\right|^{2} d x d t . \tag{3.12}
\end{align*}
$$

So

$$
\begin{aligned}
\int_{Q_{T}}|\nabla p|^{2} d x d t & \leq \int_{\Omega}\left(\mathcal{H}_{1}\left(p_{0}\right) s_{1, h}(0)+\mathcal{H}_{2}\left(p_{0}\right) s_{2, h}(0)\right) d x \\
& +\tau \int_{\Omega} \phi\left|s_{1, h}(0)\right|^{2} d x+\tau \int_{Q_{T}}|\nabla p|^{2} d x d t \\
& +\widetilde{C}\left(\left\|f_{P}\right\|_{L^{2}\left(Q_{T}\right)}^{2}+\left\|f_{I}\right\|_{L^{2}\left(Q_{T}\right)}^{2}\right) .
\end{aligned}
$$

And the control of ∇p follows by chosing τ small enough. The control of $\nabla s_{1, h}$ is then given by (3.12). As

$$
\nabla r_{i, h}=\sum_{n=0}^{N-1}\left(\partial_{p}\left(\phi \rho_{i}\right) s_{i, h} \nabla p_{h}+\left(\phi \rho_{i}\right)\left(p_{h}\right) \nabla s_{i, h}\right) \chi_{] n h,(n+1) h]}
$$

(H4), (3.8) and (3.9) lead to (3.10).
For any $\varphi \in L^{2}\left(0, T ; H_{\Gamma_{1}}^{1}(\Omega)\right)$,

$$
\begin{aligned}
\left\langle\partial_{t} \tilde{r}_{i, h}, \varphi\right\rangle & =-\int_{Q_{T}} \rho_{i}\left(p_{h}\right) M_{i}\left(s_{i, h}\right) \mathbf{K} \nabla p_{h} \cdot \nabla \varphi d x d t \\
& -\int_{Q_{T}} \rho_{i}\left(p_{h}\right) \alpha\left(s_{i, h}\right) \mathbf{K} \nabla s_{1, h} \cdot \nabla \varphi d x d t \\
& -\int_{Q_{T}} \rho_{i}\left(p_{h}\right) s_{i, h} f_{P, h} \varphi d x d t-\int_{Q_{T}} \rho_{i}\left(p_{h}\right) s_{i, h} f_{I, h} \varphi d x d t .
\end{aligned}
$$

So from the previous estimates, (3.11) is obtained.
By arguing as in ([11]), we can show the following Propsition.
Lemma 3.3. For $r_{i, h}, \tilde{r}_{i, h}, s_{1, h}, p_{h}$ and $M_{i, h}$ defined previously, it holds that when $h \rightarrow 0$

$$
\begin{aligned}
& r_{i, h}-\tilde{r}_{i, h} \rightarrow 0 \text { strongly in } L^{2}\left(Q_{T}\right), \\
& s_{1, h} \rightarrow s_{1} \text { weakly in } L^{2}\left(0, T ; H_{\Gamma_{1}}^{1}(\Omega)\right), \\
& p_{h} \rightarrow p \text { weakly in } L^{2}\left(0, T ; H_{\Gamma_{1}}^{1}(\Omega)\right), \\
& r_{i, h} \rightarrow r_{i} \text { strongly in } L^{2}\left(Q_{T}\right) .
\end{aligned}
$$

Proof. (Theorem 1.1) Consider the following weak formulation for any $i \in$ $\{1,2\}$,

$$
\begin{array}{r}
\left\langle\partial_{t} \tilde{r}_{i, h}, \varphi\right\rangle+\int_{Q_{T}} \rho_{i}\left(p_{h}\right) M_{i}\left(s_{i, h}\right) \mathbf{K} \nabla_{x} p \cdot \nabla \varphi d x d t \\
+\int_{Q_{T}} \rho_{i}\left(p_{h}\right) \alpha\left(s_{i, h}\right) \mathbf{K} \nabla s_{1, h} \cdot \nabla \varphi d x d t+\int_{Q_{T}} \rho_{i}\left(p_{h}\right) s_{i, h} f_{P, h} \varphi d x d t \\
=\int_{Q_{T}} \rho_{i}\left(p_{h}\right)\left(s_{i}^{I}\right)_{h} f_{I, h} \varphi d x d t \tag{3.13}
\end{array}
$$

where $\varphi \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$.
According to Proposition 3.3, we can pass to the limit into the equation (3.13). So Theorem 1.1 is establised.

References

[1] H.W.Alt and E. Di Benedetto. Nonsteady flow of water and oil through inhomogeneous porous media. Annali della Scuola Normale Superiore di Piza, XII, 3, 1985.
[2] G.Chavent and J.Jaffre. Mathematical models and finite elements for reservoir simulation. Single phase, multiphase and multicomponent flows through porous media Studies in Mathematics and its Applications; 17, North-Holland Publishing Comp., 1986.
[3] F.Z. Daim, R. Eymard and D.Hillhorst. Existence of a solution for a two phase flow in porous media: the case that the porosity depends on the pressure. Journal of Mathematical Analysis and Applications, 326(1):332-351, 2007.
[4] P.Fabrie and T.Gallouët. Modeling welles in porous media flows, Math. Models Methods Appl., 10 no5, 673-709, 2000.
[5] P.Fabrie and M.Langlais. Mathematical analysis of miscible displacement in porous medium, SIAM J.Math. Anal., 23, no 6, 1375-1392, 1992.
[6] P.Fabrie, P.Le Thiez and P.Tardy, On a system of nonlinear elliptic and degenerate parabolic equations describing compositional water-oil flows in porous media Nonlinear Anal., 28, no 9, 1565-1600, 1997.
[7] P.Fabrie and M.Saad. Existence de solutions faibles pour un modèle d'écoulement triphasique en milieu poreux, Ann.Fac.Sci. Toulouse, 2 (3) 337-373, 1993.
[8] G.Gagneux and M.Madaume-Tort Analyse mathématique de modèles non linéaire de l'ingénérie pétrolière Mathématiues et applications, 22, Springer, Verlag, 1995.
[9] C.Galusinski and M.Saad. On a degenerate parabolic system for compressible immiscible two-phase flows in porous media, Adv. in Diff Equ., 9 (11-12) 1235-1278, 2004
[10] C.Galusinski and M.Saad. A non linear degenerate system modelling water-gas flows in porous media., DCDS-B, 9, 281-308, 2008.
[11] C.Galusinski and M.Saad. Two compressible immiscible fluids in porous media. To appear in Journ.Diff.Equ.
[12] E.Zeidler. Nonlinear analysis and fixed-point Theorems, Berlin, Springer-Verlag, 1993.

