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Abstract. Numerical schemes for systems of transport equations are commonly con-
strained by a stability condition of Courant-Friedrichs-Lewy (CFL) type. We consider
a system modeling the steady transport of photons and electrons in the field of ra-
diotherapy. Naive discretizations of such a system are commonly constrained by a
very restrictive CFL condition. This issue is circumvented by constructing an implicit
scheme based on a relaxation approach.
We use an entropy-based moment model, namely the M1 model. Such a system of
equations possesses the non-linear flux terms of a hyperbolic system but no time deriva-
tive. The flux terms are well-defined only under a condition on the unknowns, called
realizability, which corresponds to the positivity of an underlying kinetic distribution
function.
The present numerical approach is applicable to non-linear systems which possess no
hyperbolic operator, and it preserves the realizability property. However, the discrete
equations are non-linear, and we propose a numerical method to solve such non-linear
systems.
Our approach is tested on academic and practical cases in 1D, 2D, and 3D and it is
shown to require significantly less computational power than reference methods.
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1 Introduction

The present work aims to construct a numerical solver for systems of steady transport
equations emerging in the field of radiotherapy. It is a follow-up to [5, 23, 54] and it
analyses the numerical methods used [6, 14, 50–53,55].
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The motion of energetic particles in radiotherapy can be modeled by a system of cou-
pled linear kinetic equations over the fluences of the particles, i.e. over the densities, or
distribution functions, of the particles in a phase space composed of position x∈R

3, en-
ergy ǫ∈R

+, and direction of flight Ω∈S2 on the unit sphere. Due to the high dimension-
ality of the phase space, solving directly such systems of equations, through either Monte
Carlo methods ( [15, 34, 37]) or discrete ordinates methods ( [43]; see also [44] and refer-
ences therein for a review on numerical approaches for dose computation) commonly
requires much higher numerical powers than the standard available in medical centers.
Recent technological advances lead to the development of industrial codes based on those
methods which require considerably lower computational power, i.e. the so-called fast
Monte Carlo methods (see e.g. [65]) and Acurosr code ( [26, 48, 63]).

As an alternative, in this paper, we use an angular moment extraction technique.
The resulting system is under-determined, and we use an entropy minimization pro-
cedure, leading to the so-called M1 model. We chose such a closure because it is known
to preserve the main features of the underlying kinetic model (especially positivity, hy-
perbolicity, and entropy dissipation), and it models accurately beams of particles. This
method is widely used for diverse applications in physics and biology e.g. in astrophysics
( [16,17,30]), radiative transfer ( [21,56]), in fluid dynamics ( [29,42,45]), for semiconduc-
tors ( [31, 57]) or chemotaxis ( [7]) modeling, and showed a considerable reduction of the
numerical costs.

Numerical approaches for solving moment equations are typically constrained by a
stability condition. Such a condition becomes very restrictive when considering low den-
sity media. Typically, the step size (see [5, 54] or Section 3 below) needs to be taken pro-
portional to the minimum density in the medium and therefore many steps are required.
This problem was first studied for application in radiotherapy in [5] and it was circum-
vented by the use of a clever change of variables. The previous work [54] showed another
approach based on a relaxationmethod (based on [1,11,47], see also recent work [18]) and
on the method of characteristics. However, both those approaches are inappropriate to
model the motion of photons. Indeed, those numerical schemes are applicable only to
hyperbolic systems, but the transport of photons is ill-modeled by such equations ( [49]).

In the present paper, we present an implicit scheme based on a relaxation method,
preserving the realizability property and efficient with large steps. However, the dis-
cretized equations are non-linear, and we construct an iterative solver to solve such equa-
tions.

The paper is constructed as follows. In the next section, models of transport of pho-
tons and electrons are presented, first a kinetic model, then the angular moment extrac-
tion is described. A first numerical scheme is described for 1D problems in Section 3, an
iterative algorithm adapted to this scheme is constructed and tested on an academic test
case. This numerical scheme is completed and adapted to multi-D problems in Section 4
and tested on academic test cases in 2D and 3D. Section 5 is devoted to conclusion.
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2 Models of transport of photons and electrons

Photons and electrons are characterized their position x∈R
3, their energy ǫ∈R

+ and their
direction of flight Ω ∈S2 on the unit sphere. We assume that the transported particles
interact only with the atoms of the background medium, and we neglect the influence of
such interactions on the medium. In particular, the density of atoms in the medium is
given constant data.

2.1 A kinetic model

The motion of transported photons γ and electrons e is modeled by their fluence ψγ and
ψe, i.e. their density in the (x,ǫ,Ω) space. The fluences satisfy the following steady kinetic
equations (see e.g. [25, 34])

Ω.∇xψγ(x,ǫ,Ω) = ρ(x)[Qγ→γ(ψγ)(x,ǫ,Ω)+Qe→γ(ψe)(x,ǫ,Ω)], (2.1a)

Ω.∇xψe(x,ǫ,Ω) = ρ(x)[Qe→e(ψe)(x,ǫ,Ω)+Qγ→e(ψγ)(x,ǫ,Ω)], (2.1b)

composed of time-independent free transport terms on the left-hand side and collisions
operators on the right-hand side. The collision operator Qα→β models the variations of
the fluence ψβ due to the collisions involving incident particles α. As a first approxima-
tion, we neglect the influence of the composition of the medium on the collisions. The
collision operator is only proportional to the relative density ρ>0 compared to the den-
sity of water.

We consider collision operators of the form

Qγ→γ(ψγ) = [Gγ→γ−Pγ](ψγ), (2.2a)

Qγ→e(ψγ) = Gγ→e(ψγ), (2.2b)

Qe→γ(ψe) = 0, (2.2c)

Qe→e(ψe) = ∂ǫ(Sψe)+[Ge→e−Pe](ψe), (2.2d)

where the terms Gα→β and Pβ are linear Boltzmann gain and loss terms and are given by

Gα→β(ψα)(x,ǫ,Ω) =
∫ ǫmax

ǫ

∫

S2
σα→β(ǫ

′,ǫ,Ω′.Ω)ψα(x,ǫ
′,Ω′)dǫ′dΩ′, (2.2e)

Pβ(ψβ)(x,ǫ,Ω) = σT,β(ǫ)ψβ(x,ǫ,Ω). (2.2f)

The stopping power S> 0, the differential cross sections σα→β ≥ 0 and the total cross
sections σT,β>0 are a priori given functions characterizing the collisions in a medium. As
we assume that the composition of the medium do not influence the collision behaviors,
the coefficients S, σT,β and σα→β do not depend on position x. Only the density ρ in
front of the collision operators in (2.1) depends on x. We chose those collision operators
(2.2) because they accurately model Compton, Møller, and elastic nuclear scattering (see
e.g. [25, 34]) which are the predominant effects at the considered ranges of energy.
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Remark 2.1. The computation of the integrals in the collision operators (2.2e) at energy
ǫ requires the value of the fluences ψγ and ψe at all energy ǫ′ ∈ [ǫ,ǫmax]. In practice, we
solve the equations from a maximum energy ǫmax to a minimum energy ǫmin.

This is relevant for well-posedness consideration. Indeed, under additional condi-
tions on the physical parameters S, σα→β and σT,β, the system (2.1) with an initial con-
dition at ǫmax and appropriate boundary conditions (incoming ones) is well-posed (see
e.g. [20, 60]).

This is also relevant to the considered physics, the particles are injected with a certain
energy (given data) which is deposited in the medium. Thus, their energy only decreases.

In medical physics, the function of interest is the energy deposited by the particles
per mass unit, so-called dose. At the kinetic level, this dose D is simply given by

D(x)=
∫ ǫmax

ǫmin

∫

S2
(−ǫ) ∑

α,β=γ,e

Qα→β(ψα)(x,ǫ,Ω)dΩdǫ. (2.3)

2.2 A moment model

Solving numerically kinetic equations of the form (2.1-2.2) requires high computational
power. Instead, we use the method of moments as it requires lower computational power
(see e.g. comparisons in the previous work [51, 53, 54]).

In the following, the construction of the M1 model associated to the kinetic model
(2.1-2.2) is recalled.

The moments ψ0, ψ1 and ψ2 of a fluence ψ are

ψ0(x,ǫ)=
∫

S2
ψ(x,ǫ,Ω)dΩ, ψ1(x,ǫ)=

∫

S2
Ωψ(x,ǫ,Ω)dΩ, (2.4)

ψ2(x,ǫ)=
∫

S2
Ω⊗Ωψ(x,ǫ,Ω)dΩ.

Extracting the moments of (2.1) up to order 1 yields, for i=0, 1,

∇x.ψ
i+1
γ (x,ǫ) = ρ(x)

[

Qi
γ→γ(ψ

i
γ)+Qi

e→γ(ψ
i
e)
]

(x,ǫ), (2.5a)

∇x.ψ
i+1
e (x,ǫ) = ρ(x)

[

Qi
e→e(ψ

i
e)+Qi

γ→e(ψ
i
γ)
]

(x,ǫ), (2.5b)

and the moments of the collision operators of order i are

Qi
γ→γ(ψγ) =

[

Gi
γ→γ−Pi

γ

]

(ψi
γ), (2.5c)

Qi
γ→e(ψγ) = Gi

γ→e(ψ
i
γ), (2.5d)

Qi
e→γ(ψe) = 0, (2.5e)

Qi
e→e(ψe) = ∂ǫ(Sψi

e)+
[

Gi
e→e−Pi

e

]

(ψi
e), (2.5f)
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where the terms Gi
α→β and Pi

β read

Gi
α→β(ψ

i
α)(x,ǫ) =

∫ ǫmax

ǫ
σi

α→β(ǫ
′,ǫ)ψi

α(x,ǫ
′)dǫ′, (2.5g)

Pi
β(ψ

i
β)(x,ǫ) = σT,β(ǫ)ψ

i
β(x,ǫ), (2.5h)

σi
α→β(ǫ

′,ǫ) = 2π
∫ +1

−1
µiσα→β(ǫ

′,ǫ,µ)dµ. (2.5i)

The system (2.5) is under-determined, and we add one more relation, so-called M1

closure ( [42, 46]), to close the system. This relation expresses ψ2
α as a function of ψ0

α and
ψ1

α for α=γ,e. The M1 closure consists in reconstructing the unique function ( [8–10, 32,
33, 42, 59]) of the form

ψM1
(Ω)=exp(λ.m(Ω)), m(Ω)=(1, Ω1, Ω2, Ω3), λ=(λ0, λ1, λ2, λ3), (2.6)

i.e. by computing the unique vector λ∈R
4 such that

∫

S2
ψM1

(Ω)dΩ=ψ0,
∫

S2
ΩψM1

(Ω)dΩ=ψ1. (2.7)

Then, the last moment ψ2 is expressed as

ψ2=
∫

S2
Ω⊗ΩψM1

(Ω)dΩ. (2.8)

Among the positive functions satisfying (2.7), the reconstruction (2.6) is the one minimiz-
ing Boltzmann entropy

H( f )=
∫

S2
( f log f− f )(Ω)dΩ.

This choice of closure is often used because it provides desirable properties in mathe-
matics and in physics. Indeed, with such a closure, the flux of system (2.5) is the one of
a symmetric hyperbolic system ( [27]), this system has a positive kinetic reconstruction
and it dissipates an entropy ( [42]).

Using (2.6), the closure (2.8) can be rewritten (see e.g. [41, 53])

ψ2 = ψ0

(

1−χ

2
Id+

3χ−1

2

ψ1⊗ψ1

|ψ1|2

)

, (2.9)

χ = 1+
2

|α|
(1+coth(|α|)), α=

√

λ2
1+λ2

2+λ2
3,

where χ is a scalar called Eddington factor depending on one unique scalar α. Using (2.6)
and (2.7), one computes

|ψ1|

ψ0
=

|α|coth(|α|)−1

|α|
.

which can be inverted to compute α and therefore to obtain the closure (2.9).
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Definition 2.1. The M1 closure is defined only if there exists a function of the form (2.6)
satisfying (2.7). Let us define the following set R called the realizability domain ( [36])

(ψ0,ψ1)∈R =
{

( f 0, f 1)∈R
4, s.t. | f 1|≤ f 0

}

∪(0,0R3). (2.10)

The realizability domainR is the closure set in R
4 of the moments of the functions of the

form (2.6). The moments of all non-negative integrable functions ( [8–10]) and measures
( [19, 36]) belong to the set R.

The requirement (2.10) needs to be kept inmindwhen constructing numerical schemes
because the flux in (2.5) becomes ill-defined if this property is violated. In particular, in
the next section, we use the following remark to prove that a numerical scheme preserves
the realizability property.

Remark 2.2. The realizability domain is a convex cone. Therefore, any scheme con-
structed based on a positive combination of realizable vector preserves the realizability
property.

Since the differential cross sections σα→β are also positive scalars, their moments need
to satisfy the following realizability condition ( [36])

|σ1
α→β|≤σ0

α→β. (2.11)

3 A discretization for 1D problems

We aim to construct a solver for the moment system (2.5).

For the sake of simplicity, we describe the numerical approach for problems in one
spatial dimension. The results are generalized to multidimensional problems in the next
section.

In the first subsection, we present the main problem with the discretization of (2.5)
and we describe and test a first numerical method in the remaining subsections.

3.1 The problem with fast characteristics in 1D

First, we rewrite the problem (2.5), thenwe present themain difficultywith the discretiza-
tion of the rewritten equations.

3.1.1 Problem settings

In 1D, the system (2.5) can be rewritten under the vectorial form

∂xF(ψ)(x,ǫ) = ρ(x)Q(ψ)(x,ǫ), (3.1a)
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where the unknown is ψ=(ψγ, ψe)∈R2, and ψα =(ψ0
α, ψ1

α)∈R are the moments of the

fluence of particles α=γ,e. The fluxes F(ψ) and the collision operator Q(ψ) are defined
over R2 by

F(ψ) =
(

FM1
(ψγ), FM1

(ψe)
)

, (3.1b)

Q(ψ) =
(

Qγ→γ(ψγ)+Qe→γ(ψe), Qe→e(ψe)+Qγ→e(ψγ)
)

, (3.1c)

and are composed of the moments of the kinetic flux and collision operator

FM1
(ψα) = (ψ1

α, ψ2
α), (3.1d)

Qα→β(ψα) =
(

Q0
α→β(ψ

0
α), Q1

α→β(ψ
1
α)
)

, (3.1e)

where ψ2
α is given by the closure relation (2.8). Before describing the numerical ap-

proaches, we introduce the following notations.

Notation 1. The superscript n refers to the discretization in energy ǫ and the subscript l
to the discretization in the x variable. In the next section, the subscript m will refer to the
discretization in the second space variable y.

According to Remark 2.1, the energy grid is such that ǫn>ǫn+1.

3.1.2 Position of the problem

Standard methods to solve (3.1a) create stiff terms at the discrete level, and are therefore
very time-consuming for practical applications in medical physics. Such stiffness arises
in weakly collisional media, e.g. when the background medium has a low density ρ. This
problem was illustrated in [5, 54] through a 1D electron transport equation of the form

∂xFM1
(ψe)=ρ[∂ǫ(Sψe)+Aψe], A=

(

0 0
0 T

)

, (3.2)

with T∈R
+ by using the scheme

Fn
e,l+ 1

2

−Fn
e,l− 1

2

∆x
− ρl

Snψn
e,l−Sn+1ψn+1

e,l

∆ǫn
=ρlA

nψn
e,l , (3.3a)

with numerical fluxes of Lax-Friedrichs type ( [40, 61])

Fn
e,l+ 1

2
=

1

2

[

FM1
(ψn

e,l+1)+FM1
(ψn

e,l)+(ψn
e,l+1−ψn

e,l)
]

. (3.3b)

Such a scheme is consistent with (3.2), however it is only stable under the following
Courant-Friedrichs-Lewy (CFL) condition ( [40, 54, 61])

∆ǫn≤Sn∆xmin
l
(ρl). (3.4)
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In the domain of approximate Riemann solvers, (3.4) corresponds to imposing that the
waves emerging from two different interfaces do not cross each other. The solutions of
the Riemann problems at two interfaces do not ovelap (see e.g. computations in [54]). In
the domain of relaxation schemes, it is a consequence of the subcharacteristic condition
and of the standard CFL on the relaxed equations.

The condition (3.4) turns very restrictivewhen considering low collisionalmedia, here
when ρ is small. In such a case, one requires a very large number of energy steps and
therefore considerably long computational times are necessary.

A first solution to this problem was proposed in [5] by the use of a change of vari-
able. We proposed an alternative in [54] through a method of characteristic applied on a
relaxed system for (3.2). However, both of these methods can be used only on hyperbolic
systems, and they are therefore not applicable to the coupled photons-electrons transport
equations (2.5).

We present our discretization of the system (3.1) in three parts:

• Step 1 (Subsection 3.2): the discretization of the advection operator. This corre-
sponds to the discretization over the position variable x.

• Step 2 (Subsection 3.3): the discretization of the collision operator. This corresponds
to the discretization over the energy variable ǫ.

• Step 3 (Subsection 3.4): both discretizations are gathered to construct a numeri-
cal scheme, and we construct an iterative algorithm to solve the resulting discrete
equations.

3.2 Discretization of the advection operator

In the spirit of [54], we construct a numerical scheme for (2.5) based on the relaxation
method developed in [1, 11, 12, 47]. We first recall the principle of the relaxation method.

The relaxation method is presented to justify the construction of the implicit scheme
(3.11) below. The aim is to isolate the non-linearity in (3.1a) into a relaxation term and to
solve more easily the remaining linear part by the use of an implicit scheme.

We perform a vectorial BGK approximation of the system (2.5). In practice, this con-
sists in replacing the non-linear flux term by a linear advection term, and a relaxation
term is added the right-hand side. Let us introduce the following system of two relaxed
equations

c−∂xf
−
τ −ρQ(f−τ ) =

M−−f−τ
τ

, (3.5a)

c+∂xf
+
τ −ρQ(f+τ ) =

M+−f+τ
τ

, (3.5b)

where f±τ are the unknowns relaxing toward the equilibrium represented by theMaxwellians
M±(ψ)∈R2, and τ is a relaxation parameter. The unknowns f±τ are only related to the
original ψ in the limit τ→0.
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We chose the Maxwellians M±(ψ)∈R2 such that they relate to the original system
through the following consistency formulae

M++M−=ψ∈R2, c+M++c−M−=F(ψ), (3.6a)

and the relaxation velocities c±(ψ)∈R such that they bound the physical velocities. This
leads to the following stability requirement ( [1, 11, 12])

Sp
(

F′(ψ)
)

⊂ [c−, c+]. (3.7)

Formally, at the limit τ→0 in (3.5), one obtains f±0 =M±. Then, replacing f± by M±

and summing the two equations (3.5) yields (3.1). Therefore, one recovers the solution of
the original equation (3.1) in the limit case τ→0 as

ψ= lim
τ→0

(

f+τ +f−τ
)

. (3.8)

We refer to [1, 2, 11, 12, 47] for a proper analysis of this asymptotic limit.
For the sake of simplicity, in the 1D case, we use the following classical result (see

e.g. [4, 13, 54]), to choose the relaxation parameters.

Lemma 3.1. The eigenvalues of the Jacobian F′M1
(ψα) of the M1 fluxes are bounded by 1 for all

ψα ∈R, that is

∀ψα ∈R, Sp(F′M1
(ψα))⊂]−1,1[.

Furthermore, for all realizable moments ψα ∈R, one has

ψα±FM1
(ψα)∈R.

Thus, in 1D, we use the following parameters

c+=1=−c−, M±=
ψ±F(ψ)

2
∈R2, (3.9a)

±∂xf
±
τ −ρQ(f±τ )=

M±−f±τ
τ

, (3.9b)

which satisfy the requirements (3.6).
Then, we use upwind fluxes on (3.9b) leading to the scheme

f±,n
τ,l −f±,n

τ,l∓1

∆x
−ρQ(f±,n

τ,l )=
M±−f±,n

τ,l

τ
. (3.10)

Then, summing these equations over ± and having τ → 0 leads to define the following
scheme over ψ

Fn
l+ 1

2

−Fn
l− 1

2

∆x
−[ρQ(ψ)]nl =0, (3.11a)

Fn
l+ 1

2
=

1

2

[

F(ψn
l+1)+F(ψn

l )−(ψn
l+1−ψn

l )
]

. (3.11b)

The term [ρQ(ψ)]nl will be defined in the next subsection.
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Remark 3.1. Since the collision operator Q is linear, one should recover

Q(ψ)nl =Q(M−+M+)nl =Q(M−)nl +Q(M+)nl .

3.3 Discretization of the collision operator

We simply discretize the collision terms with a quadrature rule for the integrals in ǫ and
an implicit Euler discretization for the term ∂ǫ(Sψe). This reads

[ρQ(ψ)]nl = ρlQ(ψ)nl , (3.12a)

Q(ψ)nl =
(

Qγ→γ(ψγ)
n
l +Qe→γ(ψe)

n
l , Qe→e(ψe)

n
l +Qγ→γ(ψγ)

n
l

)

, (3.12b)

Qα→β(ψα)
n
l =

(

Q0
α→β(ψ

0
α)

n
l , Q1

α→β(ψ
1
α)

n
l

)

, (3.12c)

where each discrete collision operators is, for i=0, 1

Qi
γ→γ(ψ

i
γ)

n
l =

n

∑
n′=1

σi,n′ ,n
γ→γψi,n′

γ,l ∆ǫn
′
−σn

T,γψi,n
γ,l , (3.12d)

Qi
γ→e(ψ

i
γ)

n
l =

n

∑
n′=1

σi,n′ ,n
γ→e ψi,n′

γ,l ∆ǫn
′
, (3.12e)

Qi
e→γ(ψ

i
e)

n
l = 0, (3.12f)

Qi
e→e(ψ

i
e)

n
l =

Sn−1ψi,n−1
e,l −Snψi,n

e,l

∆ǫn
+

n

∑
n′=1

σi,n′,n
e→e ψi,n′

e,l ∆ǫn
′
−σn

T,eψ
i,n
e,l . (3.12g)

Remark 3.2. • We choose this particular discretization because it leads to an implicit
scheme of the form (3.11-3.12), in the sense that the fluxes Fn

l+ 1
2

are evaluated at the

latest energy step ǫn. In practice, the obtained scheme is efficient even without im-
posing a restriction on the step size ∆ǫn, which circumvents the problem presented
in Subsection 3.1.

• By construction, we expect the discretization to be of order one in ∆x and in ∆ǫn

when the solution is smooth. Thus, the scheme (3.11-3.12) is consistent with the
continuous equation (3.1a).

• In order to use the present scheme, one needs to compute ψn
l for all l based on ψn′

l
for n′ < n. Here, this implies solving the non-linear equation (3.11-3.12) over the
vector (ψn

l )l=1,...,lmax
∈ (R2)lmax .
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3.4 An iterative solver for the 1D scheme

Writing together the discretization of the 1D advection and the collision term with the
relaxation parameters (3.9) yields the following numerical scheme

−L(ψn
l−1)+D(ψn

l )−U(ψn
l+1)=ρlR

n
l , (3.13a)

where the operators L and U are non-linear, and D is linear and invertible. Those opera-
tors are

L(ψn
l−1)=

ψn
l−1+F(ψn

l−1)

2∆x
, U(ψn

l+1)=
ψn

l+1−F(ψn
l+1)

2∆x
, (3.13b)

D(ψn
l )=

(

Id

∆x
+ρlA

n

)

ψn
l , (3.13c)

and the matrix An and the source Rn
l are

Anψn
l = (Bn

0ψn
l , Bn

1ψn
l , Dn

0ψn
l , Dn

1ψn
l ), (3.13d)

Rn
l = (Cn

0 , Cn
1 , En

0 , En
1 )+BCn

l , (3.13e)

with, for i=0, 1,

Bn
i ψn

l = (σn
T,γ−σi,n,n

γ→γ∆ǫn)ψi,n
γ,l , Cn

i =
n−1

∑
n′=1

σi,n′ ,n
γ→γψi,n′

γ,l ∆ǫn
′
, (3.13f)

Dn
i ψn

l =

(

Sn

∆ǫn
+σn

T,e−σi,n,n
e→e ∆ǫn

)

ψi,n
e,l −σi,n,n

γ→eψ
i,n
γ,l∆ǫn, (3.13g)

En
i =

Sn−1

∆ǫn
ψi,n−1
e,l +

n−1

∑
n′=1

(

σi,n′,n
γ→γψi,n′

γ,l +σi,n′ ,n
e→e ψi,n′

e,l

)

∆ǫn
′
. (3.13h)

Defining properly boundary conditions for moment models based on the underlying
kinetic ones remains an open problem (see e.g. [28, 38, 58] for linear moment equations).
For the sake of simplicity, we use here discrete boundary conditions defined as a source
term in (3.13e) with

BCn
l =ψn

0δ1,l+ψn
lmax+1δlmax,l ,

with given ψn
0 ∈R2 and ψn

lmax+1∈R2.
In order to use this scheme, one needs to solve (3.13) at each energy step n, which is a

non-linear equation on the vector (ψn)l=1,...,lmax
. For this purpose, we propose an iterative

solver inspired of [22], which is tested in [6, 50, 52, 53, 55].

Algorithm 1. Initialization: At energy step n, set ψ
n,(0)
l =ψn−1

l for all l.
Iteration: Compute iteratively

ψ
n,(k+1)
l =D−1

(

L(ψ
n,(k)
l−1 )+U(ψ

n,(k)
l+1 )+ρlR

n
l

)

, (3.14)

until convergence.
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Proposition 3.1. Suppose that Rn
l ∈R2 is realizable for all l, and that

min
l

ρl∆xmn
A>CFL, CFL := sup

ψ∈R2

(

(MF−mF)(ψ)

2

)

, (3.15)

where

mn
A=min Sp(An), mF(ψ)=min Sp(F′(ψ)), MF(ψ)=max Sp(F′(ψ))

are respectively the minimum eigenvalue of the matrix An, of the Jacobian F′(ψ) and the
maximum eigenvalue of F′(ψ).
Then, there exists a unique solution (ψn)l=1,...,lmax

∈ (R2)lmax satisfying (3.13) for all l.
Moreover, Algorithm 1 converges to this solution.

Remark 3.3. • In practice, the physical parameters S, σT,β and σα→β satisfy addi-
tional conditions that come either from the physics or from the study of the well-
posedness of (2.1). These conditions lead to imposing that mA(∆ǫn) is a strictly
positive strictly decreasing function of ∆ǫn. We assume this holds in the rest of the
paper, and we refer to [20,51,60] for more details on those conditions on the physi-
cal parameters.
Under such requirements, the condition (3.15) corresponds to a CFL-like condition,
which restricts the size of ∆ǫn based on ∆x.

• Furthermore, we add the condition (3.15) here in order to prove that Algorithm 1
converges. However, the bound (3.18) used in the proof below is not optimal. We
have not yet found any theoretical nor experimental test case violating (3.15) that
lead to a non-converging sequence (ψn,(k))k=1,...,∞, even with very low collisional
media (for small ρl). In the test cases below, ∆x and ∆ǫn do not necessarily respect
the condition (3.15) and we always verify that Algorithm 1 has converged at every
step n in the experiments below. We refer e.g. to [3,24,35,64] and references therein
for more complete study on convergence for such algorithms.

Proof. Define the operator J over ψ∈ (R2)lmax by

ψn,(k+1) = J(ψn,(k)),

where the l-th component J(ψn,(k+1))l is given by (3.14), i.e.

J(ψn,(k+1))l=

(

Id

∆x
+ρlA

n

)−1
[

ρlR
n
l +

ψ
n,(k)
l+1 −F(ψ

n,(k)
l+1 )

2∆x
+

ψ
n,(k)
l−1 +F(ψ

n,(k)
l−1 )

2∆x

]

. (3.16)

First, we verify that J preserves the realizability from one step to another.

Let us suppose ψn,(k)∈(R2)lmax . Then, ψ
n,(k)
l+1 −F(ψ

n,(k)
l+1 )∈R2 and ψ

n,(k)
l−1 +F(ψ

n,(k)
l−1 )∈R2

are realizable according to the second part of Lemma 3.1. Thus, the term between square
brackets in (3.16) is realizable according to Remark 2.2.
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Now, we need to prove that the operator ( Id
∆x+ρlA

n)−1 preserves the realizability
property. Using its definition (3.13), the matrix An can be rewritten

An=









a0 0 0 0
0 a1 0 0
b0 0 c0 0
0 b1 0 c1









,

(

Id

∆x
+ρlA

n

)−1

=









α0 0 0 0
0 α1 0 0
β0 0 γ0 0
0 β1 0 γ1









where

ai = σn
T,γ−σi,n,n

γ→γ∆ǫn, αi =
1

1
∆x+ρlai

,

bi = −σi,n,n
γ→e∆ǫn, βi = −

bi

( 1
∆x+ρlai)(

1
∆x+ρlci)

,

ci = Sn

∆ǫn +σn
T,e−σi,n,n

e→e ∆ǫn, γi =
1

1
∆x+ρlci

.

Using (2.11) leads to

0≤ a0≤ a1, 0≤ c0≤ c1 and −b0≥−b1≥0

and so
α0≥α1>0, β0≥β1>0 γ0≥γ1>0.

Then, one verifies that if ψ∈R2, then
(

Id
∆x+ρlA

n
)−1

ψ is a positive combination of vectors

satisfying the criteria (2.10). Thus, the operator
(

Id
∆x+ρlA

n
)−1

preserves the realizability,

and J is an operator from (R2)lmax into itself.
Now, in order to prove that Algorithm 1 converges, we prove that J is a contraction.

Differentiating J(ψ) with respect to ψ reads

dψ J(ψ) =



















0 Jn1,2 0 ... 0

Jn2,1 0 Jn2,3 0
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . Jlmax−1,lmax

0 ... 0 Jlmax,lmax−1 0



















, (3.17a)

Jnl,l−1 =

(

Id

∆x
+ρlA

n

)−1( Id+F′(ψl−1)

2∆x

)

, (3.17b)

Jnl,l+1 =

(

Id

∆x
+ρlA

n

)−1( Id−F′(ψl+1)

2∆x

)

, (3.17c)

so dψ J(ψ) is a block matrix with non-zero blocks on the super- and sub-diagonal.
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Using a Gershgorin theorem for block matrices (see e.g. [62]) provides

Sp
(

dψ J(ψ)
)

⊂ [−r,r],

with a spectral radius satisfying

r≤max
l

|||Id−F′(ψl)|||+|||Id+F′(ψl)|||

2∆xminSp
(

Id
∆x+ρlAn

) .

Using Lemma 3.1 and the fact that An is positive definite, we obtain upper and lower
bounds on the eigenvalues of Id±F′(ψ) and of Id+ρlA

n∆x that leads to

r ≤ max
l

1+
(MF−m f )(ψl)

2

1+ρlm
n
A∆x

. (3.18)

Thus, r< 1 under condition (3.15), J is a contraction and Algorithm 1 converges to the
unique fixed point of J.

Remark 3.4. • The iterative method proposed in Algorithm 1 can be interpreted as
a Jacobi method with non-linear extra-diagonal term. Indeed, the desired solution
ψn solves (3.13) which can be rewritten

























D −U 0 ... . . . . . . 0
−L D −U 0 ... . . . 0
0 −L D −U 0 ... 0
...

. . .
. . .

. . .
. . . . . .

...
...

. . .
. . .

. . .
. . .

. . .
...

0 .. . . . . 0 −L D −U

0 ... . . . . . . 0 −L D

























ψn=



























ρ1R
n
1

ρ2R
n
2

...

...

...
ρlmax−1R

n
lmax−1

ρlmax
Rn

lmax



























, (3.19)

where L and U are non-linear and D is linear, and they are defined in (3.13).

Similarly, we implemented and tested Gauss-Seidel and successive over-relaxation
(SOR) methods for the non-linear problem (3.19). For example, the non-linear
Gauss-Seidel type method consists in solving alternatively

ψ
n,(k+1)
l =D−1

(

L(ψ
n,(k+1)
l−1 )+U(ψ

n,(k)
l+1 )+ρlR

n
l

)

, (3.20a)

ψ
n,(k+1)
l =D−1

(

L(ψ
n,(k)
l−1 )+U(ψ

n,(k+1)
l+1 )+ρlR

n
l

)

, (3.20b)

in Algorithm 1 instead of (3.14). One can easily adapt the proof of Proposition 3.1
for such algorithms.
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• The convergence rate of Algorithm 1 depends on the eigenvalues of dψ J(ψ). In the
computations (3.18), the worst possible convergence rate corresponds to the case
where (MF−mF)(ψl) has the highest value. Such highest value is obtained in the
limit case of a purely anisotropic distribution (see e.g. computations in [4]) modeled
by a fluence

ψ(Ω)=Kδ(Ω1−1).

Thus, Algorithm 1 is slower if the expected solution of (2.1) possesses purely anisotropic
regions.

• Algorithm 1 is based on a fixed point theorem. One may think of using Newton’s
method to accelerate the convergence. We did not develop such a method here
since we did not compute numerically the Jacobian F′(ψ). We only used upper
bounds of its eigenvalues in the proof of Proposition 3.1. The construction of such
Newton-like method would require an approximation of F′ adapted to the approx-
imation of F that we used in the numerical test cases. We leave this development as
a perspective for improving the convergence speed of Algorithm 1.

3.5 Numerical experiments

We study experimentally the convergence of the present method. Especially, we consider
two convergence rates:

• The convergence with respect to the number kmax of iterations in Algorithm 1.

• The convergence with respect to the ∆ǫn and ∆x of the numerical scheme (3.13).

For this purpose, we consider the following test case.
We consider a 1D domain Z= [0 cm,8 cm] uniformly composed of water (i.e. ρ= 1)

and impose a source of electrons of ǫ0=5 MeV modeled by the initial condition

ψe(x,5 MeV,Ω) = K1[3 cm,5 cm](x), ψγ(x,5 MeV,Ω)=0, (3.21a)

and we use a zero condition flux on the boundary which corresponds to extracting the
moments of distributions of the form

for Ω1>0, ψe(0 cm,ǫ,Ω)=0, ψγ(0 cm,ǫ,Ω)=0, (3.22a)

for Ω1<0, ψe(8 cm,ǫ,Ω)=0, ψγ(8 cm,ǫ,Ω)=0. (3.22b)

Remark that the equations of system (2.1) are decoupled. As we impose no source of
photons, and due to the considered physics, no photons are created in the system. Thus,
the solution of (2.1a) is simply ψγ = 0, and the discretization (3.13) can be simplified
when considering beams of electrons only. This is no longer true when considering more
complex physics, e.g. when taking into account Bremsstrahlung effect [39, 44].
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The mesh is composed of 800 cells in x uniformly distributed. The step size ∆ǫn and
the grid in ǫ are such that

∆ǫn=5Sn∆x. (3.23)

This corresponds approximately to fixing

mn
A∆x=5.

With such a grid size, we aim to avoid having numerical diffusion effects depending on
∆ǫn.

This test case is academic and aims only to study experimentally the numerical con-
vergence rates. We provide the converged dose normalized by its maximum value com-
puted with Algorithm 1 on Fig. 1 as an indication. For more examples with different
applications in medical physics, we refer e.g. to [6, 50, 53, 55].

0 2 4 6 8

x (cm)

0

0,2

0,4

0,6

0,8

1

D
 /

 D
m

ax

Dose

Figure 1: Normalized dose obtained with Algorithm 1 for the beam of electron (3.22).

3.5.1 Convergence results of the iterative algorithm

The iterative method of Algorithm 1 requires a criterion to stop.

A first naive criterion consists in fixing the number of iterations kmax. This is not
optimal, neither in terms of precision nor in terms of computational costs. At each en-
ergy step, the desired solution follows (3.13) for all l. Then, one better stopping criterion
consists in defining the residual

rn,(k)=max
l

∥

∥

∥−L(ψ
n,(k)
l−1 )+D(ψ

n,(k)
l )−U(ψ

n,(k)
l+1 )−ρlR

n
l

∥

∥

∥

∞
, (3.24)
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and choose to stop Algorithm 1 as soon as k satisfies

rn,(k)≤ rmax. (3.25)

Fig. 2 depicts the minimum number of iterations k required in Algorithm 1 such that
the residual rn,(k) satisfies the criterion (3.25) with rmax fixed at 1, 10−1 and 10−2 as a
function of the energy step n.
Similarly, Fig. 3 depicts the final residual rn,(kmax) obtained by fixing kmax to 30, 50 or 70
as a function of the energy step n.
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Figure 2: Number of iterations k as a function of the
energy step n for a given maximum residual rmax.
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Figure 3: Final residual rn,(kmax) as a function of the
energy step n for a given number of iteration kmax.

In the first steps where the values of ψb
e , Algorithm 1 requires numerous iterations to

converge. In this range of energy, ∂ǫψ≡ (ψn−1−ψn)/∆ǫn is large. Thus, the initializa-
tion ψn,(0)=ψn−1 of Algorithm 1 is far from the desired solution. Therefore, the present
algorithm requires more iterations to converge.

The convergence rate progressively raises, i.e. the final residual rn,(kmax) and the num-
ber of iterations k reduce.

The drop of rn,(kmax) and of iterations k near the end of the simulation is due to the
physical parameters used. The stopping power S skyrockets near the threshold ǫ= ǫmin.
According to the definition ofD in (3.13), this implies that the eigenvalues ofD also raise
at the lowest energy. Thus, the eigenvalues of J drop to zero, and so the convergence rate
of Algorithm 1 skyrockets. This explains the shape of the curves k and rn,(kmax) in the last
steps n.

In all the remaining test cases, we fix the parameters rmax and kmax sufficiently high
such that the residual rmax is always reached during the computations, and we present
only converged results.

3.5.2 Convergence results of the numerical scheme

In this subsection, we verify experimentally that the numerical scheme is converging.
The maximum residual rmax is fixed at 5.10−3.
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Since there are no analytic solution, we use the solution obtained with the largest
number of cells as reference solution. The spatial domain Z = [0,8 cm] is uniformly
meshed. We choose the number of spatial cells lmax at 100, 200, 400, 800 and 1600 cells
and 3200 cells for the reference solution. We represent the convergence rate in ∆x through
the discrete L1, L2 and L∞ errors between the reference solution, i.e. the most refined one,
and the less refined ones

ErrorL1(∆x)=
lmax

∑
l=1

nmax

∑
n=1

∣

∣ψn
l −ψ̃

n
l

∣

∣∆̃x ˜∆ǫn, ErrorL2(∆x)=

√

√

√

√

lmax

∑
l=1

nmax

∑
n=1

(ψn
l −ψ̃

n
l )

2∆̃x ˜∆ǫn,

ErrorL∞(∆x)= max
l=1,...,lmax

max
n=1,...,nmax

∣

∣ψn
l −ψ̃

n
l

∣

∣,

where ψn
l is the solution with mesh cells of size ∆x and an energy step size ∆ǫn given by

(3.23) approximated by piecewise linear polynomials at the points (xl ,ǫ
n) on the finest

mesh (of grid size ∆x) and ψ̃
n
l is the most refined solution at the same points (xl ,ǫ

n).
Those errors are plotted on Fig. 4 as a function of ∆x. As expected, we observe a conver-
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∞
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Figure 4: Discrete L1, L2 and L∞ errors compared to the most refined solution as a function of ∆x with ∆ǫn

given by (3.23).

gence rate of order 1, the mean slope of the curves obtained on Fig. 4 being of 1.230901
for the L1 error, 1.213013 for the L2 error and 0.974655 for the L∞ error.

4 A numerical approach for multi-D problems

We extend here the previous approach for coupled electrons and photons transport in
multi-D media. The next three subsections describe the difficulties and the method in 2D
through the model

∂xF1(ψ)+∂yF2(ψ)=ρQ(ψ). (4.1)
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However, the method is also valid in 3D and a 3D test case is provided in Subsection 4.4.

4.1 A correction of the numerical transverse diffusion

As described in [4, 55] and through the experimental results below, using the relaxation
parameters (3.9) when considering 2D photon beams leads to a numerical overestimation
of the diffusion effects in the direction orthogonal to the beams.

In multi-D, the velocities c± are vectors instead of scalars. We consider two relaxation
velocities c±i =±|c±i |ei per Cartesian direction ei. The relaxation parameters need to satisfy
( [1, 11, 47])

∀d∈S2, Sp
(

F′d(ψ)
)

⊂

[

min
i,±

(c±i .d), max
i,±

(c±i .d)

]

, (4.2a)

∑
i,±

M±
i =ψ, ∑

i,±

(c±i .d)M
±
i =Fd(ψ), (4.2b)

where
Fd(ψ)=d1F1(ψ)+d2F2(ψ)=(ψ1

γ.d, ψ2
γ.d, ψ1

e .d, ψ2
e .d)

is the flux in the direction d. In practice, we use the relaxation velocities c±i defined
in [55] that approximate numerically the maximum physical velocities in each Cartesian
directions

|c±i |≈max
(

δ, max
[

Sp
(

±F′i(ψ)
)])

.

Here, δ=10−8 is a constant chosen arbitrarily small to avoid numerical divisions by zero.
We use Maxwellians of the form

M±
i =µ±

i ψ+λ±
i Fi(ψ).

In order to satisfy (4.2b), one finds that µ±
i and λ±

i need to satisfy

∑
i,±

µ±
i =1, (4.3a)

λ−
i +λ+

i =0, −|c−i |µ
−
i +|c+i |µ

+
i =0, −|c−i |λ

−
i +|c+i |λ

+
i =1. (4.3b)

The last three equations (4.3b) can be rewritten

µ−
i =

|c+i |

|c−i |
µ+
i , λ±

i =±
1

|c+i |+|c−i |
.

In practice, in 2D, we choose to fix the last degrees of freedom by

µ±
i =

|c∓i |

2(|c+i |+|c−i |)
,
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which satisfies (4.3a). This leads to write the Maxwellians

M±
i =

|c̃∓i |ψ±2Fi(ψ)

2(|c̃+i |+|c̃−i |)
∈R2, (4.4)

where |c̃±i | is either |c
±
i | or the minimum scalar such that (4.4) is realizable.

Applying the method described in Subsection 3.2 to the 2D equation (4.1) leads to
write the scheme

Fn
l+ 1

2 ,m
−Fn

l− 1
2 ,m

∆x
+
Fn
l,m+ 1

2

−Fn
l,m− 1

2

∆y
−[ρQ(ψ)]nl,m=0, (4.5a)

Fn
l+ 1

2 ,m
= c−,n

l+ 1
2 ,m

λ−,n

l+ 1
2 ,m

F1(ψ
n
l+1,m)+c+,n

l+ 1
2 ,m

λ+,n

l+ 1
2 ,m

F1(ψ
n
l,m)

+
(

c−,n

l+ 1
2 ,m

µ−,n

l+ 1
2 ,m

ψn
l+1,m+c+,n

l+ 1
2 ,m

µ+,n

l+ 1
2 ,m

ψn
l,m

)

, (4.5b)

Fn
l,m+ 1

2
= c−,n

l,m+ 1
2

λ−,n

l,m+ 1
2

F2(ψ
n
l,m+1)+c+,n

l,m+ 1
2

λ+,n

l,m+ 1
2

F2(ψ
n
l,m)

+
(

c−,n

l,m+ 1
2

µ−,n

l,m+ 1
2

ψn
l,m+1+c+,n

l,m+ 1
2

µ+,n

l,m+ 1
2

ψn
l,m

)

, (4.5c)

where the coefficients in the discrete fluxes are

λ±,n
j,k =±

1

|c+,n
j,k |+|c−,n

j,k |
, µ±,n

j,k =
|c∓,n

j,k |

2(|c+,n
j,k |+|c−,n

j,k |)
,

c±,n

l+ 1
2 ,m

=±max
(

|c̃±1 (ψ
n
l+1,m)|,|c̃

±
1 (ψ

n
l,m)|

)

,

c±,n

l,m+ 1
2

=±max
(

|c̃±2 (ψ
n
l,m+1)|,|c̃

±
2 (ψ

n
l,m)|

)

,

for (j,k)=(l+ 1
2 ,m) or (j,k)=(l,m+ 1

2 ).

4.2 An iterative solver for the multi-D scheme with the transverse diffusion
correction

We propose to adapt Algorithm 1 when the coefficients c±i are not constants. In this case,
the scheme (4.5) can be rewritten under the form

ρlR
n
l = −L1(ψ

n
l−1,m)−L2(ψ

n
l,m−1)+D(ψn

l,m)

−U1(ψ
n
l+1,m)−U2(ψ

n
l,m+1), (4.6a)
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where the operators L1, L2, U1, U2 and D yield

L1(ψ
n
l−1,m) =

c+,n

l− 1
2 ,m

∆x

[

µ+,n

l− 1
2 ,m

ψn
l−1,m+λ+,n

l− 1
2 ,m

F1(ψ
n
l−1,m)

]

, (4.6b)

L2(ψ
n
l,m−1) =

c+,n

l,m− 1
2

∆y

[

µ+,n

l,m− 1
2

ψn
l,m−1+λ+,n

l,m− 1
2

F2(ψ
n
l,m−1)

]

, (4.6c)

U1(ψ
n
l+1,m) =

−c−,n

l+ 1
2 ,m

∆x

[

µ−,n

l+ 1
2 ,m

ψn
l+1,m+λ−,n

l+ 1
2 ,m

F1(ψ
n
l+1,m)

]

, (4.6d)

U2(ψ
n
l,m+1) =

−c−,n

l,m+ 1
2

∆y

[

µ−,n

l,m+ 1
2

ψn
l,m+1+λ−,n

l,m+ 1
2

F2(ψ
n
l,m+1)

]

, (4.6e)

D(ψn
l,m) =

(

ρlA
n+βn

l,m Id
)

ψn
l,m+γn

1,l,mF1(ψ
n
l,m)+γn

2,l,mF2(ψ
n
l,m), (4.6f)

where the coefficients βn
l,m, γn

1,l,m and γn
2,l,m read

βn
l,m =

c+,n

l+ 1
2 ,m

µ+,n

l+ 1
2 ,m

−c−,n

l− 1
2 ,m

µ−,n

l− 1
2 ,m

∆x
+
c+,n

l,m+ 1
2

µ+,n

l,m+ 1
2

−c−,n

l,m− 1
2

µ−,n

l,m− 1
2

∆y
,

γn
1,l,m =

c+,n

l+ 1
2 ,m

λ+,n

l+ 1
2 ,m

−c−,n

l− 1
2 ,m

λ−,n

l− 1
2 ,m

∆x
,

γn
2,l,m =

c+,n

l,m+ 1
2

λ+,n

l,m+ 1
2

−c−,n

l,m− 1
2

λ−,n

l,m− 1
2

∆y
.

The difficulty here emerges from the non-linearity of the operator D to invert and from
the realizability requirements (4.2).

Let us decompose the operator D into

D(ψ) = Dimp(ψ)−Dexp(ψ), (4.7)

Dimp(ψ) =
[

ρlA
n+(αn

l,m+βn
l,m)Id

]

ψ,

Dexp(ψ) = αn
l,mψ+γn

1,l,mF1(ψ)+γn
2,l,mF2(ψ),

such that Dimp is linear and invertible. Here, we choose the coefficient αn
l,m non-negative

such that the operator Dexp preserves the realizability. In practice, we choose

αn
l,m= |γn

1,l,m|+|γn
2,l,m|.

Finally, Algorithm 1 is rewritten by modifying (3.14). This leads to the following algo-
rithm.

Algorithm 2. Initialization: Set ψ
n,(0)
l,m =ψn−1

l,m for all l,m.
Iteration: Compute iteratively

ψ
n+1,(k+1)
l,m = D−1

imp

(

Rn
l,m+L1(ψ

n+1,(k)
l−1,m )+L2(ψ

n+1,(k)
l,m−1 ) (4.8)

+Dexp(ψ
n+1,(k)
l,m )+R1(ψ

n+1,(k)
l−1,m )+R2(ψ

n+1,(k)
l,m−1 )

)

,
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until convergence.

Remark 4.1. • We artificially add the parameter αn Id on both sides of (4.7) when
splitting the operator D in two parts. This enforces the preservation of the real-
izability property and makes the algorithm more stable. However, this reduces the
convergence rate of Algorithm 2.

• One may reproduce the computations from the proof of Proposition 3.1 with (4.8)
to show that the realizability property is preserved from one iteration to another in
Algorithm 2 and to show it is convergent.

4.3 Numerical experiment in 2D: a photon beam in water

In this test case, photons are injected in a 2D homogeneous domain composed of water.
The size of the medium is 2 cm× 10 cm. We inject a 0.5 cm large beam of 500 keV photons
on the left boundary modeled by the following incoming boundary condition

for (X,Ω)∈Γ− =
{

(X,Ω)∈∂Z×S2 s.t. n(X).Ω<0
}

,

ψγ(X,ǫ,Ω) = 1010exp
(

−αǫ (ǫ−ǫ0)
2
)

exp
(

−αµ (Ω1−1)2
)

1B(X)+δ1∂Z\B(X),

ψe(X,ǫ,Ω) = δ,

B =

{

(x,y), x=0, y∈ [0.75 cm,1.25 cm]

}

,

where n(X) is the outgoing normal, ǫ0= 500 keV, αǫ = 20000, αµ = 500000 and δ= 10−15.
And we used the moments of those distributions as boundary conditions for the moment
equations.

Through this test case, we aim to highlight the influence of the choice of the param-
eters c± on the convergence rate of Algorithm 1. The influence of c± on the dose results
were studied in [55] and are only recalled here for completeness. We test the present
method using two sets of parameters c±i :

• First, we fix |c±i |= 2 at a sufficiently large value (afterward called large c) such
that the conditions (4.2) are satisfied. Those parameters were shown to provide an
overestimated numerical angular diffusion in [55] (see also Fig. 5 below).

• Second, we fix c±i at a value closer to the value actual eigenvalues of the Jacobian
of the flux as proposed in [55] (afterward called small c). Those parameters were
shown to reduce the diffusion effects of the numerical method, especially in the
direction orthogonal to the beam.

We compare Algorithm 2 to a reference Monte Carlo solver ( [25]). The dose results
obtained with those methods are gathered on Fig. 5 with the computational times in
Table 1. A cut of the doses along the axis of the beam y= 1 cm and in the transverse
direction at depth x=2 cm and x=8 cm are shown on Fig. 6.
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Figure 5: Doses obtained with the Monte Carlo solver (top) and the M1 solver with large c (middle) and small
c (below) relaxation parameters, normalized by their maximum value.

Solver Monte Carlo M1 with large c M1 with small c

Computation times 14 hours 49.78699 sec 204.1239 sec

Table 1: Computational times with the Monte Carlo solver and the implicit solver with the different c.

The dose results with the modified relaxation parameters are much closer to the ref-
erence Monte Carlo results. As expected, the dose is less diffused with the small c.

Due to the noise in the Monte Carlo and the normalization by maxD, the M1 dose
curves with the modified relaxation parameters are slightly above the Monte Carlo refer-
ence on Fig. 6.

Following Remark 4.1, we observe that the computational time is higher with the
small c than with the large ones. Those times remain much lower than the one with the
Monte Carlo reference.

4.4 Numerical experiment in 3D: a photon beam in a chest

This test case aims to exhibit the efficiency of our method when considering more com-
plex density maps. For this purpose, we use a density map obtained from a computed
tomography (CT) scan of a chest. This map is depicted on Fig. 7. This domain is a 29.5
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Figure 6: Doses obtained with the Monte Carlo solver and the M1 solver with large and small c along the axis
of the beam (top) and the axis transverse to the beam at 2 cm depth (below left) and 8 cm depth (below right),
normalized by their maximum value.

cm deep cube.
We impose a beam of photons on the boundary of the medium to pass through the

ribs. In order to reduce the computational time, we perform the computations on a
smaller domain of size 14 cm × 25 cm × 11.35 cm in which the density of photons is
non-negligible. This domain is meshed with 140×220×50 cells.

The beam is modeled by the following condition over Γ−

ψγ(X,ǫ,Ω) = 1010exp
(

−αǫ (ǫ−ǫ0)
2
)

exp
(

−αµ (Ω2−1)2
)

1B(X)+δ1∂Z\B(X),

ψe(X,ǫ,Ω) = δ,

B=

{

(x,y,z), x∈ [6 cm,8 cm], y=0 cm, z∈ [4 cm,6 cm]

}

,

where n(x) is the outgoing normal, ǫ0 = 1 MeV, αǫ = 20000, αµ = 3000 and δ = 10−15.
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Figure 7: Density map represented by isosurfaces of density 1.8 (ivory; equivals to bone density) and 0.3 (flesh
color; equivals to lung density).

And we use the moments of those distributions as boundary conditions for the moment
equations.

The maximum residual is fixed at rmax=10−1.
We perform the computations with the small parameters c. Those dose results are

depicted on Fig. 8 as isodose surfaces cut along the surfaces parameterized by {x= 5
cm}, {y=12.5 cm} and {z=5.675 cm}, that are along the axis of the beam or at half depth
in the domain.

This test case is a rather complex problem with a large 3D mesh, a complete physics
(photons and electrons together) is considered and we used the large c. This corresponds
to the most complex settings with the present approach. We perform the computations
in parallel on four cores and the computations required 2h and 53 min. Such a com-
putational time remains too long for practical applications in medical physics. Several
features in our approach can be improved to reduce drastically the computational times.
We present in the next paragraph one common idea to improve it.

4.5 Mesh adaptation

In practice, the moments ψ are computed in the whole space-energy domain, even in
cells where they are negligible. This results in solving (4.8) over a very large vector ψn.
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Figure 8: Isosurfaces of dose at 60%, 30%, 6%, 3% and 0.6% of the maximum dose in a chest.

Those non-necessary computations raise the size of the system to solve and reduce the
convergence rate of our algorithm (see Remark 3.4).

The computational times can be considerably reduced using common code optimiza-
tion techniques. The most common idea for such a problem is the mesh adaptation, here
over the space and the energy. Instead of computing ψ in the whole domain, one may
solve (4.8) on a smaller domain where ψ is expected not to be negligible. This would lead
to a considerable reduction of both the computational times and the memory require-
ments.

As a comparison, this adaptation of the mesh size is used in the industrial code
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Acurosr [26, 48, 63]. This code is based on a SN discretization of (2.1), i.e. a direct dis-
cretization with respect to the Ω variable. Such a discretization is expected to require
more computational power than the present moment method. This code commonly re-
quires only a few minutes to compute the dose deposited by a unique beam in 3D. We
expect better time comparisons after performing similar code optimization. The com-
parison of our code with Acurosr and the adaptation of the mesh size are parts of our
perspectives.

5 Conclusion and perspectives

The present approach aims to circumvent restrictive stability conditions of numerical
schemes for transport equations in the field of radiotherapy dose computations. This
restriction arises when considering low collisional media.

First, we performed an angular moment extraction leading to a M1 system of equa-
tions. Such models require lower computational cost to solve, but are valid only under a
realizability condition.

Then, we proposed a numerical scheme for M1 systems by the use of a relaxation
method. Using an implicit scheme on the relaxed equations leads to a numerical method
that does not present such a stiffness. However, the resulting discrete equations are non-
linear on the unknowns. We constructed an iterative method to compute this solution.
During the construction of the scheme and of the iterative method, we specially focused
on the preservation of the realizability property.

Numerical experiments show that our method behaves appropriately in academic
and on practical cases in 1D, 2D and 3D. The convergence of the method is tested in
1D. Despite removing the restrictive stability constraints, the present approach was com-
pared a reference Monte Carlo method and it requires much lower computational costs.

These computational costs remain too high for practical application in medical cen-
ters. Several features in our approach may improved in order to accelerate the compu-
tations. First, the iterative method used to solve non-linear discrete equations can be
improved by initializing it with more clever values, and by using higher order methods
(here only a first order method was tested). Second, the size of the computational grid
being rather large for 3D problems, such a computational domain may be automatically
adapted to the domain of interest where the solution is non-negligible. Together with
comparisons to industrial codes used in medical centers, these are the main objectives of
the project at that stage.
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