Particle-In-Cell simulations for highly oscillatory Vlasov-Poisson system

Sever Hirstoaga

Inria Nancy-Grand Est, TONUS project & IRMA, Université de Strasbourg

Joint work with Edwin Chacon-Golcher, Emmanuel Frénod, Mathieu Lutz and Eric Sonnendrücker

Modeling and Numerical Methods for Hot Plasmas II Bordeaux, October 13, 2015

Outline

2 The time scheme

3 An efficient PIC implementation

Outline

General context

2 The time scheme

3 An efficient PIC implementation

4d Vlasov-Poisson equation - strong magnetic field

For $\varepsilon \to 0$ solve numerically in $t_f \sim 1$ and $t_f \sim 1/\varepsilon$

$$\begin{cases} \partial_t f^{\varepsilon} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f^{\varepsilon} + \left(\mathbf{E}^{\varepsilon} + \frac{1}{\varepsilon} \mathbf{v}^{\perp} \right) \cdot \nabla_{\mathbf{v}} f^{\varepsilon} = 0, \\ \mathbf{E}^{\varepsilon} \left(\mathbf{x}, t \right) = -\nabla_{\mathbf{x}} \phi^{\varepsilon}, \quad -\Delta_{\mathbf{x}} \phi^{\varepsilon} = \int_{\mathbb{R}^2} f^{\varepsilon} d\mathbf{v} - n_i, \\ f^{\varepsilon} \left(\mathbf{x}, \mathbf{v}, t = 0 \right) = f_0 \left(\mathbf{x}, \mathbf{v} \right), \end{cases}$$

where

- $f^{\varepsilon} = f^{\varepsilon}(t, \mathbf{x}, \mathbf{v})$ particles distribution function
- Position $\mathbf{x} = (x_1, x_2)$, Velocity $\mathbf{v} = (v_1, v_2)$, and $\mathbf{v}^{\perp} = (-v_2, v_1)$
- Strong and constant magnetic field in the x₃ direction
- $\mathbf{E}^{\varepsilon}(\mathbf{x}, t)$ evolves in the plane \perp to the magnetic field.

E. Frénod, E. Sonnendrücker, M3AS, 2000. Drift phenomenon on a long time scale due to the self-consistent electric field \perp to the strong magnetic field.

4d Vlasov-Poisson equation – strong magnetic field

For $\varepsilon \to 0$ solve numerically in $t_f \sim 1$ and $t_f \sim 1/\varepsilon$

$$\begin{cases} \partial_t f^{\varepsilon} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f^{\varepsilon} + \left(\mathbf{E}^{\varepsilon} + \frac{1}{\varepsilon} \mathbf{v}^{\perp} \right) \cdot \nabla_{\mathbf{v}} f^{\varepsilon} = 0, \\ \mathbf{E}^{\varepsilon} (\mathbf{x}, t) = -\nabla_{\mathbf{x}} \phi^{\varepsilon}, \quad -\Delta_{\mathbf{x}} \phi^{\varepsilon} = \int_{\mathbb{R}^2} f^{\varepsilon} d\mathbf{v} - n_i, \\ f^{\varepsilon} (\mathbf{x}, \mathbf{v}, t = 0) = f_0 (\mathbf{x}, \mathbf{v}), \end{cases}$$

Difficulties:

- nonlinear coupling
- high frequency oscillations induced by $\frac{1}{2}$.
- $\varepsilon \sim$ 0 but not uniformly.

Existing methods for similar problems

- reduce the dimensionality, by decoupling slow and fast dynamics and finding an invariant: Littlejohn (1979), Hahm (1988), Brizard (1995) etc. Frénod, Lutz (2014), Lutz (2014)
- homogenization the two-scale limit (Frénod, Sonnendrücker 1998, 2001, 2009) : $f^{\varepsilon} \to F$ when $\varepsilon \to 0$. The limit solves an equation free of oscillations.
- micro/macro decomposition (identify the limit model + reformulation):
 double scale reformulation of the equation (Crouseilles-Lemou-Méhats, 2013)

- Two-Scale-Asymptotic-Preserving-Schemes (Frénod-Crouseilles-H.-Mouton, 2011)

Particle-In-Cell method

• The unknown is approximated by a collection of macroparticles $(\mathbf{X}_k(t), \mathbf{V}_k(t))$

$$f_{N_{\boldsymbol{p}}}^{\varepsilon}(t,\mathbf{x},\mathbf{v}) = \sum_{k=1}^{N_{\boldsymbol{p}}} \omega_k \, \delta(\mathbf{x} - \mathbf{X}_k(t)) \, \delta(\mathbf{y} - \mathbf{V}_k(t))$$

which move along the characteristic curve of Vlasov equation:

$$\left\{ egin{array}{l} {\sf X}'(t) = {\sf V}(t), \ {\sf V}'(t) = rac{1}{arepsilon} {\sf V}^{\perp}(t) + {\sf E}^arepsilon(t, {\sf X}(t)), \end{array}
ight.$$

- Random initial particles.
 - \bullet deposit particles on the grid \Rightarrow the grid density (the RHS of Poisson equation).
 - solve Poisson equation on the grid \Rightarrow the grid electric field **E**.
 - interpolate E in each particle.

<

• push particles with this field.

Highly oscillatory solutions

• When $\mathbf{E} \equiv 0$, the solution is

$$egin{aligned} \mathsf{X}(t) &= \mathsf{x}_0 + arepsilon \mathsf{v}_0^ot - arepsilon \mathcal{R}\left(rac{t}{arepsilon}
ight) \mathsf{v}_0^ot \ \mathbf{V}(t) &= \mathcal{R}\left(rac{t}{arepsilon}
ight) \mathsf{v}_0 \end{aligned}$$

where $\mathcal{R}(\tau) = \begin{pmatrix} \cos \tau & \sin \tau \\ -\sin \tau & \cos \tau \end{pmatrix}$ and $\mathbf{x}_0 + \varepsilon \mathbf{v}_0^{\perp}$ is the guiding center.

• When the electric field **E** is not zero => **stiff** solutions (evolving on two disparate time scales)

General problem

Solve numerically **stiff** ODEs where stifness arises from the **linear** term

$$y'(t) = rac{1}{arepsilon} Ly(t) + F(t,y(t)).$$

Aim:

- perform long-time simulation of the ODE with large time steps with respect to the oscillation.
- the numerical scheme needs to work uniformly when $\varepsilon \to 0$.
- the numerical scheme needs to be stable and accurate for any initial condition.

The solution is

$$y_{n+1} = e^{(\Delta t/\varepsilon) L} y_n + e^{(\Delta t/\varepsilon) L} \int_{t_n}^{t_{n+1}} e^{(t_n - \tau)/\varepsilon L} F(\tau, y(\tau)) d\tau.$$

• the stiff part is solved exactly.

Q.: How to derive approximations to the integral term?

M. Hochbruck, A. Ostermann, Exponential integrators, 2010

General problem

Solve numerically **stiff** ODEs where stifness arises from the **linear** term

$$y'(t) = rac{1}{arepsilon} Ly(t) + F(t,y(t)).$$

Aim:

- perform long-time simulation of the ODE with large time steps with respect to the oscillation.
- the numerical scheme needs to work uniformly when $\varepsilon \rightarrow 0$.
- the numerical scheme needs to be stable and accurate for any initial condition.

The solution is

$$y_{n+1} = e^{(\Delta t/\varepsilon) L} y_n + e^{(\Delta t/\varepsilon) L} \int_{t_n}^{t_{n+1}} e^{(t_n - \tau)/\varepsilon L} F(\tau, y(\tau)) d\tau.$$

- the stiff part is solved exactly.
- Q.: How to derive approximations to the integral term?

M. Hochbruck, A. Ostermann, Exponential integrators, 2010.

Outline

2 The time scheme

3 An efficient PIC implementation

Back to the PIC scheme for the Vlasov-Poisson system

$$\begin{split} \mathbf{X}'(t) &= \mathbf{V}(t), \\ \mathbf{V}'(t) &= \frac{1}{\varepsilon} \mathbf{V}^{\perp}(t) + \mathbf{E}^{\varepsilon}(t, \mathbf{X}(t)), \\ \end{split} \qquad \qquad \mathbf{X}(0) &= \mathbf{x}_0 \\ \mathbf{V}(0) &= \mathbf{v}_0 \end{split}$$

where \mathbf{E}^{ε} is either given or computed by the Poisson equation.

The exponential integrator in velocity:

•
$$\mathbf{V}(t) = e^{\frac{t-s}{\varepsilon}L} \mathbf{V}(s) + e^{\frac{t-s}{\varepsilon}L} \int_{s}^{t} e^{\frac{s-\tau}{\varepsilon}L} \mathbf{E}^{\varepsilon} (\mathbf{X}(\tau), \tau) d\tau.$$

• $\mathbf{X}(t) = \mathbf{X}(s) + \int_{s}^{t} \mathbf{V}(\tau) d\tau.$

where

$$L = \left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight), \quad {
m and} \quad {
m e}^{ au L} = {\cal R}(au)$$

The new time-stepping scheme

We want $\Delta t \gg \varepsilon$. Find the integer N and the real o s.t.

$$\Delta t = N \cdot (2\pi\varepsilon) + o$$

We approximate the integral term by

$$\int_{t_{n}}^{t_{n}+N(2\pi\varepsilon)} \mathcal{R}\left(\frac{t_{n}-\tau}{\varepsilon}\right) \mathsf{E}^{\varepsilon}\left(\mathsf{X}\left(\tau\right),\tau\right) d\tau \simeq N \cdot \int_{t_{n}}^{t_{n}+2\pi\varepsilon} \dots d\tau$$

Assumption: $\tau \to \mathbf{E}^{\varepsilon} \left(\mathbf{X} \left(\tau \right), \tau \right) \simeq 2\pi \varepsilon$ -periodic.

$$\begin{pmatrix} \mathbf{X}(t_n + N \cdot 2\pi\varepsilon) \\ \mathbf{V}(t_n + N \cdot 2\pi\varepsilon) \end{pmatrix} = \begin{pmatrix} \mathbf{X}_n \\ \mathbf{V}_n \end{pmatrix} + N \begin{pmatrix} \mathbf{X}(t_n + 2\pi\varepsilon) - \mathbf{X}_n \\ \mathbf{V}(t_n + 2\pi\varepsilon) - \mathbf{V}_n \end{pmatrix}.$$

First test-case: 4d linear Vlasov equation

Verification in a linear case:

$$\mathbf{E}^{arepsilon}\left(\mathbf{x},t
ight)=\left(egin{array}{c} 2x_{1}+x_{2}\ x_{1}+2x_{2} \end{array}
ight)$$

• identify the slow motion $\sim \sin(\sqrt{3}\varepsilon t)$ and fast motion $\sim \cos(t/\varepsilon)$

 $\varepsilon = 0.01$, (1, 1, 1, 1) initial condition **far** from the slow manifold, final time t = 360.

- tests with initial conditions close to/far from the slow manifold (that particular solution (or i.c.) for which the fast oscillations dissappear.)
- global errors at short time (t = 10) and long time ($t = 1/\varepsilon$)

4d linear Vlasov equation: global errors

	$\Delta t = 1E-1$	$\Delta t = 2E-1$	$\Delta t = 5E-1$ $\Delta t = 8E-1$		$\Delta t = 1$
$\varepsilon = 1.E-2$	1	3	7	12	15
$\varepsilon = 1.E-4$	159	318	795	1273	1 591
$\varepsilon = 1.E-6$	15915	31 830	79577	127 323	159 154

Table: The whole number of rapid full tours enclosed in a time step of the scheme

uniformly accurate when ε vanishes

Particle-In-Cell simulations for highly oscillatory Vlasov-Poisson s

Sever Hirstoaga

Global errors at final time 10: $\varepsilon = 10^{-2}, \ 10^{-4}, \ 10^{-6}, \ 10^{-8}$

• the same order of error for different initial conditions.

• similar behaviour at long times ($\sim 1/\varepsilon$).

Second test-case: the Vlasov-Poisson system

• Compare in **short** time $(t \sim 1)$

$$\partial_t f^{\varepsilon} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f^{\varepsilon} + \left(\mathcal{E}^{\varepsilon} + \frac{1}{\varepsilon} \mathbf{v}^{\perp} \right) \cdot \nabla_{\mathbf{v}} f^{\varepsilon} = 0 \quad + \text{ Poisson}$$

and the reduced model

$$\partial_t f_{GC} + \varepsilon \mathbf{E}^{\perp} \cdot \nabla_{\mathbf{x}} f_{GC} = 0 + \text{Poisson}.$$

• Compare in **long** time $(t \sim 1)$

$$\partial_t g^\varepsilon + \frac{1}{\varepsilon} \Big(\mathbf{v} \cdot \nabla_{\mathbf{x}} g^\varepsilon + \left(\mathcal{E}^\varepsilon + \frac{1}{\varepsilon} \mathbf{v}^\perp \right) \cdot \nabla_{\mathbf{v}} g^\varepsilon \Big) = 0 \quad + \text{Poisson}$$

and the limit model

$$\partial_t g_{GC} + \mathbf{E}^{\perp} \cdot \nabla_{\mathbf{x}} g_{GC} = 0 + \text{Poisson.}$$

Vlasov-Poisson: long and short time equations

() Long time $(\sim 1/arepsilon)$ accuracy against the Guiding Center model

$$g^{\varepsilon}(\mathbf{x},\mathbf{v},t) = f^{\varepsilon}(\mathbf{x},\mathbf{v},\frac{t}{\varepsilon}) \Rightarrow \begin{cases} \partial_{t}g^{\varepsilon} + \frac{1}{\varepsilon} \left(\mathbf{v} \cdot \nabla_{\mathbf{x}}g^{\varepsilon} + \left(\mathcal{E}^{\varepsilon} + \frac{1}{\varepsilon}\mathbf{v}^{\perp}\right) \cdot \nabla_{\mathbf{v}}g^{\varepsilon}\right) = 0 \\ + \text{Poisson} \end{cases}$$

When
$$arepsilon o 0$$
 then $\int g^arepsilon d {f v} o g_{GC}$ where

$$\partial_t g_{GC} + \mathbf{E}^{\perp} \cdot \nabla_x g_{GC} = 0 + \text{Poisson}.$$

(Golse-Saint-Raymond 1999; Frénod-Sonnendrücker 2000, Bostan 2010)

③ Short time (~ 1) accuracy against the short time Guiding Center model

$$f_{GC}^{\varepsilon}(\mathbf{x},t) = g_{GC}(\mathbf{x},\varepsilon t) \Rightarrow \begin{cases} \partial_t f_{GC}^{\varepsilon} + \varepsilon \mathbf{E}_{\varepsilon}^{\perp} \cdot \nabla_{\mathbf{x}} f_{GC}^{\varepsilon} = 0 \\ + \text{Poisson} \end{cases}$$

Vlasov-Poisson: short and long time simulations

• Short test case: Landau damping (periodic boundary condition on $[0, 4\pi] \times [0, 1]$)

$$f_0\left({f x},{f v}
ight) = rac{1}{2\pi} \Big(1+0.1\,\cos\left(x_1/2
ight) \Big) \exp\left(-rac{v_1^2+v_2^2}{2}
ight).$$

Output Description Description Description Constant $[0, 4\pi] \times [0, 2\pi]$

$$f_0(\mathbf{x}, \mathbf{v}) = \frac{1}{2\pi T_1 T_2} \left(\sin(x_2) + 0.05 \, \cos(x_1/2) \right) \exp\left(-\frac{v_1^2 + v_2^2}{2}\right)$$

Global errors in time of the $L_2([0, T_1] \times [0, T_2])$ norm of the densities

4d VP: Global errors at time = 4

Short time simulations: comparisons with

a reference solution ($\Delta t = 2\pi \varepsilon / 100$)

the (short time) Guiding Center model

	$\Delta t = 1$ E-1	$\Delta t = 2E-1$	$\Delta t = 5E-1$	$\Delta t =$ 8E-1	$\Delta t = 1$
ε=1.E-2	1	3	7	12	15
ε=1.E-3	15	31	79	127	159
ε=1.E-4	159	318	795	1273	1591

Table: The whole number of rapid full tours enclosed in a time step of the scheme

4d VP: Global errors at time = 5

Long time simulations : Kelvin-Helmholtz instability

Asymptotic Preserving behaviour with respect to the Guiding Center model

	$\Delta t = 1E-3$	$\Delta t = 3E-3$	$\Delta t = 5E-3$	$\Delta t = 7E-3$	$\Delta t = 1E-2$
$\varepsilon = 5.E-3$	6	19	31	44	63
$\varepsilon = 2.5 \text{E-3}$	25	76	127	178	254
$\varepsilon = 1.E-3$	159	477	795	1114	1 5 9 1
$\varepsilon = 1.E-4$	15915	47 746	79 577	111 408	159 154

Table: The whole number of rapid full tours enclosed in a time step of the scheme

ε-Vlasov-Poisson solution vs. Guiding Center solution

 $\Delta t = 0.01, \ \varepsilon = 0.005 \ (N = 63)$ the scheme \uparrow Guiding Center \downarrow densities

Outline

General context

2 The time scheme

Aim

- Compare the time scheme to a reference solution of the oscillatory Vlasov-Poisson system in long time.
- Additional aim: Show numerically the convergence result (Vlasov-Poisson vs. guiding center simulations)
- high computational cost for the reference solution (classical time schemes)
 Difficulties:
 - we address noise by using a large number of particles.
 - conventional PIC suffers from often data motion (memory/CPU).
- need to optimize the PIC implementation
 - K. J. Bowers: J. Comput. Phys. (2001).
 - D. Tskhakaya, R. Schneider: J. Comput. Phys. (2007).

Implementation in SeLaLib (the Semi Lagrangian Library),
http://selalib.gforge.inria.fr/

Main ingredients (1/2)

Data structures: data used together should be stored together

Main ingredients (2/2)

• Cell index + local offset for particle representation:

- reduced memory size
- reduces the nb of arithmetical operations during the interpolation and the charge deposition
- Output: Cell-based E and ρ:
 - allows to advance particles with a minimum of accessed memory streams.
 - additional steps to convert to/from grid arrays: $\mathbf{E}_{i,j} \longrightarrow \mathbf{E}_{accum}(k)$ and $\rho_{accum}(k) \longrightarrow \rho_{i,j}$ (the cost is ~ to N_{cells})
- Particle sorting (to be done periodically):
 - maximize sequential particle processing
- Orallelization: multiprocess (MPI) + multithread (OpenMP)

Performance: speedup

Landau damping test-case 1000 iterations, a grid of 512 x 16 cells. Verification: conservation of the total energy, electric field energy.

Threads	Time (seconds)	Speedup
1	703.2	1.0
2	348.2	2.02
4	191.5	3.67
6	139.2	5.05
8	112.9	6.23
12	87.7	8.02
16	75.3	9.34

Performance: memory bandwidth

N (nb of loads/stores) * 32B/time of particle push

2 million (left) and 20 million (right) particles runs.

Performance: MB Stream benchmark

The stream test : 10 GB/s on single core and 75 GB/s /16 threads. Use of 2 processes and several threads. 20 million particles run.

How scales the memory bandwidth

Million of particles processed per second : $N_p * N_{iter} / T$.

Simulation\Threads	1	2	4	8	16
2 million particles	28.5	56.8	101.7	165.2	224.3
20 million particles	28.4	57.4	104.4	177.1	265.6
200 million particles	28.0	56.9	103.5	174.4	263.8

Vlasov-Poisson/guiding center model

Long time (~ 1) simulations of

$$\begin{cases} \partial_t g^{\varepsilon} + \frac{1}{\varepsilon} \Big(\mathbf{v} \cdot \nabla_{\mathbf{x}} g^{\varepsilon} + \left(\mathcal{E}^{\varepsilon} + \frac{1}{\varepsilon} \mathbf{v}^{\perp} \right) \cdot \nabla_{\mathbf{v}} g^{\varepsilon} \Big) = 0 \\ + \text{Poisson} \end{cases}$$

and the limit model

$$\partial_t g_{GC} + \mathbf{E}^{\perp} \cdot \nabla_{\mathbf{x}} g_{GC} = 0 + \text{Poisson}.$$

Kelvin-Helmholtz instability: periodic-periodic boundary conditions on $[0, 4\pi] \times [0, 2\pi]$, Poisson (solved by FFT). Random initialization of

$$f_0(\mathbf{x}, \mathbf{v}) = \frac{1}{2\pi} \left(\sin(x_2) + 0.05 \, \cos(x_1/2) \right) \exp\left(-\frac{v_1^2 + v_2^2}{2} \right).$$

Numerical results

10 million particles, 256×128 cells.

- for VP: Reference solution with leap-frog, $\delta t = 2\pi \varepsilon^2/80$
- for GC: RK2 with $\Delta t = 0.01$.

Global error at time t = 5: $||g_{GC} - \rho^{\varepsilon}||_{L^2}$

Numerical results

guiding center, VP with $\varepsilon = 0.05$, VP with $\varepsilon = 0.1$, VP with $\varepsilon = 0.5$

Densities at x1=0 and time = 22

Densities at $x_1 = \pi$ and time = 12

Densities at $x_1 = \pi$ and time = 22

Conclusion and Outlook

- E. Frénod, S.H., M. Lutz, E. Sonnendrücker, CiCP, 2015.
- E. Chacon-Golcher, S. H., M. Lutz, preprint HAL.

Short and long time simulation for oscillatory 4d Vlasov-Poisson:

- allows large time steps with respect to the rapid period.
- $\bullet\,$ produce accurate numerical solutions for different small values of $\varepsilon\,$ with the same computational cost.
- achieve high efficiency in PIC simulation with many particles.
- compute reference solution for oscillatory VP with accuracy.
- compare the time scheme to a reference solution in long time.
- consider slowly varying magnetic field *B*.
- improve the algorithm
- towards the 6d model

THANK YOU !