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4d Vlasov-Poisson equation � strong magnetic �eld

For ε→ 0 solve numerically in tf ∼ 1 and tf ∼ 1/ε
∂t f

ε + v · ∇xf
ε +

(
Eε + 1

εv
⊥) · ∇vf

ε = 0,

Eε (x, t) = −∇xφ
ε, −∆xφ

ε =
∫

R2 f
εdv − ni ,

f ε (x, v, t = 0) = f0 (x, v) ,

where

f ε = f ε(t, x, v) particles distribution function

Position x = (x1, x2), Velocity v = (v1, v2), and v⊥ = (−v2, v1)

Strong and constant magnetic �eld in the x3 direction

Eε(x, t) evolves in the plane ⊥ to the magnetic �eld.

E. Frénod, E. Sonnendrücker, M3AS, 2000. Drift phenomenon on a long
time scale due to the self-consistent electric �eld ⊥ to the strong
magnetic �eld.
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4d Vlasov-Poisson equation � strong magnetic �eld

For ε→ 0 solve numerically in tf ∼ 1 and tf ∼ 1/ε

∂t f
ε + v · ∇xf

ε +

(
Eε +

1

ε
v⊥
)
· ∇vf

ε = 0,

Eε (x, t) = −∇xφ
ε, −∆xφ

ε =

∫
R2

f εdv − ni ,

f ε (x, v, t = 0) = f0 (x, v) ,

Di�culties:

nonlinear coupling

high frequency oscillations induced by
1

ε
.

ε ∼ 0 but not uniformly.
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Existing methods for similar problems

reduce the dimensionality, by decoupling slow and fast dynamics and
�nding an invariant: Littlejohn (1979), Hahm (1988), Brizard (1995)
etc. Frénod, Lutz (2014), Lutz (2014)

homogenization � the two-scale limit (Frénod, Sonnendrücker 1998,
2001, 2009) : f ε → F when ε→ 0.
The limit solves an equation free of oscillations.

micro/macro decomposition (identify the limit model + reformulation):

� double scale reformulation of the equation
(Crouseilles-Lemou-Méhats, 2013)

� Two-Scale-Asymptotic-Preserving-Schemes
(Frénod-Crouseilles-H.-Mouton, 2011)
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Particle-In-Cell method

The unknown is approximated by a collection of macroparticles(
Xk(t),Vk(t)

)
f εNp

(t, x, v) =

Np∑
k=1

ωk δ(x− Xk(t)) δ(y − Vk(t))

which move along the characteristic curve of Vlasov equation:{
X′(t) = V(t),

V′(t) =
1

ε
V⊥(t) + Eε(t,X(t)),

Random initial particles.

deposit particles on the grid ⇒ the grid density (the RHS of Poisson
equation).
solve Poisson equation on the grid ⇒ the grid electric �eld E.
interpolate E in each particle.
push particles with this �eld.
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Highly oscillatory solutions

When E ≡ 0, the solution is

X(t) = x0 + εv⊥0 − εR
( t
ε

)
v⊥0

V(t) = R
( t
ε

)
v0

where R(τ) =

„
cos τ sin τ
− sin τ cos τ

«
and x0 + εv⊥0 is the guiding center.

When the electric �eld E is not zero => sti� solutions (evolving on
two disparate time scales)
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General problem

Solve numerically sti� ODEs where stifness arises from the linear term

y ′(t) =
1

ε
Ly(t) + F (t, y(t)).

Aim:

perform long-time simulation of the ODE with large time steps with
respect to the oscillation.

the numerical scheme needs to work uniformly when ε→ 0.

the numerical scheme needs to be stable and accurate for any initial
condition.

The solution is

yn+1 = e(∆t/ε) Lyn + e(∆t/ε) L

∫ tn+1

tn

e(tn−τ)/ε LF (τ, y(τ)) dτ.

the sti� part is solved exactly.

Q.: How to derive approximations to the integral term?

M. Hochbruck, A. Ostermann, Exponential integrators, 2010.
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Back to the PIC scheme for the Vlasov-Poisson system

X′(t) = V(t), X(0) = x0

V′(t) =
1

ε
V⊥(t) + Eε(t,X(t)), V(0) = v0

where Eε is either given or computed by the Poisson equation.

The exponential integrator in velocity:

V (t) = e
t−s
ε L V (s) + e

t−s
ε L

∫ t

s

e
s−τ
ε L Eε (X (τ) , τ) dτ.

X (t) = X (s) +

∫ t

s

V (τ) dτ.

where

L =

(
0 1
−1 0

)
, and eτL = R(τ)
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The new time-stepping scheme

We want ∆t � ε. Find the integer N and the real o s.t.

∆t = N · (2πε) + o

We approximate the integral term byZ tn+N(2πε)

tn

R
“ tn − τ

ε

”
E
ε (X (τ) , τ) dτ ' N ·

Z tn+2πε

tn

. . . dτ

Assumption: τ → Eε (X (τ) , τ) ' 2πε-periodic.

„
X(tn + N · 2πε)
V(tn + N · 2πε)

«
=

„
Xn

Vn

«
+ N

„
X(tn + 2πε)− Xn

V(tn + 2πε)− Vn

«
.
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First test-case: 4d linear Vlasov equation

Veri�cation in a linear case:

Eε (x, t) =

(
2x1 + x2
x1 + 2x2

)

identify the slow motion ∼ sin(
√
3ε t) and fast motion ∼ cos(t/ε)

ε = 0.01, (1, 1, 1, 1) initial condi-
tion far from the slow manifold,
�nal time t = 360.

tests with initial conditions close to/far from the slow manifold (that
particular solution (or i.c.) for which the fast oscillations dissappear.)

global errors at short time (t = 10) and long time (t = 1/ε)
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4d linear Vlasov equation: global errors

∆t =1E-1 ∆t =2E-1 ∆t =5E-1 ∆t =8E-1 ∆t =1

ε=1.E-2 1 3 7 12 15

ε=1.E-4 159 318 795 1 273 1 591

ε=1.E-6 15 915 31 830 79 577 127 323 159 154

Table: The whole number of rapid full tours enclosed in a time step of the scheme

uniformly accurate when ε vanishes
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Global errors at �nal time 10: ε = 10−2, 10−4, 10−6, 10−8

the same order of error for di�erent initial conditions.
similar behaviour at long times (∼ 1/ε).
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Second test-case: the Vlasov-Poisson system

1 Compare in short time (t ∼ 1)

∂t f
ε + v · ∇xf

ε +

(
Eε +

1

ε
v⊥
)
· ∇vf

ε = 0 + Poisson

and the reduced model

∂t fGC + εE⊥ · ∇xfGC = 0 + Poisson.

2 Compare in long time (t ∼ 1)

∂tg
ε +

1

ε

(
v · ∇xg

ε +

(
Eε +

1

ε
v⊥
)
· ∇vg

ε
)

= 0 + Poisson

and the limit model

∂tgGC + E⊥ · ∇xgGC = 0 + Poisson.
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Vlasov-Poisson: long and short time equations

1 Long time (∼ 1/ε) accuracy against the Guiding Center model

gε(x, v, t) = f ε(x, v,
t

ε
)⇒

8>><>>:
∂tg

ε +
1

ε

“
v · ∇xg

ε +

„
Eε +

1

ε
v
⊥
«
· ∇vg

ε
”

= 0

+ Poisson

When ε→ 0 then
∫
gεdv→ gGC where

∂tgGC + E⊥ · ∇xgGC = 0 + Poisson.

(Golse�Saint-Raymond 1999; Frénod�Sonnendrücker 2000, Bostan 2010)

2 Short time (∼ 1) accuracy against the short time Guiding Center
model

f εGC (x, t) = gGC (x, εt)⇒

 ∂t f
ε
GC + εE⊥ε · ∇xf

ε
GC = 0

+ Poisson
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Vlasov-Poisson: short and long time simulations

1 Short test case: Landau damping (periodic boundary condition on

[0, 4π]× [0, 1])

f0 (x, v) =
1

2π

(
1 + 0.1 cos (x1/2)

)
exp

(
−v21 + v22

2

)
.

2 Long test case: Kelvin-Helmholtz (periodic boundary condition on

[0, 4π]× [0, 2π])

f0(x, v) =
1

2πT1T2

(
sin(x2) + 0.05 cos(x1/2)

)
exp

(
−v21 + v22

2

)
.

Global errors in time of the L2([0,T1]× [0,T2]) norm of the densities
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4d VP: Global errors at time = 4

Short time simulations: comparisons with

a reference solution (∆t = 2πε/100) the (short time) Guiding Center model

∆t =1E-1 ∆t =2E-1 ∆t =5E-1 ∆t =8E-1 ∆t =1

ε=1.E-2 1 3 7 12 15

ε=1.E-3 15 31 79 127 159

ε=1.E-4 159 318 795 1273 1591

Table: The whole number of rapid full tours enclosed in a time step of the scheme
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4d VP: Global errors at time = 5

Long time simulations : Kelvin-Helmholtz instability

Asymptotic Preserving behaviour with respect to the Guiding Center model

∆t=1E-3 ∆t=3E-3 ∆t=5E-3 ∆t= 7E-3 ∆t=1E-2

ε = 5.E-3 6 19 31 44 63

ε = 2.5E-3 25 76 127 178 254

ε = 1.E-3 159 477 795 1 114 1 591

ε = 1.E-4 15 915 47 746 79 577 111 408 159 154

Table: The whole number of rapid full tours enclosed in a time step of the scheme
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ε-Vlasov-Poisson solution vs. Guiding Center solution

∆t = 0.01, ε = 0.005 (N = 63) the scheme ↑ Guiding Center ↓ densities

tf = 5 15 20
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Aim

1 Compare the time scheme to a reference solution of the oscillatory
Vlasov-Poisson system in long time.

2 Additional aim: Show numerically the convergence result
(Vlasov-Poisson vs. guiding center simulations)

high computational cost for the reference solution (classical time
schemes)
Di�culties:

we address noise by using a large number of particles.
conventional PIC su�ers from often data motion (memory/CPU).

need to optimize the PIC implementation
K. J. Bowers: J. Comput. Phys. (2001).
D. Tskhakaya, R. Schneider: J. Comput. Phys. (2007).

Implementation in SeLaLib (the Semi Lagrangian Library),
http://selalib.gforge.inria.fr/
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Main ingredients (1/2)

Data structures: data used together should be stored together

cell k

s

s s

sEse

Enw
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Main ingredients (2/2)

1 Cell index + local o�set for particle representation:

• reduced memory size
• reduces the nb of arithmetical operations during the interpolation

and the charge deposition

2 Cell-based E and ρ:

• allows to advance particles with a minimum of accessed memory
streams.

• additional steps to convert to/from grid arrays: Ei,j −→ Eaccum(k)
and ρaccum(k) −→ ρi,j (the cost is ∼ to Ncells)

3 Particle sorting (to be done periodically):

• maximize sequential particle processing

4 Parallelization: multiprocess (MPI) + multithread (OpenMP)
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Performance: speedup

Landau damping test-case 1000 iterations, a grid of 512 x 16 cells.
Veri�cation: conservation of the total energy, electric �eld energy.

Threads Time (seconds) Speedup
1 703.2 1.0
2 348.2 2.02
4 191.5 3.67
6 139.2 5.05
8 112.9 6.23
12 87.7 8.02
16 75.3 9.34
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Performance: memory bandwidth
N (nb of loads/stores) ∗ 32B/time of particle push

2 million (left) and 20 million (right) particles runs.
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Performance: MB Stream benchmark

The stream test : 10 GB/s on single core and 75 GB/s /16 threads.
Use of 2 processes and several threads.
20 million particles run.
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Performance

Million of particles processed per second : Np ∗ Niter/T .

Simulation\Threads 1 2 4 8 16

2 million particles 28.5 56.8 101.7 165.2 224.3
20 million particles 28.4 57.4 104.4 177.1 265.6
200 million particles 28.0 56.9 103.5 174.4 263.8
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Vlasov-Poisson/guiding center model

Long time (∼ 1) simulations of
∂tg

ε +
1

ε

(
v · ∇xg

ε +

(
Eε +

1

ε
v⊥
)
· ∇vg

ε
)

= 0

+ Poisson

and the limit model

∂tgGC + E⊥ · ∇xgGC = 0 + Poisson.

Kelvin-Helmholtz instability: periodic-periodic boundary conditions on
[0, 4π]× [0, 2π], Poisson (solved by FFT). Random initialization of

f0(x, v) =
1

2π

(
sin(x2) + 0.05 cos(x1/2)

)
exp

(
−v21 + v22

2

)
.
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Numerical results

10 million particles, 256× 128 cells.

for VP: Reference solution with leap-frog, δt = 2πε2/80

for GC: RK2 with ∆t = 0.01.

Global error at time t = 5: ||gGC − ρε||L2
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Numerical results

guiding center, VP with ε = 0.05, VP with ε = 0.1, VP with ε = 0.5
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Conclusion and Outlook

E. Frénod, S.H., M. Lutz, E. Sonnendrücker, CiCP, 2015.

E. Chacon-Golcher, S. H., M. Lutz, preprint HAL.

Short and long time simulation for oscillatory 4d Vlasov-Poisson:

allows large time steps with respect to the rapid period.

produce accurate numerical solutions for di�erent small values of ε
with the same computational cost.

achieve high e�ciency in PIC simulation with many particles.

compute reference solution for oscillatory VP with accuracy.

compare the time scheme to a reference solution in long time.

consider slowly varying magnetic �eld B.

improve the algorithm

towards the 6d model

Sever Hirstoaga Particle-In-Cell simulations for highly oscillatory Vlasov-Poisson system



General context
The time scheme

An e�cient PIC implementation

THANK YOU !
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