Particle-In-Cell simulations for highly oscillatory
Vlasov-Poisson system

Sever Hirstoaga

Inria Nancy-Grand Est, TONUS project & IRMA, Université de Strasbourg

Joint work with  Edwin Chacon-Golcher, Emmanuel Frénod,
Mathieu Lutz and  Eric Sonnendriicker

Modeling and Numerical Methods for Hot Plasmas Il
Bordeaux, October 13, 2015

v d

&z.n,wm/mmm

Particle-In-Cell simulations for highly oscillatory Vlasov-Poisson s



Outline

@ General context

© The time scheme

© An efficient PIC implementation

Particle-In-Cell simulations for highly oscillatory Vlasov-Poisson s



General context

Outline

@ General context

Particle-In-Cell simulations for highly oscillatory Vlasov-Poisson s



General context

4d Vlasov-Poisson equation — strong magnetic field

For & — 0 solve numerically in tr ~ 1 and tf ~ 1/¢
Oefe +v - Vife + (E°+ tvl) . V,fe =0,
E° (x,t) = —Vyx¢®, —Ay¢° = [pa fodv —nj,

fe(x,v,t =0)=fh(x,v),

where
@ f° = f(t,x,v) particles distribution function

@ Position x = (x1, x2), Velocity v = (v1, v2), and vt = (—v2,v1)

@ Strong and constant magnetic field in the x3 direction

@ E°(x,t) evolves in the plane L to the magnetic field.

E. Frénod, E. Sonnendriicker, M3AS, 2000. Drift phenomenon on a long
time scale due to the self-consistent electric field L to the strong
magnetic field.
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General context

4d Vlasov-Poisson equation — strong magnetic field

For & — 0 solve numerically in tr ~ 1 and tf ~ 1/¢

O, +v-V,fe+ (EE + }vL) -V fe =0,

ES(x,t) = —Vxd®, —Agd*= | fdv—n;,
R2

fe(x,v,t =0)="f(x,v),

Difficulties:

@ nonlinear coupling

1
@ high frequency oscillations induced by —.
€

@ ¢ ~ 0 but not uniformly.
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General context

Existing methods for similar problems

@ reduce the dimensionality, by decoupling slow and fast dynamics and
finding an invariant: Littlejohn (1979), Hahm (1988), Brizard (1995)
etc. Frénod, Lutz (2014), Lutz (2014)

@ homogenization — the two-scale limit (Frénod, Sonnendriicker 1998,
2001, 2009) : f¢ — F when ¢ — 0.
The limit solves an equation free of oscillations.

@ micro/macro decomposition (identify the limit model + reformulation):
— double scale reformulation of the equation
(Crouseilles-Lemou-Méhats, 2013)

— Two-Scale-Asymptotic-Preserving-Schemes
(Frénod-Crouseilles-H.-Mouton, 2011)
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General context

Particle-In-Cell method

@ The unknown is approximated by a collection of macroparticles
(Xk(t), Vi(t))
NP
i (£:%,V) = D~ wi 8(x — Xk (1)) 8(y — Vi(2))
k=1

which move along the characteristic curve of Vlasov equation:

X'(t) = V(t),
{ VI(t) = TV () + ES(LX(1)).

@ Random initial particles.
o deposit particles on the grid = the grid density (the RHS of Poisson
equation).
e solve Poisson equation on the grid = the grid electric field E.
o interpolate E in each particle.
e push particles with this field.
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General context

Highly oscillatory solutions

@ When E = 0, the solution is

t
X(t) = xo +evy — R (g) vy

V(1) =R (g) vo

cosT sinT
—sinT cosT

where R(7) = (

) and xo + evg is the guiding center.

@ When the electric field E is not zero => stiff solutions (evolving on
two disparate time scales)
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General context

General problem

Solve numerically stiff ODEs where stifness arises from the linear term
1
y/(t) = SLy(t) + F(t, ().

Aim:
o perform long-time simulation of the ODE with large time steps with
respect to the oscillation.
@ the numerical scheme needs to work uniformly when & — 0.
@ the numerical scheme needs to be stable and accurate for any initial
condition.
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General context

General problem

Solve numerically stiff ODEs where stifness arises from the linear term

V(1) = SLy(8) + Flt. (1))

Aim:
o perform long-time simulation of the ODE with large time steps with
respect to the oscillation.
@ the numerical scheme needs to work uniformly when & — 0.
@ the numerical scheme needs to be stable and accurate for any initial
condition.

The solution is

+1

tn
oss = 04y, 1 0L [ VL (7 (1))
tp
@ the stiff part is solved exactly.

@ Q.: How to derive approximations to the integral term?

M. Hochbruck, A. Ostermann, Exponential integrators, 2010.
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© The time scheme
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The time scheme

Back to the PIC scheme for the Vlasov-Poisson system

X'(t) = V(t), X(0) = xo
V/(t) = %vi(t) +E° (6, X(1)), V(0) = vo

where E€ is either given or computed by the Poisson equation.

The exponential integrator in velocity:

“LES(X(7),7)dT.

t
° V(t):e?LV(sH—ets;’L/ e
s

° X(t)ZX(S)+/StV(T)dT.

where
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The time scheme

The new time-stepping scheme

We want At > ¢. Find the integer N and the real o s.t.
At =N-(2me)+o
We approximate the integral term by

tn+N(27e) ty — tht2me
R(i‘r)EE(X(T),T)dTZN- ..o.dTt
tn € tn

Assumption: 7 — E= (X (7),7) ~ 2mwe-periodic.

(Vv )= () (e ).
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The time scheme

First test-case: 4d linear Vlasov equation

Verification in a linear case:

\ N\ e = 0.01, (1,1,1,1) initial condi-
\_ \‘\ tion far from the slow manifold,

\\ ) final time t = 360.

@ tests with initial conditions close to/far from the slow manifold (that

particular solution (or i.c.) for which the fast oscillations dissappear.)

o global errors at short time (t = 10) and long time (t = 1/¢)
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The time scheme

4d linear Vlasov equation: global errors

| | At =1E-1 | At =2E-1 | At =5E-1 | At =8E-1 | At =l |

e=1.E-2 1 3 7 12 15
e=1.E-4 159 318 795 1273 1591
e=1.E-6 15915 31830 79577 127323 159154

Table: The whole number of rapid full tours enclosed in a time step of the scheme

uniformly accurate when ¢ vanishes
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The time scheme

Global errors at final time 10
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@ the same order of error for different initial conditions.
@ similar behaviour at long times (~ 1/¢).




The time scheme

Second test-case: the Vlasov-Poisson system

@ Compare in short time (t ~ 1)
O & +v - Vyif® + (55 + }vj‘) -Vuf® =0 + Poisson

and the reduced model

O,fcc + cE* - Vyfee =0 + Poisson.

@ Compare in long time (t ~ 1)
1 1 L .
Org° + - (v Vg + €5+ v V\,gs) =0 + Poisson
and the limit model

d:gcc + EL - Vigee =0 + Poisson.
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The time scheme

Vlasov-Poisson: long and short time equations

@ Long time (~ 1/¢) accuracy against the Guiding Center model

e 1 € € 1 €L €
Org +7(v-ng + (5 + —v )-va ) =0
go(x,v,t) = fE(x,v,g):> € €

+ Poisson

When ¢ — 0 then [ g°dv — ggc where
0:86c + EL- Vxg8cc =0 + Poisson.

(Golse-Saint-Raymond 1999; Frénod-Sonnendriicker 2000, Bostan 2010)

@ Short time (~ 1) accuracy against the short time Guiding Center
model

Oefic + cELX -V, fec =0

féc(x,t) = gec(x,et) =
+ Poisson
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The time scheme

Vlasov-Poisson: short and long time simulations

@ Short test case: Landau damping (periodic boundary condition on
[0, 47] x [0,1])

1 2 2
fo (x,v) = 5(1—1—0.1 cos(x1/2)) exp (—Vl —;V2) .

Q LOIlg test case: Kelvin-Helmholtz (periodic boundary condition on
[0, 4] x [0, 27])

1

2, 2
_ : itv
fo(x,v) = T T, (sm(X2) +0.05 cos(x1/2)) exp < 5 ) .

Global errors in time of the Ly([0, T1] x [0, T»]) norm of the densities
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The time scheme

4d VP: Global errors at time = 4

Short time simulations: comparisons with

a reference solution (At = 27e/100)
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the (short time) Guiding Center model

0.016

timestep=1 —x—

0.001
2psilon

| At =1E-1 [ At =2E-1 |

At =5E-1 [ At =8E-1 [ At =1 |

e=1.E-2 1 3 7 12 15
e=1.E-3 15 31 79 127 159
e=1.E-4 159 318 795 1273 1591

Table: The whole number of rapid full tours enclosed in a time step of the scheme
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The time scheme

4d VP: Global errors at time = 5

Long time simulations : Kelvin-Helmholtz instability
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Asymptotic Preserving behaviour with respect to the Guiding Center model

| At=1E-3 | At=3E-3 [ At=5E-3 | At=T7E-3 [ At=1E-2 |

€ =5.E3 6 19 31 44 63

€ =2.5E-3 25 76 127 178 254
e=1.E-3 159 477 795 1114 1591
e=1E4 15915 47746 79577 111408 159154

Table: The whole number of rapid full tours enclosed in a time step of the scheme
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The time scheme

e-Vlasov-Poisson solution vs. Guiding Center solution

At =0.01, £ =0.005 (N =63) the scheme |  Guiding Center | densities

ETD-PIC scheme. ETD-PIC scheme. ETD-PIC scheme

the GUIDING CENTER the GUDING CENTER
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An efficient PIC implementation

© Compare the time scheme to a reference solution of the oscillatory
Vlasov-Poisson system in long time.

© Additional aim: Show numerically the convergence result
(Vlasov-Poisson vs. guiding center simulations)

@ high computational cost for the reference solution (classical time
schemes)
Difficulties:
o we address noise by using a large number of particles.
o conventional PIC suffers from often data motion (memory/CPU).
@ need to optimize the PIC implementation
K. J. Bowers: J. Comput. Phys. (2001).
D. Tskhakaya, R. Schneider: J. Comput. Phys. (2007).

Implementation in SelLalLib (the Semi Lagrangian Library),
http://selalib.gforge.inria.fr/
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An efficient PIC implementation

Main ingredients (1/2)

Data structures: data used together should be stored together

X dx type :: sll_particle_2d
@ e sll_int32 :: ic
sll_real32 :: dx
dy sll_real32 :: dy
sll_realb4 :: vx
sll_real64 :: vy

y sll_real32 :: q
end type sll partlcle 2d

type charge_accumulator_cell_2d
sll_real64 :: g_sw
cell k sll_realb4 :: q_se
sll_realb4 :: g_nw
sll_real64 :: g_ne
E;e end type charge_accumulator_cell_2d
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An efficient PIC implementation

Main ingredients (2/2)

© Cell index + local offset for particle representation:
e reduced memory size
e reduces the nb of arithmetical operations during the interpolation
and the charge deposition

@ Cell-based E and p:

e allows to advance particles with a minimum of accessed memory
streams.

e additional steps to convert to/from grid arrays: Ejj — Eaccum(k)
and paccum(k) — Pij (the cost is ~ to Nce,,,)

@ Particle sorting (to be done periodically):

e maximize sequential particle processing

@ Parallelization: multiprocess (MPI) + multithread (OpenMP)
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An efficient PIC implementation

Performance: speedup

Landau damping test-case 1000 iterations, a grid of 512 x 16 cells.
Verification: conservation of the total energy, electric field energy.

Speedup

PN WA OO N OO

20 million particles run —e—
2 million particles run —e—
200 million particles run —e—

1

2

4

6 8 12
Number of threads

16

1000

2 million particles run —e—
20 million particles run —e—

1&

12 4 6 8 12 16
Number of threads

[
Q
S

Run time (minutes)
[
o

0.1

Threads  Time (seconds)  Speedup

1 703.2 1.0

2 348.2 2.02
4 191.5 3.67
6 139.2 5.05
8 112.9 6.23
12 87.7 8.02
16 75.3 9.34
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An efficient PIC implementation

Performance: memory bandwidth
N (nb of loads/stores) * 32B/time of particle push

Access to memory (GB/sec)

28.5

15
11.5
8.2

43
21

Access to memory (GB/sec)

2 3 4 5 6 7 8 10

Time
l

2 3 4 5 6 7 8 10

Time
1thread 8 threads

2 threads 16 threads

4 threads 12 threads

6 threads

Access to memory (GB/sec)

29
22

15
11.5
8.2

43
21

Access to memory (GB/sec)

0.2 0.4 0.6 0.8 1 12
Time
I
2 3 4 5 6 7 8 10
Time
1thread 8 threads
2 threads 16 threads
4 threads 12 threads
6 threads

2 million (left) and 20 million (right) particles runs.
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An efficient PIC implementation

Performance: MB Stream benchmark

The stream test : 10 GB/s on single core and 75 GB/s /16 threads.
Use of 2 processes and several threads.
20 million particles run.

How scales the memory banduidth

the STREAM test —a—
the PIC code

0 2 4 13 i 10 12 14 16
THREADS
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An efficient PIC implementation

Performance

Million of particles processed per second : N * Niser / T.

| Simulation\Threads [[ 1 [ 2 | 4 [ 8 [ 16 |
2 million particles 28.5 | 56.8 | 101.7 | 165.2 | 2243

20 million particles || 28.4 | 57.4 | 104.4 | 177.1 | 265.6
200 million particles || 28.0 | 56.9 | 103.5 | 174.4 | 263.8
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An efficient PIC implementation

Vlasov-Poisson /guiding center model

Long time (~ 1) simulations of
1 € € 1 L €
8tg5+f(v-vxg+ E°+ —v ~va):0
€ €

+ Poisson
and the limit model

0:8cc + EL - Vygec =0+ Poisson.

Kelvin-Helmholtz instability: periodic-periodic boundary conditions on
[0,47] x [0, 27], Poisson (solved by FFT). Random initialization of

2 2
v1—|—v2>

fo(x,v) = %(sin(xz) +0.05 cos(x1/2)) exp (— 5
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An efficient PIC implementation

Numerical results

10 million particles, 256 x 128 cells.

o for VP: Reference solution with leap-frog, 6t = 2me2/80
o for GC: RK2 with At = 0.01.

Global error at time t = 5: ||ggc — p°||12

0.45

maxi <= sllfec-pellLz ——
0.4

0.35
0.3
0.25

02|

0.15
0.01 0.05 0.1
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An efficient PIC implementation

Numerical results

guiding center, VP with ¢ = 0.05, VP with e = 0.1, VP with ¢ = 0.5

Densities at x;=0 and time = 12 Densities at x;=0 and time = 22
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An efficient PIC implementation

Conclusion and Qutlook

@ E. Frénod, S.H., M. Lutz, E. Sonnendriicker, CiCP, 2015.
@ E. Chacon-Golcher, S. H., M. Lutz, preprint HAL.

Short and long time simulation for oscillatory 4d Vlasov-Poisson:
o allows large time steps with respect to the rapid period.

@ produce accurate numerical solutions for different small values of ¢
with the same computational cost.

@ achieve high efficiency in PIC simulation with many particles.

compute reference solution for oscillatory VP with accuracy.

compare the time scheme to a reference solution in long time.
consider slowly varying magnetic field B.

improve the algorithm

towards the 6d model
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An efl nt PIC implementation

THANK YOU !
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