Around the electronic M_1 model.

Stéphane Brull, Emmanuel d'Humières, Bruno Dubroca,

Sébastien Guisset

Bordeaux, October 2015.

Context

Objectives: development of models and numerical methods

- robust
- fast
- accurate

 \hookrightarrow plasma physics applications (Inertial Confinement Fusion context)

 \hookrightarrow enable to study long time regimes (hydrodynamics scales)

Table of contents

Introduction

Modelling

Asymptotic limits and numerical schemes

Conclusion / Perspectives

Introduction

Plasma: set of atoms totally ionized. Electronic transport, fixed ions Kinetic description: electron distribution function f(t, x, v),

 \hookrightarrow Resolution of the Vlasov or Fokker-Planck-Landau equation:

- ▶ C_{e,e} : electron/electron collision operator,
- $C_{e,i}$: electron/ion collision operator.

← Accurate but numerically expensive

Hydrodynamic description: cheap but less accurate for far equilibrium regimes.

 \hookrightarrow Intermediate description, angular moment models.

Electronic M_1 model

 \hookrightarrow Angular moments extraction: $v = \zeta \Omega$ with $\zeta = |v|$.

$$f_0(\zeta) = \zeta^2 \int_{S_2} f(v) d\Omega, \quad f_1(\zeta) = \zeta^2 \int_{S_2} f(v) \Omega d\Omega, \quad f_2(\zeta) = \zeta^2 \int_{S_2} f(v) \Omega \otimes \Omega d\Omega.$$

 V_X

n

θ

Ω

Set of realisable states

$$\mathcal{A} = \left((f_0, f_1) \in \mathbb{R} imes \mathbb{R}^3, \ f_0 \geq 0, \ |f_1| < f_0
ight) \cup (\mathbf{0}_{\mathbb{R}}, \mathbf{0}_{\mathbb{R}^3}).$$

Collisionless electronic M_1 model

$$\begin{cases} \partial_t f_0 + \nabla_x .(\zeta f_1) + \frac{q}{m} \partial_\zeta (f_1 . E) = 0, & v_y \\ \partial_t f_1 + \nabla_x .(\zeta f_2) + \frac{q}{m} \partial_\zeta (f_2 E) - \frac{q}{m\zeta} (f_0 E - f_2 E) - \frac{q}{m} (f_1 \wedge B) = 0. \end{cases}$$

 $\rightarrow V_{Z}$

Closure

Different closures:

The P_N model : projection on Legendre polynomials.

Example: the P1 model

$$f = A_0(\zeta) + A_1(\zeta).\Omega,$$
 $A_0(\zeta) = \frac{f_0(\zeta)}{4\pi}, A_1(\zeta) = \frac{3f_1(\zeta)}{4\pi}.$

The positivity of the distribution function is not ensured.

 \hookrightarrow Positive closure: P_N positive model¹

 $\hookrightarrow M_N$ model: entropy minimisation problem²

²G.N. Minerbo, J. Quant. Spectrosc. Radiat. Transfer, 1978.

Sébastien GUISSET

Electronic M_1 model

¹Hauck, McLarreen, 2010

The M_1 model

Determination of f_2 as a function of f_0 and f_1 : Entropy minimisation problem^{3,4}.

$$\begin{split} \min_{f \ge 0} \left\{ \begin{array}{ll} \mathcal{H}(f) \ / \ \forall \zeta \in \mathbb{R}^+, \ \zeta^2 \int_{S^2} f(\Omega, \zeta) d\Omega &= f_0(\zeta), \ \zeta^2 \int_{S^2} f(\Omega, \zeta) \Omega d\Omega = f_1(\zeta) \right\} \\ & \text{with } \mathcal{H}(f) = \int_{S^2} (f \ \ln \ f \ - \ f) d\Omega. \end{split}$$

Entropy minimisation principle ⁵:

$$f(\Omega,\zeta)=exp(a_0(\zeta)+a_1(\zeta).\Omega)\geq 0, \hspace{1em} a_1(\zeta)\in \mathbb{R}^3 \hspace{1em} a_0(\zeta)\in \mathbb{R}$$

Expression of f_2 :

$$\mathbf{f_2} = \left(\frac{1-\chi(\alpha)}{2}\mathbf{Id} + \frac{3\chi(\alpha)-1}{2}\frac{\mathbf{f_1}}{|\mathbf{f_1}|} \otimes \frac{\mathbf{f_1}}{|\mathbf{f_1}|}\right)\mathbf{f_0}$$

with

$$\chi(\alpha) = \frac{1 + \alpha^2 + \alpha^4}{3}, \qquad \alpha = f_1/f_0, \qquad P1: \ \chi(\alpha) = 1/3.$$

³G.N. Minerbo, J. Quant. Spectrosc. Radiat. Transfer, 1978.

⁴D. Levermore, Moment Closure Hierarchies for Kinetic Theories, 1996.

⁵B. Dubroca and J.L. Feugeas. C. R. Acad. Sci. Paris Ser. I, 1999.

Sébastien GUISSET

Electronic M1 model

Limit of the M_1 model

 $\stackrel{\hookrightarrow}{\to} \mbox{Accurate for isotropic configurations or configurations with one dominant} \\ \mbox{direction}^6.$

Validity of the M_1 model for kinetic plasma studies?

Investigation of: particle beams interaction, Landau damping and laser-plasma absorption.

 \hookrightarrow Limit of the M_1 and M_2 models for collisionless regimes⁷

 \hookrightarrow Application to inertial confinement fusion

 \hookrightarrow collisional plasmas

⁶Dubroca, Feugeas and Frank. The European Phys. Journal 2010. ⁷Guisset, Moreau, Nuter, Brull, d'Humières, Dubroca, Tikhonchuk. J. Phys. A: Math. Theor. (2015).

The Fokker-Planck-Landau equation

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f + \frac{q}{m} (E + v \times B) \cdot \nabla_{v} f = C_{e,e}(f,f) + C_{e,i}(f),$$

$$\begin{split} C_{ee}(f,f) &= \alpha_{ee} \operatorname{div}_{v} \Big(\int_{v' \in \mathbb{R}^{3}} S(v-v') [\nabla_{v} f(v) f(v') - f(v) \nabla_{v} f(v')] \operatorname{dv}' \Big), \\ C_{ei}(f) &= \alpha_{ei} \operatorname{div}_{v} \Big[S(v) \nabla_{v} f(v) \Big], \quad S(u) &= \frac{1}{|u|^{3}} (|u|^{2} \operatorname{Id} - u \otimes u). \end{split}$$

 \hookrightarrow C_{ee} non-linear: complex angular moment extraction

Simplification

$$C_{ee}(f,f) pprox Q_{ee}(f_0) = C_{ee}(f_0,f_0)^8,$$

Admissibility requirement

$$C_{ee}(f,f) \approx Q_{ee}(f) = C_{ee}(f,f_0)^9.$$

⁸Berezin, Khudick and Pekker (1987), Buet and Cordier (1998).

⁹J. Mallet, S. Brull and B. Dubroca. Kinetic and Related Models (2015).

Sébastien GUISSET

Electronic M_1 model

Not admissible M_1 model:

$$\begin{cases} \partial_t f_0 + \nabla_x .(\zeta f_1) + \partial_\zeta \Big(\frac{qE}{m} f_1\Big) = \mathcal{Q}_0(f_0), \\ \partial_t f_1 + \nabla_x .(\zeta f_2) + \partial_\zeta \Big(\frac{qE}{m} f_2\Big) - \frac{qE}{m\zeta}(f_0 - f_2) = \mathcal{Q}_1(f_1). \end{cases}$$

Collisions operators

$$\begin{aligned} Q_0(f_0) &= \alpha_{ee} \partial_{\zeta} \left(\zeta^2 A(\zeta) \partial_{\zeta} \left(\frac{f_0}{\zeta^2} \right) - \zeta B(\zeta) f_0 \right), \qquad Q_1(f_1) = -\alpha_{ei} \frac{2f_1}{\zeta^3}, \\ A(\zeta) &= \int_0^\infty \min(\frac{1}{\zeta^3}, \frac{1}{\mu^3}) \mu^2 f_0(\mu) d\mu, \quad B(\zeta) = \int_0^\infty \min(\frac{1}{\zeta^3}, \frac{1}{\mu^3}) \mu^3 \partial_{\mu} \left(\frac{f_0(\mu)}{\mu^2} \right) d\mu. \end{aligned}$$

Modification: admissible M_1 model¹⁰

$$\begin{cases} \partial_t f_0 + \nabla_x .(\zeta f_1) + \partial_\zeta \left(\frac{qE}{m}f_1\right) = Q_0(f_0), \\ \partial_t f_1 + \nabla_x .(\zeta f_2) + \partial_\zeta \left(\frac{qE}{m}f_2\right) - \frac{qE}{m\zeta}(f_0 - f_2) = Q_1(f_1) + Q_0(f_1). \end{cases}$$

¹⁰J. Mallet, S. Brull and B. Dubroca. Kinetic and Related Models (2015).

Fundamental properties of the M_1 collisional operators¹¹:

- admissibility
- H-theorem (entropy dissipation)
- conservation properties
- caracterisation of the equilibrium states

 \hookrightarrow Long time behavior: derivation of the plasma transport coefficients.

Boltzmann \rightarrow Chapman-Enskog expansion: Navier-Stokes

 $\label{eq:Fokker-Planck-Landau} \begin{array}{l} \rightarrow \mbox{ Spitzer-H\"arm approximation: Electron collisional} \\ \mbox{ hydrodynamics} \end{array}$

 $\hookrightarrow \mathsf{different}\ \mathsf{plasma}\ \mathsf{transport}\ \mathsf{coefficients}$

¹¹J. Mallet, S. Brull and B. Dubroca. Kinetic and Related Models (2015)

Electron collisional hydrodynamics

Strongly collisional fully ionised hot plasma:

$$f(t,\vec{x},\zeta,\vec{\Omega}) = F_0(\zeta,T_e(t,\vec{x}),n_e(t,\vec{x})) + \vec{F}_1(t,\vec{x},\zeta).\vec{\Omega}$$

where

$$F_0(\zeta, T_e(t, \vec{x}), n_e(t, \vec{x})) = n_e(t, \vec{x}) \Big(\frac{m_e}{2\pi T_e(t, \vec{x})} \Big)^{3/2} \exp\Big(- \frac{m_e \zeta^2}{2T_e(t, \vec{x})} \Big).$$

Density, momentum and energy conservation laws:

$$\begin{cases} \quad \frac{\partial n_e}{\partial t} + \nabla_{\vec{x}} \cdot (n_e \vec{u}_e) = 0, \\ \quad \frac{\partial n_e \vec{u}_e}{\partial t} + \nabla_{\vec{x}} (n_e \vec{u}_e \otimes \vec{u}_e + \frac{n_e T_e}{m_e} \vec{l}_d) = 0, \\ \quad \frac{\partial T_e}{\partial t} + \vec{u}_e \cdot \nabla_{\vec{x}} (T_e) + \frac{2}{3} T_e \nabla_{\vec{x}} \cdot (\vec{u}_e) + \frac{2}{3n_e} \nabla_{\vec{x}} \cdot (\vec{q}) = \frac{2}{3n_e} \vec{j} \cdot \vec{E} \end{cases}$$

where

$$ec{j} = -en_eec{u}_e = -rac{4\pi e}{3} \int_0^{+\infty} ec{F}_1 \zeta^3 d\zeta, \quad ec{q} = rac{2\pi}{3} \int_0^{+\infty} ec{F}_1 (m_e \zeta^2 - 5T_e) \zeta^3 d\zeta.$$

 \hookrightarrow Closure: derivation of \vec{F}_1

Plasma transport coefficients

Long time behavior

$$F_0\zeta\Big[\frac{e\vec{E}^*}{T_e} + \frac{1}{2T_e}\nabla_{\vec{x}}(T_e)(\frac{m_e\zeta^2}{T_e} - 5)\Big] = -\frac{2\alpha_{ei}}{\zeta^3}\vec{F}_1 + \frac{1}{\zeta^2}\vec{Q}_0(\zeta^2\vec{F}_1).$$

with

$$ec{E}^* = ec{E} + (1/en_e)
abla_{ec{x}}(n_e T_e).$$

 \hookrightarrow Solve an integro-differential equation.¹²

 \hookrightarrow Expansion^{13,14} of $ec{F}_1$ on the generalised Laguerre polynomials

Closure

$$\vec{j} = \sigma \vec{E}^* + \alpha \nabla_{\vec{x}} T_e, \quad \vec{q} = -\alpha T_e \vec{E}^* - \chi \nabla_{\vec{x}} T_e$$

¹²L. Spitzer and R. Harm. Phys. Rev. (1953).

¹³S.I. Braginskii. Reviews of Plasma Physics (1965).

¹⁴S. Chapman. Phil. Trans. Roy. Soc. (1916).

Sébastien GUISSET

Electronic M_1 model

Plasma transport coefficients¹⁵

¹⁵Guisset, Brull, Dubroca, d'Humières, Tikhonchuck: Classical transport theory for the collisional electronic M1 model. Submitted.

Asymptotic limits and numerical schemes

Asymptotic limits and numerical schemes

 \hookrightarrow Study of the numerical schemes behaviors in long time regimes

 \hookrightarrow Severe constraints apply on classical schemes

Can not capture the asymptotic limit under acceptable conditions

Objectives: derivation of numerical methods which capture the correct asymptotic limit

 \hookrightarrow Asymptotic-Preserving (AP) schemes

Long time behavior and singular limit

► Different scales:

 $\lambda_{De}, au_{pe} \ << \ \lambda_{ei}, au_{ei} \ << \ L, T$

Quasi-neutral limit ($t^* >> \tau_{pe}$)

$$\begin{cases} \frac{\partial f}{\partial t} + v \cdot \nabla_{\mathsf{x}} f + \frac{q}{m} (E + v \times B) \cdot \nabla_{\mathsf{v}} f = C_{e,e}(f,f) + C_{e,i}(f), \\ \frac{\partial E}{\partial t} = -\frac{j}{\alpha^2} \end{cases}$$

with $\alpha = \tau_{pe}/t^*$.

Diffusive limit ($t^* >> \tau_{ei}$)

$$\begin{cases} \varepsilon \frac{\partial f}{\partial t} + v \cdot \nabla_{\mathsf{x}} f + \frac{q}{m} (E + v \times B) \cdot \nabla_{\mathsf{v}} f = \frac{1}{\varepsilon} C_{e,e}(f,f) + \frac{1}{\varepsilon} C_{e,i}(f), \\ \frac{\partial E}{\partial t} = -\frac{j}{\varepsilon^3 \alpha^2} \end{cases}$$

with $\varepsilon^2 = \tau_{ei}/t^*$.

\hookrightarrow Constraints on the numerical schemes

Quasi-neutral limit

As $\alpha \to 0$, impossibility to compute E^{n+1} .

 \hookrightarrow Reformulation¹⁶ of the M_1 -Maxwell model¹⁷

Time semi-discretisation

$$\begin{aligned} \frac{f_1^{n+1} - f_1^n}{\Delta t} + \nabla_x(\zeta f_2^n) &- \partial_\zeta(\boldsymbol{E}^{n+1} f_2^n) + \frac{\boldsymbol{E}^{n+1}}{\zeta} (f_0^n - f_2^n) = Q_0(f_1^n) + Q_1(f_1^n). \end{aligned}$$
Electric current:
$$j^n &= -\int_0^{+\infty} f_1^n \zeta d\zeta, \\ \begin{cases} \frac{j^{n+1} - j^n}{\Delta t} = \beta_1(f_0^n, f_1^n) \boldsymbol{E}^{n+1} + \beta_2(f_0^n, f_1^n), \\ \frac{\boldsymbol{E}^{n+1} - \boldsymbol{E}^n}{\Delta t} = -\frac{j^{n+1}}{\alpha^2}. \end{cases} \quad \boldsymbol{E}^{n+1} = \frac{-\frac{\alpha^2 \boldsymbol{E}^n}{\Delta t^2} + \beta_2(f_0^n, f_1^n) + \frac{j^n}{\Delta t}}{-\frac{\alpha^2}{\Delta t^2} - \beta_1(f_0^n, f_1^n)}. \end{aligned}$$

If $\alpha \to 0$ we can obtain E^{n+1} , Δt is not constrained by α (asymptotic stability).

 $\label{eq:realistic collision operators} \hookrightarrow \mathsf{Application to Fokker-Planck-Landau}$

¹⁶Degond et al. (2012)

¹⁷Guisset, Brull, d'Humières, Dubroca, Karpov, Potapenko. To appear CICP.

Sébastien GUISSET

Diffusive limit¹⁸

Diffusive scaling: $\tilde{t} = t/t^*$, $\tilde{x} = x/x^*$, $\tilde{v} = v/v_{th}$ such that $\tau_{ei}/t^* = \varepsilon^2$, $\lambda_{ei}/x^* = \varepsilon$.

Dimensionless system

$$\begin{cases} \varepsilon \partial_t f_0 + \zeta \partial_x f_1 + E \partial_\zeta f_1 = 0, \\ \varepsilon \partial_t f_1 + \zeta \partial_x f_2 + E \partial_\zeta f_2 - \frac{E}{\zeta} (f_0 - f_2) = -\frac{2\sigma}{\zeta^3} \frac{f_1}{\varepsilon}. \end{cases}$$

Hilbert expansion

$$f_0^{\varepsilon} = f_0^0 + \varepsilon f_0^1 + O(\varepsilon^2), \quad f_1^{\varepsilon} = f_1^0 + \varepsilon f_1^1 + O(\varepsilon^2).$$

Limit equation

$$f_1^0 = 0,$$

$$\partial_t f_0^0 + \zeta \partial_x \left(-\frac{\zeta^4}{6\sigma} \partial_x f_0^0 - \frac{E\zeta^3}{6\sigma} \partial_\zeta f_0^0 + \frac{E\zeta^2}{3\sigma} f_0^0 \right) + E \partial_\zeta \left(-\frac{\zeta^4}{6\sigma} \partial_x f_0^0 - \frac{E\zeta^3}{6\sigma} \partial_\zeta f_0^0 + \frac{E\zeta^2}{3\sigma} f_0^0 \right) = 0.$$

 \hookrightarrow Mixed x and ζ derivatives.

¹⁸Collaboration with R. Turpault

Sébastien GUISSET

Electronic M_1 model

Derivation of the scheme: problem setting

Simplified case: no electric field

Model and diffusive limit

$$\begin{cases} \varepsilon \partial_t f_0^\varepsilon + \zeta \partial_x f_1^\varepsilon = 0, \\ \varepsilon \partial_t f_1^\varepsilon + \zeta \partial_x f_2^\varepsilon = -\frac{2\sigma}{\zeta^3} \frac{f_1^\varepsilon}{\varepsilon}. \qquad \qquad \partial_t f_0^0(t,x) - \zeta \partial_x \Big(\frac{\zeta^4}{6\sigma(x)} \partial_x f_0^0(t,x)\Big) = 0. \end{cases}$$

Limit of the HLL scheme:

$$\begin{cases} \varepsilon \frac{f_{0i}^{n+1,\varepsilon} - f_{0i}^{n,\varepsilon}}{\Delta t} + \zeta \frac{f_{1i+1}^{n,\varepsilon} - f_{1i-1}^{n,\varepsilon}}{2\Delta x} - \zeta \Delta x \frac{f_{0i+1}^{n,\varepsilon} - 2f_{0i}^{n,\varepsilon} + f_{0i-1}^{n,\varepsilon}}{\Delta x^2} = 0, \\ \varepsilon \frac{f_{1i}^{n+1,\varepsilon} - f_{1i}^{n,\varepsilon}}{\Delta t} + \zeta \frac{f_{2i+1}^{n,\varepsilon} - f_{2i-1}^{n,\varepsilon}}{2\Delta x} - \zeta \Delta x \frac{f_{1i+1}^{n,\varepsilon} - 2f_{1i}^{n,\varepsilon} + f_{1i-1}^{n,\varepsilon}}{\Delta x^2} = -\frac{2\sigma_i}{\zeta^3} \frac{f_{1i}^{n,\varepsilon}}{\varepsilon}. \end{cases}$$

 \hookrightarrow HLL numerical scheme: Unphysical numerical viscosity in $O(\frac{\Delta x}{\epsilon})$.

Harten Lax and van Leer formalism

Riemann problem for hyperbolic system of conservation laws

 $\partial_t U + \partial_x F(U) = 0,$

with $U \in \mathbb{R}^m$, $x \in \mathbb{R}$, t > 0. Initial conditions

ı.

$$U(x,t=0) = \begin{cases} U_L & \text{if } x < 0, \\ U_R & \text{if } x > 0. \end{cases}$$

 \hookrightarrow Self-similarity of the exact Riemann solution $U(x/t, U_L, U_R)$

Approximate Riemann solver

$$U_{RP}(x/t, U_L, U_R) = \begin{cases}
U_1 = U_L & \text{if } x/t < \lambda_1, \\
\vdots \\
U_k & \text{if } \lambda_{k-1} < x/t < \lambda_k \\
\vdots \\
U_{l+1} = U_R & \text{if } x/t > \lambda_l.
\end{cases} t \lambda_l$$

Harten Lax and van Leer formalism

Consistency with the integral form of the hyperbolic system

$$\int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}} \int_{0}^{\Delta t} (\partial_t U + \partial_x F(U)) dx dt = 0,$$

$$\hookrightarrow \quad F(U_R) - F(U_L) = \sum_{k=1}^{l} \lambda_k (U_{k+1} - U_k).$$

Godunov-type scheme

$$U_i^{n+1} = \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} U^h(x, t^{n+1}) dx.$$

$$U^h(x,t^n+\Delta t)=U_{RP}\Big(rac{x-x_{i+1/2}}{t^n+\Delta t},U_i,U_{i+1}\Big) \hspace{0.2cm} ext{if} \hspace{0.2cm} x\in[x_i,x_{i+1}].$$

Conservative form

$$\begin{cases} U_i^{n+1} = U_i^n - \frac{\Delta t}{\Delta x} (F_{i+\frac{1}{2}}^n - F_{i-\frac{1}{2}}^n), \\ F_{i+\frac{1}{2}}^n = F(U_i^n, U_{i+1}^n), \end{cases}$$

 $F(U_L, U_R) = rac{1}{2} \Big[F(U_L) + F(U_R) - \sum_{k=1}^l |\lambda_k| (U_{k+1} - U_k) \Big].$

Sébastien GUISSET

Derivation of the scheme

Source terms: approximate Riemann solvers which own a stationnary discontinuity^{19,20} (0-contact discontinuity).

 $\hookrightarrow \text{Two intermediate states } \textit{U}^{\textit{L}*} = {}^t(\textit{f}_0^{\textit{L}*},\textit{f}_1^*) \text{ and } \textit{U}^{\textit{R}*} = {}^t(\textit{f}_0^{\textit{R}*},\textit{f}_1^*).$

CFL condition $\Delta t \leq \frac{\Delta x}{2a_x}$.

$$U_i^{n+1} = \frac{a_x \Delta t}{\Delta x} U_{i-1/2}^{R*} + (1 - \frac{2a_x \Delta t}{\Delta x}) U_i^n + \frac{a_x \Delta t}{\Delta x} U_{i+1/2}^{L*}.$$

¹⁹F. Bouchut, Frontiers in Mathematics series (2004).
 ²⁰L. Gosse, Math. Mod. Meth. Apl. Sci. (2001)

Sébastien GUISSET

Electronic M1 model

Derivation of f_1^*

Consistency condition for f_1^*

$$f_1^* = \frac{f_1^L + f_1^R}{2} - \frac{1}{2a_x}(\zeta f_2^R - \zeta f_2^L) - \frac{2}{\zeta^3} \frac{1}{2a_x \Delta t} \int_{-a_x \Delta t}^{a_x \Delta t} \int_0^{\Delta t} \sigma(x) f_1(x, t) dt dx.$$

Approximation

$$\frac{1}{2a_{x}\Delta t}\int_{-a_{x}\Delta t}^{a_{x}\Delta t}\int_{0}^{\Delta t}\sigma(x)f_{1}(x,t)dtdx\approx\bar{\sigma}\Delta tf_{1}^{*},\qquad \bar{\sigma}=\sigma(0).$$

Definition of $f_1^{*, 21}$

$$f_1^* = \frac{2a_x\zeta^3}{2a_x\zeta^3 + 2\bar{\sigma}\Delta x} \Big[\frac{f_1^L + f_1^R}{2} - \frac{1}{2a_x}(\zeta f_2^R - \zeta f_2^L)\Big].$$

²¹C. Berthon and R.Turpault. Num. Meth. PDE. (2011).

Sébastien GUISSET

Electronic M_1 model

Derivation of f_0^{L*} and f_0^{R*}

Consistency condition for f_0

$$\frac{f_0^{L*} + f_0^{R*}}{2} = \frac{f_0^L + f_0^R}{2} - \frac{1}{2a_x}[\zeta f_1^R - \zeta f_1^L].$$

Definition of f_0^{L*} and f_0^{R*}

$$\begin{cases} f_0^{L^*} = \tilde{f}_0 - \Gamma, \\ f_0^{R^*} = \tilde{f}_0 + \Gamma. \end{cases} \qquad \qquad \tilde{f}_0 = \frac{f_0^L + f_0^R}{2} - \frac{1}{2a_x} [\zeta f_1^R - \zeta f_1^L]. \end{cases}$$

The Rankine-Hugoniot conditions gives **F**

$$\begin{cases} f_0^{L*} = f_0^L - \frac{\zeta}{a_x} (f_1^* - f_1^L), \\ f_0^{R*} = f_0^R - \frac{\zeta}{a_x} (f_1^R - f_1^*). \end{cases} \quad \Gamma = \frac{1}{2} [f_0^R - f_0^L - \frac{\zeta}{a_x} (f_1^L - 2f_1^* + f_1^R)]. \end{cases}$$

Admissibility conditions: modification of f_0^{L*} and f_0^{R*}

$$\begin{cases} f_0^{1*} = \tilde{f}_0 - \Gamma\theta, \\ f_0^{R*} = \tilde{f}_0 + \Gamma\theta. \end{cases} \qquad \qquad \tilde{\theta} = \frac{\tilde{f}_0 - |f_1^*|}{|\Gamma|} \ge 0, \qquad \qquad \theta = \min(\tilde{\theta}, 1). \end{cases}$$

Asymptotic-preserving property

Theorem (AP Property)

When ε tends to zero, the unknown $f_{0i}^{n+1,0}$ satisfies the discrete equation

$$\frac{f_{0i}^{n+1,0}-f_{0i}^{n,0}}{\Delta t}-\frac{\zeta}{\Delta x}\Big[\frac{\zeta^3}{6\bar{\sigma}_{i+1/2}\Delta x}\Big[(\zeta f_{0i+1}^{n,0}-\zeta f_{0i}^{n,0})\Big]-\frac{\zeta^3}{6\bar{\sigma}_{i-1/2}\Delta x}\Big[(\zeta f_{0i}^{n,0}-\zeta f_{0i-1}^{n,0})\Big]\Big]=0.$$

Key ideas

Diffusive scaling²²:
$$\varepsilon \frac{U_i^{n+1} - U_i^n}{\Delta t} = \frac{a_x}{\Delta x} U_{i+1/2}^{L*} - \frac{2a_x}{\Delta x} U_i^n + \frac{a_x}{\Delta x} U_{i-1/2}^{R*}.$$

Intermediate state f_1^*

$$f_1^* = \frac{2a_x\zeta^3}{2a_x\zeta^3 + 2\bar{\sigma}\Delta x/\varepsilon} \left[\frac{f_1^L + f_1^R}{2} - \frac{1}{2a_x}(\zeta f_2^R - \zeta f_2^L)\right].$$

 \hookrightarrow No limitation is required $\theta = 1$.

²²C. Berthon, P. Charrier and B. Dubroca. J. Sci. Comput. (2007).

Sébastien GUISSET

Electronic M_1 model

Homogeneous case with electric field

Model

$$\begin{cases} \partial_t f_0 + E \partial_\zeta f_1 = 0, \\ \partial_t f_1 + E \partial_\zeta f_2 - \frac{E}{\zeta} (f_0 - f_2) = -\frac{2\sigma f_1}{\zeta^3}. \end{cases}$$

Diffusive limit

$$\partial_t f_0^0(t,\zeta) - E \partial_\zeta \Big(\frac{E \zeta^3}{6\sigma} \partial_\zeta f_0^0(t,\zeta) - \frac{E \zeta^2}{3\sigma} f_0^0(t,\zeta) \Big) = 0.$$

 \hookrightarrow Limit of the relaxation approach

Intermediate state

$$f_{1}^{*} = \frac{2a_{\zeta}\zeta^{3}}{2a_{\zeta}\zeta^{3} + 2\sigma\Delta\zeta} \Big[\frac{f_{1}^{L} + f_{1}^{R}}{2} - \frac{1}{2a_{\zeta}} (Ef_{2}^{R} - Ef_{2}^{L}) + \frac{\Delta\zeta}{2a_{\zeta}} S_{L,R} \Big],$$
$$S_{L,R} = \frac{1}{2} \Big[\frac{E}{\zeta_{R}} (f_{0}^{R} - f_{2}^{R}) + \frac{E}{\zeta_{L}} (f_{0}^{L} - f_{2}^{L}) \Big].$$

 \hookrightarrow Asymptotic-preserving property²³

 23 Guisset, Brull, d'Humières, Dubroca. Asymptotic-preserving well-balanced scheme for the electronic M1 model in the diffusive limit: particular cases. Submited

with

Well-balanced property

Equilibrium solution

$$\begin{cases} E\frac{\partial f_1}{\partial \zeta} = 0, \\ E\frac{\partial f_2}{\partial \zeta} - \frac{E}{\zeta}(f_0 - f_2) = -\frac{2\sigma f_1}{\zeta^3}. \end{cases} \qquad \begin{cases} f_0 = K\zeta^2, \quad K \in \mathbb{R}^+ \\ f_1 = 0. \end{cases}$$

Property: The numerical scheme preserves the equibrium solution.

Key ideas

s

$$f_1^* = \frac{2a_\zeta\zeta^3}{a_\zeta\zeta^3 + 2\sigma\Delta\zeta} \left[-\frac{1}{3a_\zeta} (EK\zeta_R^2 - EK\zeta_L^2) + \frac{\Delta\zeta EK}{3a_\zeta} (\zeta_R + \zeta_L) \right] = 0$$

ince $(\zeta_R^2 - \zeta_L^2) = (\zeta_R + \zeta_L)(\zeta_R - \zeta_L) = (\zeta_R + \zeta_L)\Delta\zeta.$

The equilibrium condition implies $\theta = 1$ (Rankine-Hugoniot).

$$\Rightarrow \qquad f_{0i}^{n+1} = K\zeta_i^2 \quad \text{and} \quad f_{1i}^{n+1} = 0.$$

General model

Model

$$\begin{cases} \varepsilon \partial_t f_0 + \zeta \partial_x f_1 + E \partial_\zeta f_1 = 0, \\ \varepsilon \partial_t f_1 + \zeta \partial_x f_2 + E \partial_\zeta f_2 - \frac{E}{\zeta} (f_0 - f_2) = -\frac{2\sigma}{\zeta^3} \frac{f_1}{\varepsilon}. \end{cases}$$

Diffusive limit

$$\partial_t f_0^0 + \zeta \partial_x \left(-\frac{\zeta^4}{6\sigma} \partial_x f_0^0 - \frac{E\zeta^3}{6\sigma} \partial_\zeta f_0^0 + \frac{E\zeta^2}{3\sigma} f_0^0 \right) + E \partial_\zeta \left(-\frac{\zeta^4}{6\sigma} \partial_x f_0^0 - \frac{E\zeta^3}{6\sigma} \partial_\zeta f_0^0 + \frac{E\zeta^2}{3\sigma} f_0^0 \right) = 0.$$

Consider
$$\frac{U_{ij}^{n+1} - U_{ij}^{n}}{\Delta t} = \frac{a_{x}}{\Delta x} U_{i-1/2j}^{R*} - \frac{2a_{x}}{\Delta x} U_{ij}^{n} + \frac{2a_{x}\Delta t}{\Delta x} U_{i+1/2j}^{L*} + \frac{a_{\zeta}}{\Delta \zeta} U_{ij-1/2}^{R*} - \frac{2a_{\zeta}}{\Delta \zeta} U_{ij}^{n} + \frac{a_{\zeta}}{\Delta \zeta} U_{ij+1/2}^{L*}$$

intermediate states

$$U_{i-1/2j}^{R*} = \begin{pmatrix} f_{0i-1/2j}^{R*} \\ f_{1i-1/2j}^* \end{pmatrix}, U_{i+1/2j}^{L*} = \begin{pmatrix} f_{0i+1/2j}^{L*} \\ f_{1i+1/2j}^* \end{pmatrix}, U_{ij-1/2}^{R*} = \begin{pmatrix} f_{0ij-1/2}^{R*} \\ f_{0ij-1/2}^{R*} \\ f_{1ij-1/2j}^{L*} \end{pmatrix}, U_{ij+1/2}^{L*} = \begin{pmatrix} f_{0ij+1/2}^{L*} \\ f_{0ij+1/2}^{R*} \\ f_{1ij+1/2}^{R*} \end{pmatrix}$$

General model

Mixed derivatives: Modification of the intermediate state f_1^*

$$f_{1i+1/2j}^{*} = \alpha_{i+1/2j} \Big[\frac{f_{1i+1j} + f_{1ij}}{2} - \frac{1}{2a_x} (\zeta_j f_{2i+1j} - \zeta_j f_{2ij}) - c_{i+1/2j} \theta_{1i+1/2j} (\frac{\partial f_0}{\partial \zeta})_{i+1/2j} (1 - \alpha_{i+1/2j}) \Big]$$

$$f_{1ij+1/2}^{*} = \beta_{ij+1/2} \left[\frac{f_{1ij+1} + f_{1ij}}{2} - \frac{1}{2a_{\zeta}} (E_i f_{2ij+1} - E_i f_{2ij}) - \bar{c}_{ij+1/2} \theta_{2ij+1/2} (\frac{\partial f_0}{\partial x})_{ij+1/2} (1 - \beta_{ij+1/2}) \right]$$

$$\alpha_{i+1/2j} = \frac{2a_{\mathsf{x}}\zeta_j^3}{2a_{\mathsf{x}}\zeta_j^3 + \sigma_{i+1/2}\Delta \mathsf{x}}, \qquad \beta_{ij+1/2} = \frac{2a_{\mathsf{x}}\zeta_{j+1/2}^3}{2a_{\mathsf{x}}\zeta_{j+1/2}^3 + \sigma_i\Delta\zeta}.$$

 \hookrightarrow c and \bar{c} are fixed to obtain the correct limit equation

$$c_{i+1/2j} = \frac{E_{i+1/2}\Delta x}{3a_x}, \qquad \bar{c}_{ij+1/2} = \frac{\zeta_{j+1/2}\Delta \zeta}{3a_\zeta}.$$

with

General model

Upwinding: the sign of $c_{i+1/2j}$ and $\bar{c}_{ij+1/2}$ gives

$$\bar{c}_{ij+1/2} (\frac{\partial f_0}{\partial x})_{ij+1/2} \approx \bar{c}_{ij+1/2} \frac{f_{0i+1j+1} - f_{0ij+1} + f_{0i+1j} - f_{0ij}}{2\Delta x},$$

$$c_{i+1/2j}(rac{\partial f_0}{\partial \zeta})_{i+1/2j} pprox \left\{egin{array}{c} c_{i+1/2j} rac{f_{0i+1j}-f_{0i+1j-1}+f_{0ij}-f_{0ij-1}}{2\Delta \zeta} & ext{if } c_{i+1/2j} < 0, \ c_{i+1/2j} rac{f_{0i+1j+1}-f_{0i+1j}+f_{0ij+1}-f_{0ij}}{2\Delta \zeta} & ext{if } c_{i+1/2j} > 0. \end{array}
ight.$$

 $\hookrightarrow \theta_{1i+1/2j}$ and $\theta_{2ij+1/2}$ fixed to ensure the admissibility conditions.

Theorem (Admissibility)

If for all $(i,j) \in \mathbb{N}^2$, $U_{i,j}^n \in \mathcal{A}$, then for all $(i,j) \in \mathbb{N}^2$, $U_{i,j}^{n+1} \in \mathcal{A}$ as soon as the CFL condition $\Delta t \leq \Delta \zeta \Delta x / (2a_x \Delta \zeta + 2a_\zeta \Delta x)$ holds.

Alternative: modified HLL scheme

Wrong behavior of the numerical viscosity in $O(\frac{\Delta x}{\varepsilon})$.

 \hookrightarrow Modification of the numerical viscosity ²⁴.

Introduction of a correction θ^{ε} in $O(\varepsilon)$

$$\frac{f_{0i}^{n+1} - f_{0i}^{n}}{\Delta t} - \frac{\zeta}{\varepsilon} \frac{f_{1i+1}^{n+1} - f_{1i-1}^{n+1}}{2\Delta x} + \frac{\zeta \tilde{a} \theta^{\varepsilon}}{\varepsilon} \frac{f_{0i+1}^{n} - 2f_{0i}^{n} + f_{0i-1}^{n}}{2\Delta x} = 0.$$

 \hookrightarrow Admissibility requirements?

Acceptable condition on the correction and the CFL condition.

²⁴Collaboration with C. Chalons

Numerical test cases

Hot wall in the diffusive regime without electric field

Initial conditions

$$f_0(x,\zeta,0) = \sqrt{\frac{2}{\pi}} \frac{\zeta^2}{T_{ini}(x)^{3/2}} \exp\left(-\frac{\zeta^2}{2T_{ini}(x)}\right), \ f_1(x,\zeta,0) = 0, \quad T_{ini}(x) = 0.1.$$

Left boundary condition

$$f_0(0,\zeta,t) = \sqrt{\frac{2}{\pi}} \frac{\zeta^2}{T_{ext}(x)^{3/2}} \exp\left(-\frac{\zeta^2}{2T_{ext}(x)}\right), \ f_1(0,\zeta,t) = 0 \quad T_{ext}(x) = 1, \ \sigma = 10^4$$

Figure: Temperature for AP scheme, HLL and diffusion at time t=1 and 10.

Numerical test cases: diffusive regime

Periodical boundary conditions and $\sigma = 10^4$. Initial conditions

Sébastien GUISSET

Electronic M_1 model

Numerical test cases: diffusive regime

Initial conditions

$$\begin{cases} f_0(t = 0, x, \zeta) = \zeta^2 \exp(-x^2) \exp(2(\zeta - 3)^2), \\ f_1(t = 0, x, \zeta) = 0. \end{cases}$$

Periodical boundary conditions, $\sigma = 10^4$ and E = 1.

Numerical test cases: diffusive regime

Figure: f_0 profile at time t=1 (top), t=50 (middle), t=100 (bottom), for the HLL scheme (left), the AP scheme (middle) and the diffusion equation (right), ($\sigma = 10^4$).

Sébastien GUISSET

Numerical test cases: Electron beams interaction

$$f(t = 0, x, v) = \frac{1}{2}(1 + A\cos(kx))\exp(-(v + v_1)^2) = \frac{1}{2} + \frac{1}{2}(1 - A\cos(kx))\exp(-(v + v_2)^2), = \frac{1}{2}$$

$$F(0, x) = 0. = \frac{1}{2}(1 - A\cos(kx))\exp(-(v + v_2)^2), = \frac{1}{2}$$

Numerical test cases: two beams interaction

Numerical test cases: non-constant collisional parameter

Linear profile $\sigma(x) = ax + b$: $\sigma(x_{min} = -40) = 5.10^3$ and $\sigma(x_{max} = 40) = 10^5$ Self-consistent electric field: $E = -\partial_x T$

Conclusion

- Limit of the M_1 and M_2 model for collisionless plasma applications.
- Study of the collisional operators for the electronic M_1 model.
- Reformulation of the Maxwell-Ampere equation in the quasi-neutral regime.
- Study of numerical resolution of the electronic M_1 model in the diffusive limit.

Perspectives

- Coupling with the Maxwell equations in the quasi-neutral and diffusive regimes.
- Asymptotic-Preserving extension for the electron-electron collisional operator
- Multidimensional extension and magnetic fields
- Consider the motion of ions (collaboration with D. Aregba).

Perspective: M_1 moments model in a moving frame

The basis
$$(1, \frac{v}{|v|} = \Omega)$$
 is not galilean invariant ²⁵

 $\hookrightarrow \mathsf{Model} \ \mathsf{not} \ \mathsf{galilean} \ \mathsf{invariant}$

Galilean invariance of the moving frame $(1, \frac{v-u}{|v-u|} = \Omega)$.

Kinetic equation in a moving frame

$$\partial_t f + div_x((v+u)f) - div_v[(\partial_t u + \partial_x u(v+u))f] = C(f).$$

Angular moments extraction

 $\hookrightarrow M_1$ model in a moving frame

 \hookrightarrow Analysis and numerical scheme

 $^{^{25}\}mbox{D}.$ Levermore. Moment closure hierarchies for kinetic theories. J. Statist. Phys. (1996).

Thank you

Publications

Publications in referred journals

- S. Guisset, S. Brull, E. d'Humières, B. Dubroca, S. Karpov, I. Potapenko. Asymptotic-Preserving scheme for the M1-Maxwell system in the quasi-neutral regime. To appear in Communications in Computational Physics (CICP).
- S. Guisset, R. Nuter, J. Moreau, S. Brull, E. d'Humières, B. Dubroca, V. Tikhonchuk. Limits of the M1 and M2 angular moments models for kinetic plasma physics studies. J. Phys. A: Math. Theor. 48 (2015) 335501.

Articles submited

- S. Guisset, S. Brull, E. d'Humières, B. Dubroca. Asymptotic-preserving well-balanced scheme for the electronic M1 model in the diffusive limit: particular cases.
- S. Guisset, S. Brull, E. d'Humières, B. Dubroca, V. Tikhonchuk. Classical transport theory for the collisional electronic M1 model.

In preparation

 S. Guisset, S. Brull, E. d'Humières, B. Dubroca, R. Turpault. Asymptotic-preserving scheme for the electronic M1 model in the diffusive limit.