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Abstract

We aim to present a theory for the derivation of a class of relaxation operators
approximating the Boltzmann collision operator. The construction is based on
an approximation of the inverse Boltzmann linearized operator, on relaxation
equations on the moments of the distribution function and finally on a varia-
tional problem to be solved. The theory comprises a characterization of the set of
moments of non negative integrable functions, a study of those linear application
whose range lies in this set and a generalization of the functional to be minimized
under moment constraints. In particular we clarify but also modify some steps in
the proof of Junk’s theorem on the characterization of moments of non negative
functions [30]. We also reestablish a theorem of Csiszar’s [20] by different means
on a class of functionals leading to well-posed variational problems. The present
theory encompasses the derivation of known models and that of new models.

Keywords: relaxation operator, truncated moment problem, positive polynomials,
φ-divergence
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1 Introduction

Kinetic models are used to simulate rarefied gases in the context of atmospheric reen-
try, CVI deposition, micro-channels and other processes. The question arises whether
the very fine description of the gas that is given by the original Boltzmann equation
is required or not for such simulations. Depending on the Knudsen number, the col-
lision operator may be replaced by simpler models that are easier to handle such as
relaxation operators which seminal model is the BGK one [7]. Another reason for con-
sidering such operators is the difficulty to obtain the physical parameters that rule the
interaction between molecules beyond the case of mono-atomic molecules. Contrarily,
relaxation operators are often scaled by measurements obtained at the macroscopic
level such as the diffusion coefficients. The idea that consists in taking some informa-
tion available at this level is also used for the Boltzmann equation with continuous
internal energy states - see e.g [10] - but this will not be our concern here. So, there
exists plenty relaxation operators that are used in different context but no unified
approach while many feature the same patterns. A linear or almost linear behavior
with respect to the moments of the distribution function, most properties that are
satisfied by the original equation such as positivity of solution or the existence of an
entropy, and finally a correct hydrodynamic limit up to the Navier- Stokes equation.

In the present article, we aim to develop a theoretical approach that applies to
existing models such as the BGK [7], ESBGK [29] or Shakhov model [42] and serves
as a ground from which ongoing models can be constructed. The theory is presented
only in the case of mono-atomic molecules for it requires much technical matters. The
paper goes along the steps of what we name the method of moments relaxation which
is a generalization of the work presented in [12, 13] together with some applications
for modeling multicomponent gases (see for example [11, 14, 15, 41]). For short, the
construction is based on relaxation equations that are relations between moments of
the operator and moments of the distribution function with respect to a vector of
weight functions mmm. mmm together with relaxation parameters are suitably chosen in
order to obtain for example the right transport coefficients in the hydrodynamic limit.
The relaxation equations are restated in term of linear relations between the moments
of the probability density function f and those of the target function to be found.
So the question arises whether those relations have a range into the set of realizable
moments R+

mmm, that is the set of vectors which are moments of nonnegative functions
with respect to the weight functions mmm. So we will characterize R+

mmm and next specify
which are the admissible relaxation equations. In one dimension and when the domain
of velocity is R and mmm = {1, . . . , v2N}T , the characterization of R+

mmm is known as the
Hamburger moment problem. In this case, a moment ρρρ is realizable w.r.t. mmm iff the
moment matrix (ρi+j)i=0,...,N ;j=0,...,N is symmetric positive definite (SPD) (see for
example [3]). In higher dimension which is the case of the usual velocity domain, the
problem has given rise to many research (see for example [21, 23, 24, 27, 28, 33] and
also the survey in [25]). Most results deal with moments of positive Borel measures
and eventually of moments of atomic measures. At this moment, we must cite the
contribution of Pichard [37, 38] to moments closure in kinetic theory for his analy-
sis of such difficult results. So in dimension bigger than one, the characterization of
realizability by positive Borel measure is rather abstract and do not lead to tractable
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conditions such as in dimension 1. Nevertheless the main idea which consists in relat-
ing realizability with nonnegative polynomials provides more information when the
measures are represented by integrable functions [30]. Then characterizing realizable
moments amounts to characterizing nonnegative polynomials. This problem is known
as the 17th Hilbert problem (see [6] for a survey).

The next problem is the way to define G once its moments are known. For most
relaxation operators, it is usually done by minimizing the natural entropy under
moment constraints. Unfortunately, this functional is not suited neither to the sim-
ple case of Grad thirteen moments nor to moments of higher degree. Junk was the
first to raise and characterize the problem that one may face with Levermore’s clo-
sure [30, 34]. He was then followed by different authors giving their own insight on the
problem [26, 36, 40]. One way to bypass the problem was proposed by Abdelmalik and
Van Brummelen in the context of moments closures [2] by approximating the relative
entropy using φ-divergence [18]. More precisely, they have proposed an approximation
of the relative entropy that satisfies the condition established by Csiszar [20] in order
to set a well-posed variational problem. That is a minimization problem which solu-
tion is unique and qualifies all moments constraints. The generalization to different
approximations of the relative entropy by φ-divergence can finally be found in [1].

This article is organized as follows. We display in section 2 a set of properties that
should be satisfied by the relaxation operators we are going to construct. Then we
present the method of moments relaxation together with the mathematical problems
that are related with this construction. Section 3 is devoted to the characterization of
realizable moments and of admissible linear relaxations. Firstly, we revisit and try to
clarify Junk’s theorem [30] on the characterization of R+

mmm. Secondly, we display the
known results on the 17th Hilbert problems, how they can be used but also what is the
limitation of the characterization of R+

mmm by using nonnegative polynomials. Thirdly we
consider the case of Grad thirteen moments and fully describe admissible relaxations
whose range are in R+

mmm. We close this section by a studying a class of linear operators
that let R+

mmm invariant and that are related to Galilean invariance of the models to
be constructed. Section 4 deals with the optimization problem. Since this problem is
central in the derivation of BGK-type models but also of moments closure in kinetic
theory, we study the existence theorems related to different φ-divergences. In particular
we focus on one theorem bu Csiszar [20] and reestablish it by using convex analysis
(see in particular [8]). This framework is more suited to derive the shape of the solution
in the problems we are dealing with. In section 5, we show that the model which is
constructed just basing on relaxations on the Grad thirteen moments is well-posed in
the sense of section 2. We also address the general case and point out some problems to
be solved. We then display some known models that can be derived in this framework
just by using different functional in the variational problem [7, 29, 42]. We compare the
present approach to Levermore’s sum of relaxation operators [34]. Velocity dependent
relaxation frequency models are not contained within the present approach even if
they share a lot of common points with the present study [9, 35, 43, 44]. Finally, all
the proofs are presented separately in section 6.
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2 Method of moments relaxation

In this section, we present the general framework for the derivation of BGK type
models that will be studied in this paper. We start by considering the Boltzmann
equation

∂tf + v · ∇xf = Q(f, f), (1)

where Q(f, f) is the classical Boltzmann operator [16, 17]. Our aim is to construct a
relaxation operator K(f) that may approximate Q(f, f) in some physical regime. In a
first time we display some expected properties on K(f) that are inherited from those
of Q(f, f) and in a second one we describe the framework for the derivation of a class
of relaxation models and set some mathematical problems that will be addressed in
the two next sections.

2.1 Well-defined operator

We expect that an operator of the form

K (f) = ν(G− f),

satisfies properties that are similar to those of the Boltzmann collision operator.
In some sense, such an operator is well-defined as soon as there hold the following
properties.

1. Conservation laws :

∀f,
∫
K(f)φ (v) dv = 0⇔ φ ∈ K,

with

K = span
{
1,v,v2

}
(2)

2. Preservation of positivity. Starting from a nonnegative initial condition f (0,x,v) ≥
0 the solution must remain nonnegative and there must hold ν(t, x) > 0 and
G [f ] (t,x , v) ≥ 0 at any (t, x, v) ∈ R+ × R3 × R3.

3. There exists a strictly convex function η with dom(η) = R+ (more condition on η
are studied in section 4.1) such that the functional H (f) =

∫
η(f)dv satisfies∫

K(f)η′ (f) dv ≤ 0. (3)

Equation (3) must then be completed with the usual characterization of local
equilibrium.

K(f) = 0⇔
∫
η′ (f)K (f) = 0⇔ η′ (f) ∈ K, (4)
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with

K(f) = 0⇔M (v) =
n

(2πkBT/m)
3/2

exp

(
−m (v − u)

2

2kBT

)
(5)

where n,u, T are the density, velocity and temperature. We refer to the properties
(3),(4) and (5) as the extended H-theorem or H-theorem in short.

4. Galilean invariance. For any translation: τv = v − u and rotation τv = Θv in the
velocity space there holds

K ([τf ]) = [τK (f)]

where by definition
∀v, [τf ] (v) := f (τv) .

5. M being fixed one defines as usual the linearized operator L with

L (g) := lim
ε 7→0+

1

εM
K (M (1 + εg)) , (6)

whose domain is L2(M). Then there must hold
(a) kerL = K
(b) L is Fredholm, with pseudo-inverse L−1 defined on the orthogonal of kerL in

L2(M).

(c) It is symmetrical negative on (kerL)
⊥

(d) The viscosity and thermal conductivity computed from L−1 must be the same
as the ones derived from the Boltzmann equation (see (21)).

Remark 1. The moment approach of relaxation operators is not suited to the Boltz-
mann entropy H(f) =

∫
f ln(f)dv in most cases. We do not ask H(f) =

∫
η(f)dv

to be a Lyapounov functional for the non homogeneous equation. The weakened prop-
erty (3) that is required here enlarges the choice in η. This may give some stability if
the variations of f due to the transport of particles are smaller than those due to the
relaxation operator.

2.2 Method of moments relaxation

Let us now consider the kinetic equation

∂tf + v · ∇xf = K(f) (7)

with
K(f) = ν(G− f).

The question is: how to define ν and G in such a way that the solution of equation
(7) behaves as that of the Boltzmann equation (1). The range of validity in this
comparison is understood in the following way.M being a local equilibrium function,
f =M+Mg and the Boltzmann operator reads

Q(f, f) =MLB(g) +Q(Mg,Mg),
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where LB is the linearized Boltzmann operator. So we assume that Q(Mg,Mg) is
negligible compared to MLB(g) and we are looking for a relaxation operator K(f)
approximating MLB(g).

2.2.1 Setting moments relaxation

The above approximation writes in the weak form∫
R3

K(f)φdv ≈
∫
R3

MLB(g)φdv =

∫
R3

MgLB(φ) dv

=

∫
R3

(M+Mg)LB(φ) dv =

∫
R3

fLB(φ) dv.

This approximation is of course impossible if one considers all test functions φ in
L2(M) since this would imply K(f) = MLB(g). So we must restrict ourselves to a
space of finite dimension P. In the case of Maxwell molecules, one just has to consider
the space P spanned by the q first eigenfunctions of LB : (mi(v))i=1,··· ,q. One then
sets the following relaxation equations∫

R3

K(f)mi dv =

∫
R3

fLB(mi) dv = −νi
∫
R3

fmi dv. (8)

Such relations are constitutive properties of the models to be constructed. Their gen-
eralization to other types of molecular interaction can be done in two ways. Let P be
a (polynomial) space of dimension q with K ⊂ P and P be the projection onto P in
L2(M). One may then either approximate the restriction of LB on P or that of L−1

B on

P ∩K⊥. In the first case, one considers the linear operator L̃ which restriction to P is
PLBP. With this, the restriction of L̃ on P has a range equal to P and this restriction
is self-adjoint. Thus, there exists an orthogonal basis (m̃i(v))i=1,··· ,q of P such that

∀g ∈ P, L̃(g) = PLBP(g) = −
q∑
i=1

ν̃iPm̃i(g), (9)

where Pm̃i denotes the orthogonal projection onto the eigenfunction m̃i in L2(M) with
ν̃i = 0 for m̃i ∈ K and ν̃i > 0 in K⊥. Notice that this approximation corresponds to
the one performed in [16] for the linearized and linear Boltzmann equation. One then
replace LB with L̃ in (8). Unfortunately such a direct approximation of LB does not
give the right transport coefficients in the hydrodynamic limit as will be shown in the
example below. Instead, the idea consists in approximating L−1

B on P∩K⊥ by stating

∀g ∈ P ∩K⊥, L−1(g) = PK⊥L−1
B PK⊥(g) = −

q∑
i=6

ν−1
i Pmi(g), (10)

while letting the kernel of the operator being K. Here PK⊥ is the restriction of P
to K⊥, Pmi is the projection onto the eigenfunction mi for all i = 6, . . . , q and the
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eigenvalues (−ν−1
i )i=6,...,q are strictly negative. Thus one has

KerL = K, (11)

∀g ∈ P ∩K⊥, L(g) =
(
PK⊥L−1

B PK⊥
)−1

(g) = −
q∑
i=6

νiPmi(g) (12)

which we plug again into (8) and obtain the relaxation equations∫
R3

K(f) (1,v, |v|2)dv = 0 (13)

and for all eigenfunctions mi ∈ P ∩K⊥,∫
R3

K(f) mi(v) dv = −νi
∫
R3

fmi(v)dv. (14)

It must be noted that L−1 is not the pseudo-inverse of L̃ onto K⊥ except in the case
of Maxwell molecules.

At the moment, it is not clear that a BGK-type model satisfying (13) and (14) will pro-
vide us with the right linearized operator in the hydrodynamic limit and one formally
proves the following proposition.

Proposition 1. Assume (4) and (5) hold. Assume moreover that f → G(f) is smooth,
then if K(f) satisfies (13, 14), its linearized operator defined in (6) is

L = ν

(
(PK − I) +

∑
i

(
1− νi

ν

)
Pmi

)
. (15)

Details of the proof are let to the last section of this article in the framework of the
example below - proposition 19 - which can be easily extended to the general case.

The above considerations are finally made explicit in the most meaningfull case of
relaxation on the Grad thirteen moments.
Example 1. For M defined in (5) we consider the polynomial space

P = K⊕⊥ (A)i,j ⊕⊥ (b)i, i, j = 1, 2, 3 (16)

where A and b are the Sonine ”polynomials”

A (v− u) =
m

kBT

[
(v− u)⊗ (v− u)− 1

3
‖v− u‖2 I

]
, (17)

b (v− u) = (v− u)

[
1

2
m (v− u)

2 − 5

2
kBT

]
, (18)

and orthogonality in (16) holds for the usual scalar product in L2(M). Then there
exists functions a(|V|, T ) > 0 and b(|V|, T ) > 0 with V = (v − u)/

√
kBT/m (see e.g
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[17]) such that

L−1
B (A) = −a(|V|, T )A, L−1

B (b) = −b(|V|, T )b (19)

so that L−1
B (A) ⊥ b, L−1

B (b) ⊥ A. As a consequence L−1 in (10) satisfies

L−1(A) = −ν−1
A A, L−1(b) = −ν−1

b b, (20)

for some positive values νA and νb. Those values are then related to the viscosity µB
and the thermal conductivity κB obtained in the Navier-Stokes limit of the Boltzmann
equation

µB = −kBT
10

〈
L−1
B (A) ,A

〉
= −kBT

10

〈
L−1 (A) ,A

〉
=
nkBT

νA
, (21)

κB = − 1

3kBT 2

〈
L−1
B (b) , b

〉
= − 1

3kBT 2

〈
L−1 (b) , b

〉
=

5

2

nk2
BT

mνb
, (22)

where the scalar product is extended to tensors by performing full contraction. With
those eigenfunctions and eigenvalues at hand one set two relaxation constraints in
addition to the conservation laws (13)

∫
R3

ν(G− f)A dv = −νA
∫
R3

fA dv, (23)∫
R3

ν(G− f)b dv = −νb
∫
R3

fb dv. (24)

Under the assumptions of proposition 1, one can perform a Chapman-Enskog expan-
sion in

∂tf + v · ∇xf =
1

ε
K(f). (25)

f then writes as f =M+ εMg +O(ε2). This provides us with the Euler equation up
to an order O(ε) while at the next order g satisfies

L(g) = A : D (u) + b.∇x
(
− 1

kBT

)
, (26)

where D (u) is the Reynolds tensor

D (u) =
[
∇xu + (∇xu)

T
]
− 2

3
(∇x · u) I

Proposition 1 allows to solve (26) and one finds that the corresponding diffusion coef-
ficients are those given in (21). Contrarily, if one considers the operator defined in
(9) the diffusion coefficients in the Navier-Stokes equations are not correct. One first
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remarks that 〈L (A) , b〉 = 0 thanks to the even/odd symmetry. Thus A and b are
eigenfunctions of L̃ with corresponding eigenvalues −ν̃A and −ν̃b defined by

ν̃A = −〈LB (A) ,A〉
〈A,A〉

, ν̃b = −〈LB (b) , b〉
〈b, b〉

.

So, in the Chapman-Enskog expansion, the Navier-Stokes equations are obtained with
the following diffusion coefficients

µK =
nkBT

ν̃A
= −nkBT

〈A,A〉
〈LB (A) ,A〉

,

κK =
5

2

nk2
BT

mν̃b
= −5

2

nk2
BT

m

〈b, b〉
〈LB (b) , b〉

.

By comparison with (21) one finds that µK = µB and κK = κB for Maxwell molecules.
In the other cases, µK = µB reads also

〈
L−1
B (A) ,A

〉
= C(n, T ) 〈LB (A) ,A〉−1

where
C(n, T ) does not depend on the interaction potential which is untrue (and likewise for
the heat conductivity). Remark finally that such a problem arises in the hydrodynamic
limit of moment system for the Boltzmann equation [34]. It is then found that µK < µB
and κK < κB.

2.2.2 Definition of ν and G and related mathematical problems

Remark that the considerations in the above section do not require K(f) to be a relax-
ation operator as soon as the solution to (7) exists and K(f) satisfies the properties
displayed in section 2.1 except property 2. But the natural way to satisfy this prop-
erty is to let K(f) be a relaxation operator with ν > 0 and G ≥ 0. Such conditions
are part of the following mathematical problems we are going to study :

1. Definition of ν : the set of constraints writes∫
R3

Gmidv = (1− νi
ν

)

∫
R3

f midv, i ∈ {1, . . . , q}, (27)

The relation (27) can be rewritten in a compact shape

ρρρG := L(ρρρf ) (28)

where the vectors of moments ρρρG and ρρρf are defined with

ρρρG =

∫
R3

Gm(v)dv, ρρρf =

∫
R3

f m(v)dv (29)

with m := (m1, · · · ,mk, · · · ,mq)
T

. If one assumes that the moments ρρρf of the
nonnegative function are bounded, then the moments of G but must be those of a
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nonnegative function as well. That is

Cf =

{
h ≥ 0,

∫
h(v) m(v)dv = L(ρρρf )

}
6= ∅. (30)

Clearly, this condition just relies on the value of ν since the relation frequencies
are defined in a unique way according to (10). In order to state this question more
clearly, let us give some few definitions.

Definition 1. We note with L1 (m) the set of integrable functions f : R3 7→ R
such that

∀k ∈ [1, q] ,

∫
‖mk (v)‖ |f (v)| dv < +∞.

When f ∈ L1 (m) is non negative, we note f ∈ L1,+ (m), and when it is not zero
we note f ∈ L1,∗,+ (m).

Now we introduce the moment map

Definition 2 (Realizable moments). Let R : L1 (m) 7→ Rq be defined as

∀f ∈ L1 (m) , R [f ] =

∫
m (v) f (v) dv

we adopt for the sequel the following notations

R+
m =

{
R [f ] , f ∈ L1,+ (m)

}
, R∗+m =

{
R [f ] , f ∈ L1,∗,+ (m)

}
. (31)

R+
m is named the set of realizable moments.

Coming back to the definition of ν, one needs to have a tractable way to char-
acterize R+

m and to study the range of L as a linear operator depending on ν. In
other words, there must hold

L(R+
m) ⊂ R+

m. (32)

Those questions will be studied in the next section.
2. Definition of G(f): Assume that

Cf =

{
h ≥ 0,

∫
h(v) m(v)dv = L(ρρρf )

}
6= ∅. (33)

The final step of the method is performed by solving a variational problem and
defining G as

G = arg min
h∈Cf

∫
η(h) dv, (34)

where η is a strictly convex function with dom(h) = R+ (more suitable condi-
tions will be given in section 4). Statistical physics states that η must be defined
as ηB(.) = . ln(.). Unfortunately theoretical and numerical studies have revealed
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numerous problems as soon as there are more constraints than (13) and (23) [30].
In particular there is no solution to the variational problem under the constraints
(13, 14) in the example of Grad relaxation on thirteen moments. Adding more
constraints neither provides us with a well-posed variational problem in general.
This explains why other choices of η must be found and why we only ask for some
local stability through (3), (4) and (5). In section 4, we will address this problem
in the general framework of φ-divergence [18] following the path in [2]. The well-
posedness of the related variational problem will be studied in details by recalling
known results and also establishing a Theorem by means of convex analysis.

3 The moment problem

Our concern is now to define a relaxation frequency ν such that (33) holds for f ∈
L1,+ (m) (see definition 2). This requires on one hand to have a tractable criteria to
characterize the set of realizable moments R+

m (31) and on the other hand to study
the range of L (28). The characterization of R+

m is part of a broader program which
addresses the question of realizability by nonnegative Borel measures. This problem
is known as the truncated moment problem and we recall in section 3.1 the most
significant results on this topic. Since those characterization fail to be practical but
also too general in our context, we focus in section 3.2 on the specific case where
nonnegative Borel measures are represented by nonnegative integrable functions. In
this case, we recall a theorem by Junk [30], clarify and somehow complete his proof. We
then derive in section 3.3 a tractable necessary and sometime sufficient condition for a
moment to be in R+

m for a certain class of polynomial space P = span(m1, · · · ,mq). In
section 3.4 This condition is used in the case of Grad relaxation (example 1) to define
the set of admissible relaxation frequencies ν, i.e those frequencies for which (33) holds.
Finally, we study in section 3.5 the relation between R+

m and Galilean invariance.

3.1 The truncated moment problem

There exists an extensive literature dedicated to the realizability of moments by non-
negative Borel measure. Here we want to recall the most significant ones. In order
to relate them with the previous section we let P = P2n with q = dim(P2n). We
also consider the general case where v ∈ Rd. i being a multiindex in Nd, with
|i| = i1 + i2 + . . . + id ≤ 2n, one considers the d-dimensional real multisequence
ρρρ = {ρi} (ρρρ is just another notation for a vector in Rq). The so-called truncated
moments problem asks for condition on ρρρ such that there exists a nonnegative Borel
measure satisfying

ρρρi =

∫
vvvidµ, i ∈ Nd,

with the standard notation vi = vi11 . . . vidd .
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Definition 3. For a polynomial P (v) =
∑

i∈Nd αiv
i one defines the Riesz functional

Lρρρ(P ) at P with

Lρρρ(P ) =
∑
i∈Nd

ρiαi.

It is positive when Lρρρ(P ) ≥ 0 for all P ≥ 0 in P2n.
Theorem 2. (Analogue of the Riesz-Haviland theorem [24]) Let ρρρ = ρρρ2n be a d-
dimensional multisequence, then ρρρ has a representing measure if and only if ρρρ admits
an extension ρ̃ρρ = ρ̃ρρ2n+2 such that Lρ̃ρρ is positive.

As we will see in the next section, of particular interest are the measures that can be
represented by atomic measure. One then associates to a d-dimensional multisequence
ρρρ = ρρρ2n a moment matrix Mn = Mn(ρρρ) in the following way. Considering again a
polynomial P (v) =

∑
i∈Nd αiv

i, (αi) denotes the coefficient vector of P relative to the
basis of P2n of monomials in degree-lexicographic order. The rows and columns of Mn

are then indexed by the elements vi of P2n so that the entry of Mn in row X i and
colum Xj is ρρρi+j.
Theorem 3. (Flat extension theorem [25]) ρρρ = ρ2n has a rank Mn−atomic represent-
ing measure if only if Mn is semi definite positive and Mn admits a flat extension i.e.
a moment matrix extension Mn+1 satisfying rank (Mn+1) = rank (Md). In this case,
ρ2n+2 admits a unique representing measure µ = µMn+1

, satisfying suppµ = V (Md+1)
and card suppµ = rank(Md). Further, Md+1 admits a unique successive positive
moment matrix extensions Md+2, Md+3, . . . , and these are flat extensions.
Remark 2. Clearly, none of the above theorems provides us with a criteria of practical
use to know whether a moment ρρρ admits a representing nonnegative Borel measure
since extensions are not explicit. More generally and as can be seen for example in
[25], the theorems addressing this problem always give abstract characterizations by
using either the Riesz functionnal or the moment matrices. Nevertheless, as we will see
in the next sections, this is not the case when the problem is restricted to realizability
by nonnegative functions.

3.2 Characterization of R+
mmm

We again assume that mT := (m1, · · · ,mk, · · · ,mq) is a basis of a polynomial space
P, where P is not necessarily P2n. The problem of realizability is now stated as follows
: for a given vector ρρρ ∈ Rq, is there an integrable non negative function f : R3 7→ R+

such that

∀k ∈ [1, q] ,

∫
mk (v) f (v) dv = ρk. (35)

ρρρ := (ρ1, · · · , ρq) is said realizable when (35) holds.Then there is the following theorem
Theorem 4. (Junk [30]) A vector ρρρ ∈ R∗+m iff forall ααα 6= 0 ∈ Rq which satisfies
ααα ·m(v) ≤ 0 on R3, the relation ααα · ρρρ < 0 holds.
In particular, R∗+m is an open set. Moreover each ρρρ ∈ R∗+m is a moment vector of
bounded f ∈ L1,∗(m) which is compactly supported.

The proof relies essentially on a duality argument. The right implication is quite
obvious. Consider indeed a moment ρρρ ∈ R∗+m , that is a vector such that there exists a
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nonnegative and non null function f ∈ L1,+ (m) satisfying ρρρ =
∫

m (v) f (v) dv. Let
ααα ·m (v) be a non positive and non null polynomial, then

ααα · ρρρ = ααα ·
∫

m (v) f (v) dv =

∫
ααα ·m (v) f (v) dv < 0 (36)

since f 6= 0 on a set of non zero measure and ααα ·m (v) 6= 0 almost everywhere. R+
m

is a positive cone and the above computation proves that its polar cone is the set of
coefficients of non positive polynomials :

(R+
m)◦ =

{
ααα ∈ Rq, ∀ρρρ ∈ R+

m, ααα · ρρρ ≤ 0
}

=

{
ααα ∈ Rq, ∀f ∈ L1,+ (m) ,

∫
ααα ·m (v) f (v) dv ≤ 0

}
= {ααα ∈ Rq, ααα ·m (v) ≤ 0} .

Note by C◦ the set {ααα ∈ Rq, ααα ·m (v) ≤ 0}. If the convex cone R+
m is of non empty

interior, one finds that R+∗
m is characterized by the right statement in theorem 4

according to (36) and the following characterization of cone’s interior
Theorem 5. Assume C is a convex cone of Rq with non empty interior, then

∀y ∈ Rq, [y ∈ int (C)⇔ ∀ααα ∈ C◦, ααα 6= 0⇒ ααα · y < 0] .

It is possible to prove that R+∗
m is an open set in the case where the space of

velocity is a bounded set in one dimension [37] but such a construction is not possible
in other cases. A more general argument consists in considering the set

C =

{∑
i

λim (vi) , λi ≥ 0, ∀vi ∈ R3

}
(37)

which is the set of moments of all atomic measures. In order to understand why we
consider this set, we first recall the following theorem.
Theorem 6. (Tchakaloff theorem [25]) Let µ be a nonnegative Borel measure com-
pactly supported in K ⊂ R3 . Then there exist finite many points in K, w1, . . . , wN
with N ≤ q, and positive weights α1, . . . , αN , such that for each p ∈ P

∀p ∈ P,
∫
Rd
p(v) dµ =

N∑
i=1

αip(wi).

This theorem implies that compactly supported L1 nonnegative function have the
same moments as compactly supported atomic measures. For non compactly supported
L1 nonnegative function, one proves that R+∗

m ⊂ C in the following way. One first
remark that the polar cone of C is the same as the one of R+

m

C◦ =
{
ααα ∈ Rq, ααα ·m(v) ≤ 0, ∀v ∈ R3

}
(38)

13



= (R+
m)◦. (39)

Then there is
Proposition 7. For C defined in (37), there is int(C) 6= ∅.

Thus R+∗
m ⊂ intC according to theorem 5. To finish the proof, remark that for

Ψε ∈ C∞c (R3), Ψε ≥ 0 such that Ψε → δ0 as ε→ 0, one has

∀v ∈ Rd,
∫

m(x) Ψε(v − x)dx −→m(v)

This proves that the set of moments of nonnegative functions in C∞c (Rd) is dense in
C (C ⊂ clR+

m). To summarize, one has

R+∗
m ⊂ intC ⊂ int

(
clR+

m

)
R+∗

m is a convex set so that R+∗
m = int (clR+

m) according to a Caratheodory theorem
in finite dimension [39] : each ρρρ ∈ int (clR+

m) is the convex combination of q + 1
affinely independent points in int(clR+

m) and by density of q+1 affinely independent
points in R+∗

m . So finally there is

R+∗
m = intC = int

(
clR+

m

)
which proves the first assertion in theorem 4 together with ”R+∗

m is an open set”.
Finally, the q+ 1 affinely independent points in the above reasoning can be chosen as
moments of nonnegative functions in C∞c (Rd) by density which ends the proof.
Remark 3. Then first statement of theorem 4 reads:

ρρρ ∈ R∗+m ⇐⇒ [Lρρρ(P ) > 0 ∀P ∈ P with P (v) ≥ 0 (P (v) 6= 0)] .

Thus, when P = P2n, the characterization of a realizable moment does not require any
property related to polynomials of higher degree contrarily to Theorem 2.

3.3 Characterization of R+
mmm in quadratic structured

polynomial spaces

According to Theorem 4 and Remark 3, characterizing realizable moments is equiv-
alent to characterizing those nonnegative polynomials p(v) = ααα ·mmm(v) ∈ P on R3.
This problem is related in some way to the 17th Hilbert problem which asks for the
characterization of nonnegative rational function with real coefficients as the sum of
square of nonnegative rational function with real coefficients. Whilst this result was
proved by Artin in 1927, it is not of practical use and one should rather investigate
the nature of nonnegative polynomials. Let us first give a definition.
Definition 4. Let P̃ be the polynomial space generated by the basis {1, m̃2, . . . , m̃p}.
We denote with

P = span(m̃im̃j), 1 ≤ i ≤ j ≤ p

14



the space generated by the family of pairwise multiplication of any element in m̃(v)
and with q its dimension. Since the value of m̃im̃j may appear for different pair of
indexes (i, j), one may extract a polynomial basis of P which is composed as before of
the components of m(v).

We say that P is the quadratic space over P̃.

Example 1: Each polynomial space P2n, n ≥ 1 is quadratic over Pn.

Example 2: The space of collisional invariant K is not quadratic over another space if

d > 1 but the space generated by {1, v, v ⊗ v, vv2, v4} is quadratic over K (here we
have used the tensorial notation for convenience.) It is a space strictly contained in P4.

For ρρρ ∈ Rq, one can construct a p × p moment matrix H in the same way as in
section 3.1. In particular, H = Mn(ρρρ) when P = P2n. Then there is the following
characterisation of R+

mmm by using theorem 4.
Corollary 1. Let P be a quadratic structured space. Then for ρρρ ∈ R+∗

mmm the matrix H
is SPD. Moreover if all nonnegative polynomials in P are sum of square polynomials
then there is

ρ ∈ R+
mmm ⇐⇒ H is SPD. (40)

Proof. For ρρρ ∈ R+∗
mmm , there exists a nonnegative function f ∈ L1(m) such that∫

fmmm(vvv)dvvv = ρρρ. For βββ ∈ Rp\{0}, we consider the square polynomial p(v) = ααα ·mmm(v) =
(βββ · m̃mm(v))2 where m̃ = (1, m̃2, . . . , m̃p)

T . Then there is

ρρρ ·ααα =

∫
p(v) f(v) dv = βββT .

(∫
m̃.m̃T f(v) dv

)
.βββ = βββT .H.βββ > 0. (41)

So if we write the condition ρρρ ·ααα > 0 for all square polynomials (and thus for all sum
of square polynomials), we end up with an equivalent condition which is: the moment
matrix H = (ρij) is symmetric positive definite (SPD).

In one dimension, (40) holds true when P = P2n. This is the known characterization
of realizable moments for the Hamburger moment problem [3]. In higher dimension,
especially when d = 3, positive polynomials in P = P2n with n ≥ 2 are not necessary
sum of square polynomials. We refer to [6] for a bibliography on the topic. Thus the
condition H = Mn(ρρρ) (see notations before theorem 3) is SPD is only a necessary
condition.

3.4 Application to relaxation of the Grad moments

So far, we have focused on pretty general consideration on realizable moment. In
practice, some usual basis in kinetic theory are

• ”Euler” basis {1,v,v2}
• Gauss basis {1,v,v ⊗ v}
• Grad basis {1,v,v ⊗ v,v v2}
• Levermore basis {1,v,v ⊗ v,vv2,v4}
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where we have used the tensor notation.
The last one has no particular physical interpretation and was just introduced for solv-
ing variational problems with the usual entropy

∫
f ln(f)dv. Among those basis, Grad

basis is the most important because it contains all physically meaningful moments
(mass, momentum, energy, pressure tensor, heat flux). In the sequel, we use the decom-
position of the Grad space defined in (16). The polynomial family of interest is the
polynomial families noted as:

a (v − u) =

(
1, (v − u) , (v − u)

2 − 3
kBT

m
,
kBT

m
A (v − u) ,b (v − u)

)
(42)

:= (a0 (v − u) ,a1 (v − u) , a2 (v − u) , a3 (v − u) ,a4 (v − u)) . (43)

It is still composed of tensors of even or odd ranks in the variable v − u. The polar
cone of R∗+a is given by:

C◦a =
{
ααα ∈ Rq, ∀v ∈ Rd, ααα · a (v − u) ≤ 0

}
.

It is immediate that any ααα ∈ C◦a has a null component on (v − u) (v − u)
2

and as a
consequence on b (v − u). Then we have

C◦a =

{
(βββ,0) ,∀v ∈ Rd, βββ ·

(
1, (v − u) , (v − u)

2 − 3
kBT

m
, a3 (v − u)

)
≤ 0

}
.

The study of realizable moments on a (v − u) then simplifies dramatically since we
just need to know which moments are realizable in the Gauss basis defined as
PGauss = span{1, v, v2, A(v)}. Using Theorem 4, the characterization of R∗+a is
equivalent to the characterization of the positive polynomials in P = span{1,v,v⊗v}.
From Hilbert’s theorems, any positive polynomial in P can be written as a sum of
square of polynomials, that is

g (v) =
∑
i

(pi + qi · v)
2
,

with pi ∈ R and qi ∈ R3. Let ρρρ = (n, nu, nD) be a moment w.r.t. (1,v,v ⊗ v).
According to Theorem 4, ρρρ is realizable if and only if for any non negative, non null
polynomial g (v) defined by its list of coefficients γγγ there holds γγγ · ρρρ > 0. Rearrang-
ing the components of g(v) in the Gauss basis, we find after some algebra that this
condition can be written as

n
∑
i

(
[pi qi]

[
1 ut

u D

] [
pi
qi

])
> 0 := n

∑
i

(
[pi qi] H

[
pi
qi

])
.

This is equivalent to n > 0 and to the positivity of the moment matrix H. But H is
positive if and only D− u⊗ u is positive as proved in the following lemma:
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Lemma 1. The matrix [
1 ut

u D

]
is positive if and only if the matrix D− u⊗ u is positive.

It is interesting to remark that for a given realizable moment ρρρ :=
{n, nu, 3ne, nΠ, nQ}, the heat flux nQ can take any value in R3 because of the char-
acterization given by theorem 4 which does not include moments of order 3. This is
due to the fact that one can always add to a positive function having this moment a
perturbation that let it nonnegative, keeps all of its moments in the Gauss basis but
not that with respect to b (v − u). The Grad basis being conveniently written in (42),
that is starting from a nonnegative function f , there is∫

R3

f a(v − u)dv = (n, 0, 0, nΠ, nQ) ,

where nΠ is the traceless pressure tensor and nQ is the heat flux. A straightforwards
consequence of lemma 1 is the following proposition
Proposition 8. [Grad relaxation] If (n,0, 0, nΠ, nQ) is realizable, then for any λA ∈
[− 1

2 , 1] , and λb ∈ R the moment (n,0, 0, nλAΠ, nλbQ) is still realizable.
Coming back to the relaxation constraints, the above result states that the relaxed

moment (n, 0, 0, (1− νA
ν )nΠ, (1− νb

ν )nQ) is realizable when 0 ≤ 1− νA
ν ≤ 1 and for

all νb ∈ R. Also, the admissible relaxation on nΠ is just the one that is found in the
study of the ESBGK model [4, 12].

3.5 Galilean invariance

We may now address the problem of finding linear application that let R+
mmm invariant.

In particular we are going to focus on the relation between such linear maps and
Galilean invariance. The method developed in section 2.2 for constructing relaxation
operators K(f) must satisfy

τu(K(f)) = K(τuf) ∀u ∈ R3 and τΘK(f) = K(τΘf) ∀Θ ∈ SO(3), (44)

where

τuf(v) = f(v + u) and τΘf(v) = f(τΘv).

Recall that K(f) = ν(G − f). The setting of ν and construction of G just depends
on the moments of f - ρρρ =

∫
f(v)mdv ∈ R∗+m - and not on f itself. We may write

ν = ν(ρρρ(f)) and G = G(ρρρ(f)). So, starting from a function f ∈ L1,+(m), τuf and τΘf
must themselves be function of L1,+(mmm) to make the construction G(ρρρ(τuf)) (likewise
G(ρρρ(τΘf))) possible. This writes

ρρρ(τuf) =

∫
(τuf)m(v)dv =

∫
f(w)m(τ−u(w))dw ∈ R∗+m .
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A sufficient condition for integrability of τuf in L1(m) is: P = span(m) is invariant
under the action of τ−u, which can be expressed as

∃Λ(−u) ∈ Rq × Rq such that m(τ−u(w)) = Λ(−u)m(w). (45)

Positivity is then satisfied since τuf ≥ 0 and there is ρρρ(τuf) ∈ R∗+m . As a consequence
R∗+m is stable under the action of the linear map Λ(−u) which inverse is Λ(u). Likewise,
if there exists Λ(Θt) ∈ Rq × Rq such that

m(Θtw) = Λ(Θt)m(w), (46)

the same conclusion holds. The above conditions relate polynomial spaces P which are
invariant under the action of translations and rotations to set of moments R∗+m which
are invariant under the above mapping. Such polynomial spaces are named Galilean
invariant and are necessarily polynomial as proved by Junk and Unterreiter [31].
Proposition 9. Assume that the space P = span{m} is invariant under the trans-
lations and the rotations. Then R+

m is invariant under the action of Λ(u) and Λ(Θ)
for any u ∈ R3 and any Θ ∈ SO(3), where Λ(u) and Λ(Θ) are the matrices defined
in (45) and (46).

Instead of proving the equivalence in the above conclusion, we prefer to look at
the construction of the model and state a necessary condition on P.
Proposition 10. Let G : R+

m → L1,+(m) s.t. G(ρρρ1) 6= G(ρρρ2) for any ρρρ1 6= ρρρ2 ∈ R+
m.

Then if G satisfies

(∀f ∈ L1,+(m)), (∀u ∈ R3), (∀Θ ∈ SO(3)), G(R[τuf ]) = τuG(R(f)),

G(R[τΘf ]) = τΘG(R[f ]),

the space P = span{m} is invariant under Galilean transforms.

4 Solving the variational problem

In this section, we address the problem of finding the target function G which is
the last step in the method of moments relaxation (see section 2.2.2). In a first time
(section 4.1), we state the variational problem in a quite general form and display
classical properties for the problem to be well-posed. The variational problem is then
restated in the framework of φ−divergence [18]. The (relative) entropy being also a
φ−divergence, the corresponding minimization problem is addressed in section 4.2.1.
We summarize known results in this case and eventually outline a lacking property in
the set listed in section 4.1. In the next section, we recall a theorem by Csiszar [20]
together with some ideas in his proof. We focus on the reason why a specific condition
in his theorem somehow allows to satisfy this lacking property. In the last section,
we reestablish the previous theorem by using convex analysis and recall the results
obtained in [2]. All along this section, we keep the notations introduced in section 2.2.
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4.1 The variational problem

The problem we want to address is the following.
Problem 1. Let ρρρ ∈ Rq and consider the convex domain

D (ρρρ) =

{
g ∈ L1 (m) ,

∫
m g = ρρρ

}
. (47)

For a strictly convex function η with dom(η) = R+, we consider the functional

H(g) =

∫
η(g) dv. (48)

Then the problem is to find if possible a nonnegative function G ∈ D (ρρρ) such that

H(G) = inf
g∈D(ρρρ)

H(g). (49)

Clearly, such a problem much depends on the property of η. The above ones being
too general, we display conditions that ensure that this variational problem is well-
posed [8].
Ideal properties

1. Together with η is strictly convex with dom(η) = R+ (and thus closed on R+), one
requires η to be proper and super linear at infinity.

2. There exists a weak topology for which the functional g 7→
∫
η(g) dv is semi-lower

continuous and which is suited to the continuity of the constraints with respect to
g.

3. The next condition may stated in simple words as follows. There exists a feasi-
ble function g, that is a function satisfying at the same time

∫
η(g) dv ∈ R and∫

gmmmdv = ρρρ.

With this set of conditions, it may be proved that there is

G (v) = η∗′ (ααα[ρρρ] ·m (v)) . (50)

for some ααα ∈ Rq. As we will see below, the second condition is hardly compatible
with kinetic theory when one considers the entropy: g 7→

∫
g ln(g) dv in an unbounded

domain.

4.2 φ-divergence

We now want to restate the above problem in term of φ-divergence that where
introduced by Csiszar in 1970 [18].
Definition 5. Let φ be a strictly convex function with domain on (0,+∞) and
minimum at x = 1. The φ-divergence of two distribution function is defined as

I(p‖r) =

∫
R3

r(v)φ(
p(v)

r(v)
)dv. (51)
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In our case, we are much concerned with a kinetic equation whose solution should
be closed to the local equilibrium states. It is then natural to let r =M into (51) since
then minimizing I(g‖M) under moment constraints amounts to look for a function
G which is as closed as possible to M relatively to the divergence φ. This approach
is similar to that of Abdelmalik and Van Brummelen and their analysis of moments
closure [2]. Then, the variational problem is stated as follows.
Problem 2. [primal problem] Let φ be a φ−divergence. Define H with

H(g) =

∫
Mφ(

g

M
) dv, (52)

and the real extended value function h: Rq → R for any ρρρ ∈ Rq by

h(ρρρ) = inf
g∈D(ρρρ)

H(g).

The primal problem consists in finding if possible a function G s.t.

1. G ∈ D (ρρρ)
2. H(G) = h(ρρρ)

Remark 4. The above problem amounts to let

η(f) =Mφ(
f

M
), (53)

in problem 1. Yet, the problems 1 and 2 are very much similar if one substitutes to
the Lebesgue measure the measure dµ =Mdv. Then one may define the functional

F(u) =

∫
φ(u) dµ, (54)

and consider the set

D̃ (ρρρ) =

{
u ∈ L1 (m) (dµ),

∫
m(v)u(v)dµ = ρρρ

}
. (55)

Then problem 1 is replaced by : find if possible a nonnegative function P ∈ D̃ (ρρρ) such
that

F(P ) = inf
u∈D̃(ρρρ)

F(u), (56)

and the solution, if it exists, gives the solution to problem 2 as

G(v) =M(v)P (v). (57)
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So the main problem amounts to set the right conditions on φ in order to have a well-
posed problem. Such conditions should be in some way the same as the ones referred
as ”‘ideal properties” in section 4.1.

4.2.1 Analysis of the case φ(x) = x ln(x)

We now want to recall some key points related to the minimization of the natural
entropy H(g) =

∫
g ln(g) dv under moment constraints. This problem has been anal-

ysed in a serie of articles [26, 30, 36, 40]. In order to recast this functional within
the framework of φ−divergence, one just let φ(x) = x ln(x) into (52) in which case
H(g) =

∫
g ln(g/M) dv. In the case where K ⊂ P and

∫
g ψ dv =

∫
Mψ dv for all

ψ ∈ K, H(g) is the classical relative entropy.
Let us first remark that φ satisfies the first set of ideal properties displayed in section
4.1. The condition 3 is addressed in the following proposition.
Proposition 11. The domain of h is R+

m.

Proof. (∀f ≥ 0), f ln(f/M) ≥ − 1
eM as a simple consequence of the inequality

x ln(x) ≥ − 1
e . Thus (∀f ≥ 0), H(f) ≥ −ne .

Next, ∀ρρρ ∈ R+
m, ∃Ψρρρ ∈ C∞c (R3) such that Ψρρρ ∈ D (ρρρ). Hence f/M is compactly

supported, bounded and H(Ψρρρ) < +∞. And there is

D+ (ρρρ) = {g s.t.

∫
R3

m g dv = ρρρ and H(g) < +∞} 6= ∅.

As a consequence h(ρρρ) is well defined for all ρρρ ∈ R+
m.

Assume now that ρρρ /∈ R+
m. Then for any f s.t.

∫
fm dv = ρρρ, there is an open set ωf

of non zero measure s.t. f < 0 on ωf . φ being equal to +∞ when x < 0, we have
h(ρρρ) = +∞.

Utilizing theorem 4, for any ρρρ ∈ R+
m we may restrict D+ (ρρρ) to

D+
Ψ (ρρρ) = {g s.t.

∫
R3

m g dv = ρρρ and H(g) ≤ H(Ψρρρ)} 6= ∅.

The superlinearity of φ together with the boundedness of moments of order more than
1 show that D+

Ψ is weakly relatively compact in L1 according to Dunford-Pettis lemma.
Thus, a minimizing sequence gn ∈ D+

Ψ (ρρρ) (which is also a minimizing sequence in
D+ (ρρρ)) converges weakly in L1 to a function G. But this does not prove more and
property 2 in section 4.1 is not satisfied. A consequence is that G might not satisfy∫
Gm dv = ρρρ. Junk has shown in a famous paper [30] that the constraint of highest

degree might drop in when looking at the infimum of the natural entropy in D+ (ρρρ).
We want here to give a rapid hint into that problem. Consider the dual function h∗

of h defined on its domain Λ by

h∗(ααα) =

∫
exp(ααα ·mmm)dv (58)
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and assume that Λ ∩ ∂Λ 6= ∅. For ααα ∈ Λ ∩ ∂Λ, h∗ has only sided derivative at ααα on
Λ∩∂Λ and in the directions pointing into the domain and there is only a subdifferential
at ααα. One can prove the following. Firstly, each moment

ρρρ+ = (ρ1, . . . , ρq + t), t > 0, (59)

where

ρρρ =

∫
mmm(v) exp(ααα ·mmm)dv

belongs to R+
m when mmm = {1, v, v2, . . . , |v|N} (here N is the maximal degree of

the component). Indeed, ρρρ being a realizable moment, the necessary and sufficient
condition ρρρ ·ααα > 0 for any positive polynomial implies ρρρ+ ·ααα > 0 for any ρρρ+. One can
then prove that [26, 36]

h∗∗(ρρρ+) = max
α̃αα
{α̃αα · ρρρ+ − h∗(α̃αα)} = ααα · ρρρ− h∗(ααα) = h(ρρρ).

h being semi lower continuous in R+∗
m (implying h∗∗ = h) this proves that the subdif-

ferential ∂h∗(ααα) is the whole half-line ρρρ+. Therefore infg∈D(ρρρ+)H(g) = h(ρρρ) is attained
at the function exp(ααα ·mmm) 6∈ D(ρρρ+). To summarize, the existence of a solution to
the primal problem is subjected to the shape of the domain of definition of the dual
function h∗.

4.2.2 Csiszar theorem

In a remarkable paper, Csizsár [20] has shown existence of solution to variational
problem for a wide variety of φ-divergence (see definition 5). The main concern in
the present context and to that of moments closure is to obtain a unique nonnegative
minimizer qualifying all constraints. In order to do so, Csiszar adds an assumption
and his results reads as follows.
Theorem 12. Let φ be a strictly convex differentiable function defined on ]0,+∞[.
For g ∈ L1(R3) define H(g) with

H(g) =

∫
R3

Mφ(
g

M
)dv.

Assume that

φ(1) = φ′(1) = 0, lim
p→+∞

φ′(p) = +∞, (60)

(∀λ > 0),

∫
R3

φ∗(λ|mi(v)|)Mdv < +∞. (61)

Let ρρρ ∈ Rq and D(ρρρ) be the set of constraints defined in (55). Then if

inf
f∈D(ρρρ)

H(f) ∈ R, (62)
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there exists a unique function G ≥ 0 in D(ρρρ) such that

H(G) = inf
g∈D(ρρρ)

H(g).

We present here some ideas of the proof. First of all (62) is equivalent to state
that there exists a feasible function g with the following meaning: g ∈ D(ρρρ) and
H(g) < +∞. The first part of the proof is rather technical and requires some knowledge
in measure theory. In the previous section, we have seen that under the conditions
(60) together with - φ is strictly convex and differentiable on ]0,+∞[ - a minimizing
sequence gn in D+(ρρρ) converges weakly to a function G in L1 by using the Dunford-
Pettis lemma. Csiszar approach is stronger and allows to prove that under the same
conditions gn → G in L1. G is then named as the general projection ofM onto D+(ρρρ).
The second part of the proof deals somehow with the properties 2 in section 4.1 in
a different way. Instead of considering the functional H(g), Csiszar proposes to use
the theory of Orlicz space whose main purpose is to extend to convex functional the
usual norm based on function such as ψ(x) = xp for 1 ≤ p. One considers the function
ψ defined by ψ(x) = φ(x + 1). ψ is a strictly convex and differentiable function on
] − 1,+∞[, ψ(0) = ψ′(0) = 0 and limp→+∞ ψ′(p) = +∞. The (Banach) Orlicz space
Lψ is defined as the space of those functions u such that there exists a λ > 0 satisfying∫

R3

ψ(λ|u|)dµ < +∞,

where dµ =Mdv. It is equipped with the norm

‖g‖Lψ = inf
λ>0

1

λ
(1 +

∫
R3

ψ(λ |g|)dµ)

(different types of norm exist). The condition (61) on the convex conjugate φ∗ is
related to a weak topology on Lψ which is set as follows. The convex conjugate ψ∗

shares the same properties as ψ on R+ (see lemma 2 in section 4.3) so that one may as
well consider the Orlicz space Lψ∗ and its subspace Nψ∗ - named the ”small”’ Orlicz
space - of those function u∗ such that

(∀λ > 0),

∫
R3

ψ∗(λ|u∗|)dµ < +∞.

Nψ∗ and Lψ are dual spaces and one defines on Lψ the Nψ∗−weak topology with
un ⇀ u in Lψ iff ∀θ ∈ Nφ∗ ,

∫
unθdµ →

∫
uθdµ. In order to relate (61) to this

weak topology, we prefer to use the classical framework of convex analysis by letting
φ(x) = +∞, ∀x < 0 and φ(0) = limx→0+ φ(x) (which is either a positive finite value
or +∞). Then there is

ψ∗(x∗) = max
x∈R

(xx∗ − φ∗(x+ 1)) = −x∗ + max
z∈R

(zx∗ − φ∗(z)) = φ∗(x∗)− x∗,

φ∗(0) = max
x∈R

(−φ∗(0)) = 0 = ψ∗(0),
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so that φ∗(x∗) ≥ ψ∗(x∗) for x∗ ≥ 0. As a consequence, there is mi ∈ Nφ∗ for all i.
The reason why the minimizing sequence gn converges to a function G ∈ D(ρρρ) lies on
the following theorem.
Theorem 13. [32] If a sequence (un)n ⊂ Lψ is bounded in Orlicz norm and converges
in µ−measure to some function u then u ∈ Lψ and un → u Nψ∗−weakly.

Let un = gn/M where gn is the minimizing sequence. un converges in µ−measure
to G/M since gn → G in L1 while

‖un‖Lψ ≤ 2(1 +

∫
R3

φ(1 +
un
2

)dµ ≤ 2 + nφ(2) +

∫
R3

φ(un) dµ

= 2 + nφ(2) +H(gn),

by convexity which ends the proof (here n =
∫
dµ).

4.3 Assumption and main result

The strength of Csiszar approach is to consider property 2 in section 4.1 by setting
a property on φ∗ and utilizing the theory of Orlicz space. Yet his proof should be
completed with the characterization of the minimizing function G. So our purpose is
to establish a result similar to Theorem 12 by using standard convex analysis which
allows to characterize G. As usual in convex analysis, this will done by consider the
dual problem to problem 2.
Problem 3 (dual problem). The dual problem consists in defining the Legendre dual
function h∗mmm from Rq to the extended reals R - that is R

⋃
{+∞,−∞}- as follows:

∀ααα ∈ Rq, h∗mmm (ααα) = sup
ρρρ∈Rq

(ρρρ ·ααα− hm (ρρρ)) . (63)

Then the main theorem reads as.
Theorem 14. Let φ : R 7→ R

⋃
{+∞} be a strictly convex and differentiable function

on its domain dom (φ) = [0,+∞). Assume moreover that

1. There holds the following properties:

φ (0) = 0, p0 := inf
y>0

φ (y)

y
∈ R, sup

y>0

φ (y)

y
= +∞

2. For any polynomial π (v) = γγγ ·m (v) then φ∗ (π) ∈ L1 (M (v) dv) where φ∗ is the
Legendre transform of φ

Then there hold

1. For any ρρρ ∈ R+∗
m there exists a unique ααα ∈ Rq such that

ρρρ =

∫
φ∗′ (ααα ·m (v)) m (v)Mdv
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and the moments ρρρ and its conjugate moment ααα are linked thanks to the sub-
differential equation:

hm (ρρρ) + h∗m (ααα) = ααα · ρρρ (64)

2. Moreover the function G =Mφ∗′ (ααα ·m (v)) is the unique minimizer of the primal
problem and satisfies

hm (ρρρ) =

∫
φ

(
G

M

)
Mdv (65)

3. hm is strictly convex in its domain and ∇h∗ is a bijection from C◦ to R+
m \ {0}

where

C◦ = {ααα ∈ Rq, ααα ·m(v) > p0, on a set ωααα of non 0 measure} . (66)

Let us address the following remarks:

1. The first assumption - dom (φ) = [0,+∞) - enables to grant that the primal prob-
lem will have solutions that will be non negative. Also, it is quite natural to assume
that 0 is in the domain of φ unless the p.d.f 0 cannot appear as a solution. So
we will be able to produce non negative modeling function for the BGK construc-
tion. Differentiation on [0,+∞) implies semi-lower continuity on [0,+∞) (which is
essential in convex optimization) and will enable one to one property of φ′. Strict
convexity will have, as often, many implications in uniqueness consideration.

2. The third assumption is essential for integrations properties. In particular, it breaks
when φ (x) = x ln (x) since there holds then φ∗ (y) = exp (y − 1) and only few
polynomial exp (π (v)− 1) have proper integration properties. This is one of the
most difficult aspect of the Levermore program which was based first on a function
like x ln (x).

The proof goes along different steps we are going to develop. The first one consists in
generalizing Proposition 11 concerning the primal problem.
Proposition 15. The following properties are satisfied

1. The moment entropy function hm (ρρρ) has returned values in R
⋃
{+∞}

2. Its domain is exactly dom (hm) = R+
m =

{∫
mg, g ∈ L1+ (m)

}
.

3. The interior of the domain is given by int (dom (hm)) = R+∗
m = dom (hm) \ {0}

4. The function hm is convex.

Then the Legendre conjugate φ∗ of φ has the following properties.
Lemma 2. Consider a function φ such as in Theorem 14. Then the following
properties hold

1. ∀x ∈ (−∞, p0] , φ∗ (x) = 0
2. ∀x ∈ (p0,+∞) , φ∗ (x) > 0
3. The function φ∗ : R 7→ R+ is C1 smooth and thus semi-lower continuous.

The link between strict convexity of a given function and smoothness of its conju-
gate is well known in convex analysis (see [39]) but we prefer to detail the whole proof
of this lemma for the sake of consistency. Smoothness of the function φ∗ has many
important implications on the smoothness of the dual function h∗, which, in turn, has
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important consequences on the primal minimization problem and on existence and
uniqueness of the minimizer.
We can now give an explicit expression of the dual function h∗.
Theorem 16. 1. For any ααα ∈ Rq there is

h∗m (ααα) = sup
g∈L1(m)

∫ [
ααα ·m (v) g (v)− φ

( g

M

)
M (v)

]
dv ∈ R. (67)

2. Moreover one can also compute for any ααα ∈ Rq

h∗m (ααα) =

∫
φ∗ (ααα ·m (v))M (v) dv. (68)

3. The function h∗m is continuously differentiable on Rq and there holds for any ααα ∈ Rq

h∗′m (ααα) =

∫
φ∗′ (ααα ·m (v)) m (v)M (v) dv. (69)

Now we are able to finish the proof of Theorem 14. In few words, it is based on
well known properties of convex analysis.

1. A convex function h : Rq → R
⋃
{+∞} is continuous on the interior of its domain

2. A convex function h : X → R
⋃
{+∞} which is continuous at x ∈ dom () has a non

void sub-differential at x, that is ∂h (v)) 6= ∅.
3. For a proper convex function h, closed at ρρρ, there is ααα ∈ ∂h(ρρρ)⇔ ρρρ ∈ ∂h∗(ααα).

4.3.1 Abdelmalik and Van Brummelen approximation of the
Boltzmann entropy

In their article, the authors consider different φ−divergence to analyze closures in
moment systems for the Boltzmann equation. In particular they focus on the problem
related to the case φ(x) = x ln(x) (see section 4.2.1) and on the expected solution to
the corresponding variational problem 2. Recall that for ααα ∈ Λ ∩ ∂Λ where Λ is the
domain of definition of h∗ (58), a minimizing sequence in D(ρρρ+) (see (59) and (60))
converges to exp(ααα ·mmm) 6∈ D(ρρρ+). Instead, they propose to look for a solution of the
form

G =Mφ∗′ (αααN ·m (v)) with φ∗′N (y) =
(

1 +
y

N

)N
+
, (70)

where (x)+ = 1
2 (x+ |x|) (here N ∈ N∗). This amounts to let

∀y ∈ R, φ∗N (y) =
N

N + 1

(
1 +

y

N

)N+1

+
, (71)

which is the Legendre dual function of φN defined with

∀x ≥ 0, φN (x) =
N

N + 1

(
x l̃ogN (x)− x

)
, (72)
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where

∀x ≥ 0, l̃ogN (x) = (φ∗′N )−1(x) = Nx1/N −N.

The motivation of the definition of φ∗′N (70) comes from the Stirling-Tsallis approxi-
mation of the exponential function since there is the pointwise limits

∀y ∈ R, lim
N

(φ∗N )′ (y) = exp (y) .

together with

∀x ≥ 0, lim
N→+∞

φN (x) = x ln (x)− x, ∀y ∈ R, lim
N
φ∗N (y) = exp (y) .

So while the variational problem 2 with φ(x) = x lnx is not well-posed for every
ρρρ ∈ R+∗

m , its approximation φN satisfies all assumptions in theorems 14. Thus for
ρρρ ∈ R+∗

m there exists a unique function G ∈ D(ρρρ) such that

H(G) = inf
g∈D(ρρρ)

∫
R3

MφN (
g

M
)dv.

Moreover G reads as (70) according to theorem 14.

5 Application to the construction of BGK models
using φ-divergence

5.1 Relaxation on the Grad thirteen moments

Let f(t, x, v) be a nonnegative function at (t, x). Denote with n, u and T the corre-
sponding density, velocity temperature and with M the local Maxwellian associated
to f . Let a (v − u) be the local Grad basis and denote

ρρρf = (n,0, 0, nΠ, nQ) (73)

=

∫ (
1, (v − u) , (v − u)

2 − 3
kBT

m
,A (v − u) ,b (v − u)

)
f (v) dv. (74)

Remark that there is by definition ρρρM = (n,0, 0, 0, 0) .

5.1.1 Principle of construction

We just recall here the steps in the derivation of a relaxation operator in the framework
of example 1.

1. The relaxation frequencies νA and νb being defined in (21), one may take any value
for ν with the condition ν > νA, νb.
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2. The relaxed moment L (ρρρf ) writes

L (ρρρf ) = (n,0, 0, λAnA, λbnb) , λA = 1− νA
ν
, λb = 1− νb

ν
. (75)

With the above value of ν, L (ρρρf ) is still realizable from proposition 8
3. Choose a φ-divergence function satisfying the properties of Theorem 14. Then

replace in Theorem 14, ρρρ with L(ρρρf ). Then G is defined as M(φ∗)′(ααα ·mmm)
4. The BGK operator reads as K (f) = ν (G− f).

5.1.2 Properties of the model

Remark firstly that G =M(φ∗)′(ααα ·mmm) is nonnegative. Thus the solution f to (7), if
it exists, is nonnegative as well. Next the Grad space satisfies the necessary conditions
of proposition 10 as concerns Galilean invariance of the modeling equation (7). Then
Galilean invariance holds according to
Proposition 17. For τ ∈ {τu; τθ} τG(f) = G(τf)

Let us now prove the (full) H-theorem.
Theorem 18. [H-theorem] Recall that

H(f) =

∫
R3

Mφ(f/M) dv.

Then there hold

∀f ≥ 0 ∈ L1 (a) ,

〈
K (f)φ′

(
f

M

)〉
≤ 0.

together with the characterization of equilibrium

K (f) = 0⇔
〈
K (f)φ′

(
f

M

)〉
= 0⇔ f =M.

It must be denoted that the condition ν > νA, νb is necessary in order to obtain
the above results. This may be easily understood if one considers the relations between
the moments of G and those of f (27) which only equate at ρρρG = ρρρf = ρρρM. Let us
now derive proposition 1 in the case of relaxation in Grad space together with other
properties stated in section 2.1 (the proof easily extends to the general case).
Proposition 19. For K(f) derived in section 5.1.1, the linearized operator L defined
in (6) reads as

L (g) = ν
(
PK − I +

(
1− νA

ν

)
PA +

(
1− νb

ν

)
Pb

)
. (76)

As a consequence there holds

1. The kernel of the operator L is exactly K and there is also

∀f,
[∫

K (f)φ = 0

]
⇔ φ ∈ K
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2. The operator is Fredholm, self-adjoint and negative on K⊥
3. The diffusion coefficients in the Navier-Stokes limit of (7) are given by (21).

Remark that the second item is easily seen from (76). The third one is already
proved in example 1.

5.2 The general case

We now consider a polynomial space P satisfying the condition in proposition 10 and
containing PGrad ⊂ P. P being invariant under translations and rotations, we may
write

P = K⊕⊥ m6 ⊕⊥ · · · ⊕⊥ mq. (77)

where the polynomials (mi)i are defined in (10). If the collision invariants are written
in an orthogonal basis for the L2(M) dot product, then the vectors ρρρf , ρρρM and
ρρρG = L(ρρρf ) in the above decomposition read respectively

ρρρf = (n,0, 0, ρ6, · · · , ρq)T ,
ρρρM = (n,0, 0, 0, · · · , 0)

T
,

ρρρG =
(
n,0, 0, (1− ν6

ν
)ρ6, · · · , (1−

νq
ν

)ρq

)T
.

The criteria of realizability of ρρρG through symmetric positive definite moment matrix
(see section 3.3) is unsatisfactory for two reasons : 1 - if P is a quadratic space (def-
inition 4), it is difficult to express the moment matrix corresponding to ρρρG without
knowing explicitly the eigenfunctions (mi)i and the corresponding eigenvalues (νi)i, 2
- even if it would be possible this criteria is not sufficient if all positive polynomials in
P are not sum of square polynomials.
So, for want of anything better we make the following assumption : the solution to (7)
is such that the ball B(ρρρM, r) of radius r = ||ρρρf − ρρρM|| stays in R∗+m . In this case, it
is easily seen that ρρρG ∈ R∗+m if ν > νi, ∀i.
Let us consider again a φ-divergence function satisfying the properties of Theorem 14.
The question whether ∫

K(f)φ′
(
f

M

)
dv ≤ 0 (78)

holds or not is for the moment an open problem. However the characterization of local
equilibrium is easily found since K(f) = 0 if and only if ρρρf = ρρρG which occurs only
at G = M. All other properties in the preceding section are satisfied. In particular,
in the Chapman-Enskog expansion, one still finds that the solution satisfies the Euler
equation in O(ε) while the Navier-Stokes equation is obtained with the right viscosity
and heat conductivity just by using the definition of (10) in (21).

5.3 Some known models

5.3.1 BGK and ESBGK models

Let φ(x) = x ln(x). If one just considers the conservation laws (13) together with the
relaxation equation (23), then the variational problem is well-posed for − 1

2 ≤ 1− νA
ν ≤
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1. Indeed on one hand the of constraints (33) is non empty according to proposition
8 and on the other hand the domain of h∗ is non empty and open [30].
ν = νA with νA defined in (21) gives the well-known BGK operator [7]. Remark in this
case that (24) is satisfied for νb,BGK = ν. So while the right viscosity is recovered in
the hydrodynamic limit, the heat conductivity κBGK is such that the Prandtl number

Pr =
5

2
R

µB
κBGK

=
νb,BGK
νA

= 1.

More generally, for 0 ≤ νA
ν ≤

3
2 , the solution to the variational problem always satisfies∫

Gb (v− u) dv = 0. The ESBGK model is then found by letting ν = νb with νb
defined in (21) which corresponds to the limit νA

ν = 3
2 and Pr = 2

3 .

5.3.2 Shakhov model

Let now φ(x) = 1
2 (x − 1)2. In the Grad space, one considers the system (13, 23, 24).

Assume that µB and κB are either given by the exact computations in (21, 22) or by

using some approximations of them. Let ν = νA = nkBT
µB

and νbbb = 5
2
nk2BT
mκB

. Remark
that

Pr =
5

2
R
µB
κB

=
νbbb
νA

=
νbbb
ν
.

Then the system (13, 23, 24) together with the minimization problem give

GS =M
(

1 +
1− Pr

5

m

n(kBT )2
q · (v − u)

(
m

(v − u)2

kBT
− 5

))
,

where q is the heat flux defined by

q =
1

2
m

∫
R3

f (v − u)(v − u)2 dv.

Originally GS was computed in such a way that∫
R3

a(v − u)ν(GS − f)dv =

∫
R3

a(v − u)Q(f, f)dv (79)

for Maxwell molecules and then adapted to other types of molecular interaction by
introducing Pr into the definition of GS . In the later case, the above equation is not
valid.
The generalization through the diagonalization in (10) is easily performed by letting

G =M

(
1 +

∑
i

(
1− νi

ν

)
Pmi(g)

)
,

30



where g = f/M− 1 and ν > νi, ∀i. In both cases G is not nonnegative. However one
must point out that H(f) =

∫
Mφ(f/M) dv is the natural entropy related to the

whole method since∫
R3

ν(GS − f)φ′(
f

M
− 1) dv = 〈L(g), g〉 ≤ 0

where g = f/M− 1 and L is defined in (15). It might happen that g 6∈ L2(M) in
which case the above value is −∞. However 〈L(g), g〉 = 0 only for g = 0 or equivalently
f =M. Every other properties of section 2.1 are satisfied except the nonnegativness
of G.

5.3.3 Levermore’s operator

The analysis of the Chapman-Enskog expansion for moment system of the Boltzmann
equation shows that wrong diffusion coefficients are obtained at the Navier-Stokes
level [34]. Levermore has then proposed to substitute to the collision operator Q(f, f)
a sum of relaxation operators constructed as follows. Let K = M1 ⊂ M2 ⊂ . . . ⊂ MN

and 0 < η1 < η2 < . . . < ηN . Set

Mk = Argmin

{∫
g ln(g) /

∫
gp(v) dv =

∫
fp(v) dv, ∀p ∈Mk

}
, (80)

then KLev(f) writes

KLev(f) = η1(M− f) +

N∑
k=2

(ηk − ηk−1)(Mk − f).

Due to the assumption on each relaxation frequencies νi, it is clear that KLev(f)
preserves positivity, together with conservation laws. Also

∫
f ln(f)dv is the entropy

in the non homogeneous equation (7). The linearized operator reads as

LLev = −
N−1∑
k=1

ηk (Pk+1 − Pk) + ηN (PN − I) ,

where Pk is the orthogonal projection onto Mk in L2(M). Denoting with
(mi,k)i=1,...,Dk an orthogonal basis of Mk ∩M⊥k−1, there is

LLev = ηN (PN − I)−
N−1∑
k=1

ηk

Dk+1∑
i=1

Pmi,k+1

= ηN

(PK − I) +

N−1∑
k=1

(
1− ηk

ηN

)Dk+1∑
i=1

Pmi,k+1


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which has a form similar to (15). However there are many problems related to this
construction. Junk was the first to point out that the solution to the variational
problem might not satisfy all constraints [30]. Also, if LLev = L in (15), the solution
to the variational problem in (80) may not exist as shows the simple case of Maxwell
molecules. Indeed, some spaces Mk have a maximal odd degree in which case there
exists no solution in (80). Remark finally that KLev(f) does not satisfy relaxation
equations such as (14). Indeed, for p ≥ 3 and 1 ≤ i ≤ Dp, there is

∫
KLev(f)mi,p dv = η1

∫
(M− f)mi,p dv +

p−1∑
k=2

(ηk − ηk−1)

∫
(Mk − f)mi,p dv

= −ηp−1

∫
f mi,p dv +

p−1∑
k=2

(ηk − ηk−1)

∫
Mkmi,p dv.

But for 2 ≤ k ≤ p− 1,
∫
Mkmi,p dv is not related to

∫
f mi,p dv in the minimization

problem (80). Also, it does not vanish except if Mk = M q(v) for some polynomial
q(v) ∈ Mk in which case the functional to be minimized in (80) is the one of the
previous section.
The minimization problem in (80) can be fixed by using φ-divergence such as in
Theorem 14 since then the solution exists whatever the parity of the highest degree
of the polynomials in the constraints. The operator satisfies by construction (78) and
the characterization (4) follows under the sufficient condition M1 = K. Thus, in the
general case of section 5.2, the model is well-defined. Notice again that relations (14)
still not hold so that it cannot be used in practice, especially in the context of moment
systems for which it was originally designed.

6 Proofs

6.1 Proofs of the section 3

Proof. (Theorem 5) Let x ∈ int(C). Then there exists ε > 0 s.t. B(x, ε) ⊂ int(C). So
∀y ∈ C0, y 6= 0, x · y ≤ 0. But if there exists y 6= 0 s.t. x · y = 0, then by introducing
z = x+ ε y

‖y‖ , we get z · y > 0. But as z ∈ B(x, ε), we get a contradiction.

Conversely, let x0 ∈ C s.t. (∀y ∈ C0, y 6= 0), x0 · y < 0. Consider the linear form:
y 7→ x0 · y. Hence, by compactness of the unit sphere, we get

sup
y∈C0, ‖y‖=1

x0 · y = −α < 0.

Therefore, (∀y ∈ C0), x0 · y ≤ −α‖y‖. Then ∀x ∈ B(x0,
α
2 ) and ∀y ∈ C0,

x · y ≤ (x− x0) · y + x0 · y ≤
α

2
‖y‖ − α‖y‖ ≤ −α

2
‖y‖.
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Then ∀x ∈ B(x0,
α
2 ), ∀y ∈ C0\{0}, x · y < 0. By recalling that (C0)0 = C and that

(C0)0 = {x ∈ Rq, s.t. ∀ y ∈ C0, x · y ≤ 0}, we deduce that B(x0,
α
2 ) ⊂ C i.e.

x0 ∈ int(C).

Proof. (Proposition 7) Let q be the dimension of the space generated by m. Then
let us prove that there exists x1, · · · ,xq such that the family m (xk) , k ∈ [1, q] is
independent. It is obvious first that there exists x1 such that m (x1) 6= 0. Otherwise,
for any γγγ and for any x there is γγγ ·m (v)) = 0 and the family m (v)) cannot be a basis.
That being said, there exists x2 such that m (x1) ,m (x2) is independent. If we assume
the contrary, this means that for any x there is λ (x) such that m (x) = λ (x) m (x1).
Choose now γγγ not zero orthogonal to m (x1). Then we have for any x, γγγ ·m (x) =
λ (x)γγγ ·m (x1) = 0. But this is a contradiction. By induction, if m (x1) , · · · ,m (xk)
is independent such that k < q, we can always find γγγ not zero in the orthogonal part.
So there exists a xk+1 such that the family m (x1) , · · · ,m (xk+1) is independent.
If C has an empty topological interior, then it is contained in an hyperplane and the
subtraction of 2 elements of C is contained in an hyperplane containing 0. Here we
just prove that Rq = C − C. For this let us consider the family m (xk) , k ∈ [1, q].
By the former lemma it is (independent so also) generating. Then any ρρρ ∈ Rq can be
written by a linear combination:

ρρρ =

k=q∑
k=1

λkm (xk) .

Just let then write λk = λ+
k − λ

−
k with x+, x− the positive and negative part of any

real x. Then we have immediately:

ρρρ =

k=q∑
k=1

λ+
km (xk)−

k=q∑
k=1

λ−km (xk)

so proving Rq = C − C.

Proof. (Lemma 1) Let v 6= 0 and α such that α+ u ·v = 0. A direct calculation gives

[α v]

[
1 u
u D

] [
α
v

]
= α2 + 2αu · v + D : v ⊗ v > 0

By factorization there holds

α2 + 2αu · v + D : v ⊗ v = (α+ u · v)
2

+ (D− u⊗ u) : v ⊗ v > 0. (81)

Then as α+ u · v = 0, it comes that D− u⊗ u is positive.
The converse statement is straightforwards. If D− u⊗ u is positive, choose α,v 6= 0.
Since (D− u⊗ u) is positive, then RHS of (81) is always non negative. It is zero if and
only if both α+ u ·v and (D− u⊗ u) : v⊗v are zero. From positiveness of D−u⊗u
we get v = 0. So α = 0.
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Finally we prove quickly Proposition 8.

Proof. (Proposition 8). If (n,0, ne, nΠ, nQ) is realizable, then∫
R3

(v − u)⊗ (v − u)f dv = nΠ + n
kB
m
T Id

is SPD. We proceed as in [12]. Let Θ1, Θ2, Θ3 the eigenvalues of Π. Then the
eigenvalues of λAΠ + (1− λA)nkBTm Id are

1 + 2λA
3

Θ1 + (1− λA)
Θ2

3
+ (1− λA)

Θ3

3
, (1− λA)

Θ1

3
+

1 + 2λA
3

Θ2 + (1− λA)
Θ3

3
,

(1− λA)
Θ1

3
+ (1− λA)

Θ2

3
+

1 + 2λA
3

Θ3.

So λAΠ + (1 − λA)nkBTm Id is SPD for λA ∈ [− 1
2 , 1] Hence, the relaxed moment

(n,0, ne, nλAΠ, nλbQ) is realizable.

Proof. (Proposition 10). Let ρρρ ∈ R+
m and f ∈ L1,∗(m), f ≥ 0 s.t. R[f ] = ρρρ. Let u ∈ R3

and assume that

G(R[τuf ]) = τuG(R[f ]) = τuG(ρρρ). (82)

Hence there exists a relation between ρρρ and R[τuf ]. Remark that the relation defined
by (82) does not depend on f as soon f ∈ R−1(ρρρ). Thus, the application L = R ◦ τu ◦
R−1 : R+

m → R+
m is well defined as soon as τuf ∈ L1,+(m) if f ∈ L1,+(m).

Under this condition, R−1 defines a linear map from R+
m into subsets of L1,∗(m) as

follows:

(∀ λ ≥ 0), R(R−1(ρρρ1) + λR−1(ρρρ2)) =

∫
(f + λg)m(v)dv = ρρρ1 + λρρρ2

which is equivalent to R−1(ρρρ1 +λρρρ2) = R−1(ρρρ1)+λR−1(ρρρ2)). Hence L = R◦τu ◦R−1 :
R+

m → R+
m is linear.

Now remark that this relation can be extended to Rq. Indeed, R+∗
m is an open and non

void set in Rq and contains q independent vectors (ρ1, . . . , ρq) which form a basis of
Rq. Otherwise R+∗

m would be contained in an hyperplane. Thus, the linear application
L is well defined on Rq entirely.
∀ρρρ ∈ Rq, ∀f ∈ R−1(ρρρ), there is Lρρρ =

∫
f Lm(v) dv and Lρρρ = R ◦ τuf at the same

time i.e.∫
R3

τuf(v)m(v) dv =

∫
R3

f(w) m(w − u) dw =

∫
R3

f(w)Lm(v) dv.

As Im(R−1(Rq) = L1(m), the previous relation must be true for any f ∈ L1(m).
Hence P = span(m) must be invariant under the action of τ−u and L = Λ(−u) as
defined in (45). We can proceed in the same way for any u ∈ R3 and Θ ∈ SO(3), we
deduce that P is invariant by Galilean transforms.
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6.2 Proof of section 4

Proof. (Lemma 2). Let us prove any of the claimings:

1. First let us remark that from the definition of φ-divergence, there holds the following
property: since φ is strictly convex and that there is φ (0) = 0 then the following
function

∀y ∈ (0,+∞) , y 7→ φ (y)

y
∈ (p0,+∞)

is strictly increasing and one to one from (0,+∞) onto (p0,+∞). For any p ≤ p0

and for any y > 0 we have

p ≤ p0 <
φ (y)

y
.

Then using φ (0) we have ∀p ≤ p0, ∀y ≥ 0, py − φ (y) ≤ 0. Hence, taking the
supremum on y ∈ dom (φ) = [0,+∞) there holds ∀p ≤ p0, φ

∗ (p) ≤ 0. But on the
other hand, since the function φ is convex and semi lower continuous, there holds
φ∗∗ = φ. As a consequence,

φ (0) = − inf
p∈R

φ∗ (p) = 0.

This means that infp∈R φ
∗ (p) = 0. So we have ∀p ∈ R, φ∗ (p) ≥ 0, ∀p ≤

p0, φ
∗ (p) ≤ 0. So ∀p ≤ p0, φ

∗ (p) = 0.
2. Now let us prove the non negativity of φ∗. Since the function φ (y) /y is strictly

increasing and one to one, it is also continuous (characterization of bijection on
intervals). For p ∈ (p0,+∞) there is just one element yp ∈ (0,+∞) such that
pyp − φ (yp) = 0. Then for any y ∈ (0, yp) we have pyp − φ (yp) > 0 and for any
y > yp there holds pyp − φ (yp) < 0. In particular, there holds

∀p > p0, sup
y∈dom(φ)

(
yp− φ (y)

)
= sup
y∈[0,yp]

(
yp− φ (y)

)
≥ 0.

But any semi-upper continuous function gets its supremum on a compact set (and
yp− φ (y) is semi-upper continuous). Then there exists zp ∈ [0, yp] such that

∀p > p0, φ∗ (p) = zpp− φ (zp) ≥ 0, φ∗ (p) = zpp− φ (zp) ∈ R.

Finally, since for all y ∈ (0, yp), yp− φ (y) > 0 the supremum is of course > 0.
3. From the former property, dom(φ∗) = R. Then φ∗ is continuous on R and at any

point p ∈ R, its sub-differential is not void. Assume that y1 < y2 are in its sub-
differential. Then, by the characterization of the sub-differential for φ∗, and since
φ = φ∗∗ (semi-lower continuity)

φ (y1) = py1 − φ∗ (p) , φ (y2) = py2 − φ∗ (p)

this also means that p ∈ ∂φ (y1) and p ∈ ∂φ (y2). So, φ (y)− φ (yi) ≥ p (y − yi) . So

p (y2 − y) ≥ φ (y2)− φ (y) , φ (z)− φ (y1) ≥ p (z − y1) .
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For y = y1 and z = y2, there holds p (y2 − y1) ≥ φ (y2) − φ (y1) ≥ p (y2 − y1). So
φ (y2)−φ (y1) = p (y2 − y1) . In particular, since φ is convex, then for any α ∈ [0, 1]
and y = αy1 + (1− α) y2

φ (y) ≤ αφ (y1) + (1− α)φ (y2) = φ (y2) + αp (y1 − y2)

having φ (y2) = −φ∗ (p) + py2 we get φ (y) ≤ −φ∗ (p) + (1− α) py2 + αpy1 =
−φ∗ (p) + py. This proves that p ∈ ∂φ (y). Using the same inequalities as above we
have then

∀y ∈ [y1, y2] , φ (y)− φ (y1) = p (y − y1) .

So φ is affine on [y1, y2] (with y1 < y2) which contradicts that φ it is strictly
convex. Then for any p the sub-differential ∂φ∗ (p) has only one element. Then
φ∗ is differentiable. Finally any convex function on R which is differentiable is C1

smooth.

Proof. (Proposition 15)

1. Define the entropy by

∀g ∈ L1 (m) , H (g) =

∫
φ
( g

M

)
M∈ R

⋃
{+∞} .

First let us begin by assuming that g ≥ 0 almost everywhere. φ is differentiable on
[0,+∞[ strictly, φ(0) = 0 and φ(p)→ +∞ imply that φ is bounded from below. So

H (g) ≥ min(φ)

∫
Mdv.

This proves that H is bounded form below independently of g.
Now assume that g takes negative values on a non zero measure set of R+ noted
by Ω. So φ = +∞ on Ω. Then

H (g) =

∫
φ
( g

M

)
M = +∞.

2. Finally H is strictly convex on its domain comes thanks to the strict convexity of φ.
3. Now let us prove the rest of the proposition.

• Let ρρρ ∈ R+
m. Then there exists Ψρρρ ∈ C∞c (R3), Ψρρρ ≥ 0 s.t.

∫
Ψρρρmmmdv = ρρρ. Thus

the set D+(ρρρ) defined as

D+(ρρρ) = {g ≥ 0,

∫
gmmm = ρρρ, H (g) ≤ H (Ψρρρ)}

is non empty and convex. Moreover, infH exists on D+(ρρρ) but is not necessarily
attained by a function in D+(ρρρ). Then R+

m ⊂ dom (hm). If ρρρ /∈ R+
m, then there
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are no nonnegative function that realizes ρρρ. Hence, hm(ρρρ) = +∞ by definition
of hm. So dom (hm) = R+

m.
• It is very clear that any ball of Rq which contains 0 contains moment ρρρ /∈ R+

m.
Then any subset of R+

m which contains 0 is not open. On the other hand the set
R+∗

m is open. Then it is obviously the biggest open set (in sense of inclusion) which
is included in R+

m. Then we have straightforwards: int (dom (hm)) = int (R+
m) =

R+∗
m .

• Now we need to prove that the function hm : Rd 7→ R
⋃
{+∞} is convex. Let

ρ1, ρ2 ∈ R+∗
m . Then (∀ε > 0), ∃g1, g2 ∈ L1(m) with

∫
gimmmdv = ρρρi such that

h(ρi) > H(gi)− ε for i ∈ {1; 2}. Thus,

(∀λ ∈ [0, 1]) λhm(ρ1) + (1− λ)hm(ρ2) > λH(g1) + (1− λ)H(g2)− ε.

H being strictly convex it comes that

(∀λ ∈ [0, 1]) λhm(ρ1) + (1− λ)hm(ρ2) > H(λg1 + (1− λ)g2)− ε.

By definition of hm it holds that

(∀λ ∈ [0, 1]) H(λg1 + (1− λ)g2) ≥ hm(λρ1 + (1− λ)ρ2)

and the convexity of hm follows.

Proof. (Theorem 16)

1. Let ρρρ ∈ Rq and recall that D (ρρρ) =
{
g ∈ L1 (m) ,

∫
mg = ρρρ

}
(which is never the

empty set). There is by definition:

hm (ρρρ) = inf
g∈D(ρρρ)

∫
φ
( g

M

)
M

Noting that for any g ∈ D (ρρρ) there holds ρρρ =
∫

ag we get

ααα · ρρρ+ sup
g∈D(ρρρ)

[
−
∫
φ
( g

M

)
M
]

= sup
g∈D(ρρρ)

(∫ [
m ·αααg − φ

( g

M

)
M
])

As ααα · ρρρ− hmmm(ρρρ) = h∗mmm(ααα) we have

h∗mmm (ααα) = sup
ρρρ∈Rq

sup
g∈D(ρρρ)

(∫ [
m ·ααα g − φ

( g

M

)
M
])

.

The next step consists to show that supρρρ∈Rq and supg∈D(ρρρ) can be permuted in the
previous formula.
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Let ρρρ be fixed. It is clear that ∀ρρρ ∈ Rq

sup
g∈D(ρρρ)

(∫ [
m ·αααg − φ

( g

M

)
M
])
≤ sup
g∈L1

(∫ [
m ·αααg − φ

( g

M

)
M
])

then obviously we have:

sup
ρρρ∈Rq

sup
g∈D(ρρρ)

(∫ [
m ·αααg − φ

( g

M

)
M
])
≤ sup
g∈L1

(∫ [
m ·αααg − φ

( g

M

)
M
])

On the other hand, let g ∈ L1 (m) and note by ρρρ (g) =
∫

mg ∈ Rq. Then∫ [
m ·αααg − φ

( g

M

)
M
]
≤ sup
ψ∈D(ρρρ(g))

∫ [
m ·αααψ − φ

(
ψ

M

)
M
]
.

We have then

sup
g∈L1(a)

∫ [
m ·αααg − φ

( g

M

)
M
]
≤ sup
g∈L1(a)

sup
ψ∈D(ρρρ(g))

∫ [
m ·αααψ − φ

(
ψ

M

)
M
]
.

But there is Rq =
{∫

mg, g ∈ L1
}

. Then

sup
g∈L1(a)

sup
ψ∈D(ρρρ(g))

= sup
ρρρ∈Rq

sup
ψ∈D(ρρρ)

and finally we have

sup
g∈L1(m)

∫ [
m ·αααg − φ

( g

M

)
M
]
≤ sup
ρρρ∈Rq

sup
ψ∈D(ρρρ)

∫ [
m ·αααψ − φ

(
ψ

M

)
M
]

and we get formula (67).
2. Pick ααα ∈ R3 and consider the polynomial πααα := ααα ·m and Gααα = φ∗′ (πααα)M. From

the characterization of sub-differential of φ∗ at (real) point Gααα/M, and taking into
account that φ is semi-lower continuous, we have

φ

(
Gααα
M

)
+ φ∗ (πααα) = πααα

Gααα
M

Using Young inequality for φ∗ we have straightforwards

φ∗ (2πααα)− φ∗ (πααα) ≥ παααφ∗′ (πααα) = πααα
Gααα
M

.

Recall that we have for any convex function φ : R 7→ R

−φ∗ (0) = inf
y∈R

φ (y)
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Then there holds immediately

−φ∗ (0) ≤ φ
(
Gααα
M

)
= πααα

Gααα
M
− φ∗ (πααα) ≤ φ∗ (2πααα)− 2φ∗ (πααα)

Since πααα is a polynomial function, and since by the assumption 3 any φ∗ (π) is in
L1 (Mdv), then the former inequalities prove that φ

(
Gααα
M
)
∈ L1 (Mdv). Using then

φ

(
Gααα
M

)
+ φ∗ (πααα) = πααα

Gααα
M

we deduce finally that Gααα
M πααα is also in L1 (Mdv). By Young inequality we have for

any g
g

M
πααα − φ

( g

M

)
≤ φ∗ (πααα) .

Multiplying by M and integrating (any term can be computed) there holds:∫ [
παααg − φ

( g

M

)
M
]
≤
∫
φ∗ (πααα)M.

By having the infinimum:

sup
g∈L1(a)

∫ [
παααg − φ

( g

M

)
M
]
≤
∫
φ∗ (πααα)M

which gives us finally:

h∗m (ααα) ≤
∫
φ∗ (πααα)M =

∫
φ∗ (ααα ·m)M.

On the other hand, since we have

φ∗ (πααα)M =

(
φ

(
Gααα
M

)
− Gααα
M

πααα

)
M.

Any term can be integrated and by having integration we have:∫
φ∗ (πααα)M =

∫ (
φ

(
Gααα
M

)
− Gααα
M

πααα

)
M≤ sup

g∈L1(a)

∫ [
παααg − φ

( g

M

)
M
]

Then we have exactly (68)
3. Finally, consider for ε ∈ (0, 1] the function

fε (βββ) =

(
φ∗ (πααα + επβββ)− φ∗ (πααα)

ε
− φ∗′ (πααα)πβββ

)
M.
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Young inequality gives εφ∗′ (πααα)πβββM ≤ [φ∗ (πααα + επβββ)− φ∗ (πααα)]M. So fε (βββ) ≥
0. On the other hand, by using πααα + επβββ = ε (πααα + πβββ) + (1− ε)πααα, the convexity
of φ∗ gives

φ∗ (πααα + επβββ) ≤ εφ∗ (πααα + πβββ) + (1− ε)φ∗ (πααα) .

Hence we get

φ∗ (πααα + επβββ)− φ∗ (πααα)

ε
≤ φ∗ (πααα + πβββ)− φ∗ (πααα) .

So, after multiplication by M

fε (βββ) ≤ [φ∗ (πααα + πβββ)− φ∗ (πααα)− φ∗′ (πααα)πβββ ]M = f1

that is 0 ≤ fε (βββ) ≤ f1 (β). Since limε→0 fε (βββ) = 0 pointwise, using Lebesgues
dominated convergence theorem there holds:

∀βββ, lim
ε7→0+

h∗ (ααα+ εβββ)− h∗ (ααα)

ε
=

∫
φ∗ (πααα)πβββM = βββ ·

[∫
φ∗ (ααα · a) aM

]
.

The convex function ααα ∈ Rq 7→ h∗ (ααα) has partial derivatives in any direction at
any point. Then, using a classical result of convex analysis, it is C1 smooth and we
have (69).

Proof. (Theorem 14) Let us finally prove Theorem 14 step by step.

1. We first prove that hm is closed in its domain. hm being convex, this amounts
to prove that h∗∗m = hm in R+

m. The delicate point is to prove this relation at
0. Let us observe the following: there is hm (0) = 0. This is just because the
only non negative function which is able to realize 0 is g = 0. Since φ (0) = 0
then we deduce immediately that hm (0) = 0. Let us now compute h∗∗m (0) :=
supααα∈Rq (0 ·ααα− h∗m (ααα)) = − infααα∈Rq h

∗
m (ααα) ≤ 0. Remark then that h∗∗m (0) ≤ 0

from the expression given of h∗ (theorem 16). Recall from Lemma 2 that φ∗ (y) ≥ 0
and for y ≤ p0, φ

∗ (y) = 0. Chose nowααα0 = (y0,0, · · · ,0). There is φ∗ (ααα0 ·m (v)) =
0. So h∗m (ααα0) = 0 and finally h∗∗m (0) = 0 = hm (000).
Finally, hm being convex, hm is continuous on int (dom (hm)). As a consequence
there is h∗∗m = hm in dom (hm) = R+

m.
2. Let ρρρ ∈ int(dom (hm)). hm being continuous at this point, there is ∂hm(ρρρ) 6= ∅ [39].

Pick some ααα ∈ ∂h(ρρρ). hm being proper convex and closed at ρρρ, there is ρρρ ∈ ∂hm (ααα).
But h∗m is C1 in Rq so ∂hm (ααα) = ∇h∗m(ααα) and ρρρ = ∇h∗m(ααα).

3. Let ρρρ ∈ int(dom (hm)) and ααα ∈ ∂hm (ρρρ). We prove that the function G =
Mφ∗′ (ααα ·m (v)) is the unique solution to the primal problem. We firstly have

ρρρ = ∇h∗m(ααα) =

∫
φ∗′ (ααα ·m (v)) m (v)Mdv.
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Next φ∗ is a C1 convex function in R and thus

(∀y ∈ R), φ∗ (y) + φ∗∗ ((φ∗)′(y)) = y (φ∗)′(y).

φ is also convex, proper and semi lower continuous. So φ∗∗ = φ and

(∀y ∈ R), φ∗ (y) + φ ((φ∗)′(y)) = y (φ∗)′(y).

Put y = ααα ·m(v) in the above equation, multiply byM and integrate w.r.t v gives

h∗m(ααα) +

∫
Mφ ((φ∗)′(ααα ·m)) =

∫
M(ααα ·m)(φ∗)′(ααα ·m) = ααα · ρρρ.

One then deduces from the subdifferential equation (64) that

hm(ρρρ) =

∫
Mφ ((φ∗)′(ααα ·m)) = H (G) .

Recall that H is strictly convex and thus G is the unique solution to the primal
problem. From the form G =Mφ∗′ (ααα ·m (v)) which is necessarily strictly positive
on a set of non-zero measure - that is for those velocities v for which ααα ·m(v) > p0

- ααα is found to be unique. This in turn proves that the subdifferential of h at
interior point of R+

m is reduced to one point. As a consequence ∇h∗ is a bijection
from from C◦ to R+

m where C◦ is defined in (66). And there is ∇h∗(ααα) = 0 in the
complementary set of C◦.

4. Let us finally prove that hm is strictly convex on R+
m. Let ρρρ1 6= ρρρ2 ∈ R+

m. Consider
ρρρ(t) = (1 − t)ρρρ1 + tρρρ2, t ∈ [0, 1] and ααα(t) s.t. ∇h∗m(ααα(t)) = ρρρ(t). In particular, we
have ρρρ(0) = ρρρ1 and ρρρ(1) = ρρρ2. Define f1 and f2 by f1 = M(φ∗)′(ααα(0) ·m) and
f2 =M(φ∗)′(ααα(1) ·m). They satisfy the relation

hm(ρρρ1) = H(f1), hm(ρρρ2) = H(f2). (83)

Moreover, (1− t)f1 + tf2 is a nonnegative function which moment is ρρρ(t). Then

(∀t ∈]0, 1[) hm(ρρρ(t)) ≤ H((1− t)f1 + tf2).

H being strictly convex, we get from (83) for any t ∈]0, 1[,

hm(ρρρ(t)) < (1− t)H(f1) + tH(f2) = (1− t)hm(ρρρ1) + thm(ρρρ2).

6.3 Proof of section 5

Proof. (Proposition 17). We may first consider the rotation around the mean velocity
u since they play an important role to obtain the right hydrodynamic limit. So we
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define τ = τu−1θu = τu−1τθτu and let us prove the result for this τ . By definition of G,
G(f) =M(φ∗)′(ααα · aaa(v − u)), where ααα is the polar variable of L(ρρρf ). In other words,
∇h∗(ααα) = L(ρρρf ) By definition of M, M remains unchanged with the transformation
τ . So τ(G(f)) =M(φ∗)′(ααα · aaa(τ(v)− u), with

aaa(τ(v)− u) = (1, θ(v − u),
(v − u)2

2
− 3

2
kBT, θ(v − u)⊗ θ(v − u)− 1

3
(v − u)2 Id,

θ(v − u)(
(v − u)

2
− 5

2
).

This last vector can be written as

aaa(τ(v)− u) =
(
1, θ(v − u), a2(v − u), θA(v − u)θt, θb(v − u)

)
(84)

A simple computation leads to ααα : aaa(τ(v − u)) = Θ(ααα) : aaa(v − u), with

Θ(ααα) = (ααα0, θ
tααα1, α2, θ

tααα3θ, θ
tααα4). (85)

And thus τ(G(f)) = M(φ∗)′(Θ(ααα) · aaa(v − u). Remark that τG(f) has the form of
the solution of Theorem 14 for some moment. Let us compute this moment. ρρρτG(f) is
defined by

ρρρτG(f) =

∫
R3

τG(f)(v)aaa(v − u)dv

=

∫
R3

G(τv)aaa(v − u)dv.

By using the change of variable www = τ(vvv) = θ(vvv − uuu) + uuu,

ρρρτG(f) =

∫
R3

G(w)aaa(θt(w − u))dw.

But as Θ(aaa(v − u)) = aaa(θt(v − u)). Then

ρρρτG(f) = Θ

(∫
R3

G(w)aaa(w − u)dw

)
= Θ (ρρρG) .

Likewise with the same computations gives ρρρτ(f) = Θ(ρρρ(f)). Thus G(τ(f)) is the
solution of Theorem 14 for ρρρ = L(ρρρf ). Now remark for the definition of L and Θ that
ΘL(ρρρf ) = L(Θ(ρρρf )). As a conclusion τG(f) = G(τf).
It remains to prove the result for the translations i.e. τzzzG(f) = G(τzzzf). There is
G =M(φ∗)′ (ααα · aaa(v − u)). Moreover

τzG(f) =
n

(2πT )
3
2

exp

(
− (v − u− z)

2T

)
φ∗ (ααα · aaa((v − u− z)))
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G(τzzzf) is the solution of the minimization problem when changing the Grad basis into
the framework related to τzf which is precisely moving at velocity u + z.∫

R3

τzf(1, v, v2) dv = (n, n(u + z),
1

2
n(u + z)2 +

3

2
nT ).

In the corresponding Grad basis τzf has the same macroscopic value ρρρf as f in aaa(v−
u− z). Namely

ρρρf =

∫
R3

f(v)aaa(v − u)dv =

∫
R3

τzf(v)aaa(v − u)dv

So

L(ρρρf ) =

∫
R3

M(v − z)(φ∗)′(ααα · aaa((v − u− z)aaa(v − u− z)dv.

This means that the relation between ααα and L(ρρρf ) is valid whatever is framework.
The minimisation problem remains unchanged by changing both M and f in τzM
and τzf .

Proof. (Theorem 18). Remark that M is the unique minimizer of H just under the
constraints of conservation laws. Indeed there is M = M× 1 = Mφ∗′(α0) for some
α0 ∈ R since φ∗′ is a bijection from R+ to R+. ThusM has the form of the solution of
the primal problem given by theorem 14 when m(v) = {1, v, v2} and the constraint
is
∫
Gmmmdv = (n, 0, 0). Adding more constraints (w.r.t. A(v−u) and bbb(v−u)) prove

that H(M) = h(ρρρeq) since again M has the shape of the solution and satisfies the
constraints. We have

(∀ρρρ ∈ R+
aaa ), with ρρρ = (n, 0, 0, 0, 0), ha(ρρρeq) ≤ ha(ρρρ)

with equality ha(ρρρeq) = ha(ρρρ) iff ρρρeq = ρρρ (86)

thanks to the strict convexity of h in R+
aaa (Theorem 14). In other words, M is the

unique minimizer of H of all functions in L1(aaa) having the same mass, momentum
and energy as f .
We define the function F which satisfies∫

Fa(v − u)dv = ρρρf and H(F ) = haaa(ρρρf ). (87)

F is unique thanks to Theorem 14 and reads F =M(φ∗)′(αααF · a(v − u)). Consider as
in the proof of Lemma 17 τf with τ = τ−uτ−Idτu. Then

Θ(ρρρf ) =

∫
R3

τf(v)a(v − u))dv = (n,0, 0, nΠ,−nb) , h(ρ̃ρρ) = h(ρρρ).

There is τM = M in such a way that H(τf) = H(f) and haaa(Θρρρ) = haaa(ρρρ), since τf
is solution to the minimisation problem by changing ρρρ and Θρρρ.
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From the strict convexity of ha, one finds

ha (n,0, 0, nΠ,0) = ha

(
1

2
ρρρ+

1

2
Θ(ρρρ)

)
≤ 1

2
ha (ρρρ) +

1

2
ha (Θ(ρρρ)) = ha (ρρρ) . (88)

with equality only if b = 0.
Let then λa, λb ∈ [0, 1]. Without a loss of generality, assume that λb ≤ λa and take
λ ∈ [0, 1] such that λb = λλa (if not, one sets λa = λλb). We have

(n,0, 0, nΠ, λb) = λ (n,0, 0, nΠ,b) + (1− λ) (n,0, 0, nΠ,0) ,

and as a consequence ha (n,0, 0, nΠ, λb) ≤ ha (n,0, 0, nΠ,b) where we have used (88).
Again, the equality holds only if b = 0. Likewise, we have

(ρ1,0, 0, λAnΠ, λbb) = (1− λA) (n,0, 0,O,0) + λA (n,0, 0, nΠ, λb) ,

and finally (using former inequalities)

ha (n,0, 0, λAnΠ, λbb) ≤ ha (n,0, 0, nΠ,b) . (89)

with equality only if Π = O and b = 0 or λA = λb = 1. There is

I :=

〈
K (f)φ′

(
f

M

)〉
=

∫
ν (G− f)φ′

(
f

M

)
dv.

From the expression of G there holds

I =

∫ [
φ∗′ (ααα (L (ρρρf )) · a)− f

M

]
φ′
(
f

M

)
Mdv.

Use Young inequality for φ: φ (y)− φ (x) ≥ φ′ (x) (y − x) , with

x =
f

M
, y = φ∗′ (ααα (L (ρρρf )) · a) ,

multiply by M and integrate over R3 gives

I ≤
∫
ν

(
φ (φ∗′ (ααα (L (ρρρf )) · a))M−

∫
φ

(
f

M

)
M
)

= ν(H(G)−H(f))

= ν(ha (L (ρρρf ))−H(f)).

Hence I ≤ ν(ha (L (ρρρf ))−H(f)). This reads also

I ≤ ν (ha (L (ρρρf ))− ha (ρρρf ) + ha (ρρρf )−H(f)) .
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By definition of the entropy ha (ρρρ) there is ha (ρρρf )−H(f) ≤ 0. But on the other hand
we have by computing the moments on a (v − u)

ρρρf = (n,0, 0, nA, nb) , L (ρρρf ) = (n,0, 0, λAnA, λbnb) , λA, λb ∈ [0, 1) .

As ha (L (ρρρf )) ≤ ha (ρρρf ), the entropy theorem is proved.

From (89) and (87) I = 0 iff L (ρρρf ) = ρρρf and f = F . But L (ρρρf ) = ρρρf iff ρρρf = ρρρeq that
is f =M.

Proof. (Proposition 19). Remark that thanks to Galilean invariance in the Grad space,
the choice of the basis functions for defining the constraints does not change the result
of the minimization problem. This means that we may write

G [f ] (v) =M (µ̃µµ (f) · a (v))φ∗′ (α̃αα (f) · a (v)) .

But it is more convenient to write those Lagrange multipliers when the basis is
a (v − u). That is

G [f ] (v) = exp (µµµ (f) · a (v − u))φ∗′ (ααα (f) · a (v − u)) .

Then there is

exp (µµµ (M) · a (v − u))φ∗′ (ααα (M) · a (v − u)) =M,

sinceM is the unique solution to the variational problem with the moment constraints∫
f m(v) dv = (n,0, 0, 0, 0) = ρρρM.

In the above equation φ∗′ (ααα (M) · a (v − u)) = 1 implies ααα (M) · a (v − u) = α for
some constant α because φ∗′ is a bijection from [p0,+∞) into R+. So finally there
holds also

φ∗′′ (ααα (M) · a (v − u)) = c,

for some constant c if φ∗ is twice differentiable.
Note that the properties of G [f ] implies that G [M] = M so K (M) = 0. Let us

consider f =M (1 + εg). Differentiating formally the function ααα and µµµ there holds :

ααα (f) = ααα (M) + εdαααM (g) +O(ε2), µµµ (f) = µµµ (M) + εdµµµM (g) +O(ε2)

Then we compute for f =M (1 + εg) the following approximation:

exp (µµµ (f) · a (v − u)) = exp (µµµ (M) · a (v − u)) (1 + εdµµµM (g) · a (v − u) + o(ε))

= M (1 + εdµµµM (g) · a (v − u) + o(ε))
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φ∗′ (ααα (f) · a (v − u)) = φ∗′ (ααα (M) · a (v − u) + o(ε))

+εdαααM (g) · a (v − u)φ∗′′ (ααα (M) · a (v − u) + o(ε)) .

so that

G [f ] (v) = M (v) (1 + ε (dµµµM (g) + c dαααM (g)) · a (v − u) + o(ε))

= M (v) (1 + εΛM (g) · a (v − u) + o(ε))

Finally, there is

K (M(1 + εg)) = = ν [M+ εΛM (g) · a (v − u)M (v)−M (1 + εg) + o(ε)]

and by definition of L (6)

L (g) = ν (ΛM (g) · a (v − u)− g) . (90)

It is convenient to write this relaxation equation with ai being a scalar function of
v − u rather than tensors. We need now to focus on ΛM (g) in order to identify the
expression of LM. To do that we use the prescribe condition on moment:∫

G [M (1 + εg)] ai (v − u) =
(

1− νi
ν

)∫
M (1 + εg) ai (v − u)

So with K (f) = ν (G [f ]− f) we conclude that:∫
K (M (1 + εg)) ai (v − u) = −ενi

∫
gM (v) ai (v − u)

using the linear approximation for K we have

ε

∫
ν (ΛM (g) · a (v − u)− g) ai (v − u)M = −ενi

∫
gM (v) ai (v − u) .

That is finally for any component i we have:∫
(ΛM (g) · a (v − u)) ai (v − u)M =

(
1− νi

ν

)∫
gM (v) ai (v − u)

by expanding the dot product, we have formally:∑
j

∫ (
ΛjM (g) · aj (v − u)

)
ai (v − u)M =

(
1− νi

ν

)∫
gM (v) ai (v − u) .

So, by using orthogonality relations

ΛiM‖ai‖2 = (1− νi
ν

)

∫
R3

gMai(v − u).
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Then, according to formula (90) we conclude that

Lg = ν

(∑
i

(
1− νi

ν

)
Paig − g

)

where νi = 0 if ai ∈ K. From this, it is easy to see that L is self adjoint, Fredholm
with Ker(L) = K.
We end this proof by showing that

∀f,
[∫

K (f)φ = 0

]
⇔ φ ∈ K

The right implication is just a consequence of (13). Assume now that

∀f,
∫
K (f)φ(v) dv = 0

Expanding K(M(1 + εg)), we have for any g ∈ L2(M)

∀g,
∫
ML (g)φ(v) dv = 0

Since L is self adjoint, we have

∀g,
∫
MgL (φ) dv = 0

which proves that φ ∈ K.

7 Conclusion

In the present article, we have proposed a methodology to construct relaxation opera-
tors. The derivation is performed in three steps. We first consider the projection of the
inverse linearized Boltzmann operator L−1

B on a polynomial space of finite dimension.
We then state relaxation equations on the moments of the probability distribution f
basing on its diagonalization. The model must satisfy those equations together with
the conservation laws. From this one derives linear relations between the moments of
f and the target function G to be found. The later is then found by solving a vari-
ational problem. Different mathematical problems related to this construction have
been addressed. We have firstly revisited a theorem by Junk [30] relating realizable
moments (i.e moments of nonnegative integrable functions) to nonnegative polynomi-
als. From this we have derived necessary conditions for the realizability of the moments
of G and proved that it allows to specify the admissible relaxation equations on the
Grad thirteen moments. The variational problem has been studied in detail by using
different functional to be minimized under moment constraints. We have reestablished
a theorem of Csiszar [20] on the existence of solution to such minimization problems
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by using convex analysis and exactly derived the shape of the solution by duality.
In the last part of the article, we have proposed different models from this construc-
tion and analyzed their well-posedness. In particular, when relaxations occur on the
Grad thirteen moments, the model satisfies almost all properties of the original Boltz-
mann equation: nonnegativity of the solution, conservation laws, H theorem, Galilean
invariance and the right hydrodynamic limit up to Navier-Stokes level. However, the
control of the entropy defined by the φ-divergence is only local. In the general case,
those properties are also preserved but the control of the entropy is not yet proved.
Finally, the present approach encompasses the derivation of many known models and
for some of them their generalization.

There are many perspectives and questions related to this work. In principle the
new model based only on Grad thirteen moments should not bring more than the
ESBGK or Shakhov models. It remains however to compare them. We also intend to
study the generalization of those relaxation operators beyond the Grad case. In such
cases, the present method does not require the effective computation of the relaxation
operator if moment methods such as in [2, 34] are used. The computation of the
approximate inverse linearized Boltzmann operator is of the same order of complexity
than that of the transport coefficients for multicomponant fluids for which there exists
plenty efficient methods. One may then in a first time compare from a numerical point
of view the solution of this general model to that of the linearized Boltzmann equation
and in a second time compare it to that of the known relaxation models and to the
Boltzmann equation itself. Also, some study related to existence of solutions to the
generalized Shakhov model can be addressed the framework of Bae and Yun [5].
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