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Motivation: ROMs for incompressible flow

Incompressible Navier Stokes-flow takes place during a time interval [0, T ] :
Find a velocity field u(µ) : ! → (0, T ) ↑ Rd

and a pressure p(µ) : ! → (0, T ) ↑ R such that






ωt u(µ) + u · ↓u ↔ µ”u(µ) + ↓p(µ) = f in ! → (0, T ),
↓ · u(µ) = 0 in ! → (0, T ),
u(µ) = 0 on ω! → (0, T ),
u(µ, 0) = u0, in !,

(1)

Solution snapshots are obtained primarily by one of the following approaches :
exact factorisation / coupled approach (ROM with TC, MO, IS)
time splitting approach (ROM with SR, CX, YG)
penalty methods with (ROM H. YAO)
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Exact factorisation / coupled approach

Given the initialization u0(µ) = u0,





Find u(µ) ↗ H
1
D

(!) and p(µ) ↗ L
2
0(!) such that

a(u(µ), u(µ), v ; µ) ↔ (↓ · v , p(µ)) = ↘f , v≃, ⇐ v ↗ H
1
D

(!),
(↓ · u(µ), q) = 0 ⇐ q ↗ L

2
0(!)

(2)

Remark

The reduced bases are built from snapshots and therefore satisfy: divergence free and boundary conditions
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Motivation: the need of pressure recovery in ROMs

In Reduced Order Modelling of incompressible flows it is a common practice to use weakly
divergence-free velocities, thus dropping the pressure from the equations.
Knowing the pressure is needed for a number of applications: calculation of forces on walls or
immersed boundaries, code/model calibration with pressure data.
There basically are two techniques to recover the reduced pressure once the reduced velocity is known:

Poisson pressure equation (PPE). It is obtained as the divergence of the momentum conservation
equation.
Momentum equation recovery (MEQ). The momentum conservation equation is directly considered as
an equation for the pressure.
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Fast survey of pressure recovery procedures

Both methods come from the momentum equation written as

↓p = ↔ωt u ↔ u · ↓u + µ”u + f .

Poisson pressure equation (PPE) (Noack, Papas, Monkewitz, 2005):

↔”p = ↓ · (ωt u + u · ↓u ↔ µ”u ↔ f ) , or ↔ ”p = ↓ · (u · ↓u ↔ f ) .

Solved by Galerkin method on reduced pressure space.
Boundary conditions are needed.

If no terms are dropped, the natural condition

↓p · n = ↔(ωt u + u · ↓u + µ”u + f ) · n holds.
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Fast survey of pressure recovery procedures

Notation: Xh, Mh: FO spaces. X r , Mr : Reduced spaces.
Momentum equation recovery (MEQ) (Rovas &Patera, 2004, Kean & Schneier, 2020):
Look for pr ↗ Mr such that

(pr , ↓ · v r ) = (ωt ur + ur · ↓ur , ↓v r ) + µ(↓ur , ↓v r ) ↔ ↘f , v r ≃, ⇐v r ↗ Sr .

The pressure gradient supremizers are added to the original velocity space to achieve the inf-sup
condition for reduced (enriched velocity, pressure Mr ) spaces:
For any basis function qr of Mr , find sr ↗ Xh such that

(sr , vh)H1(!) = ↔(↓ · v r , qr ), ⇐vh ↗ Xh.

• sr (the “supremizer”) is the representation of ↓qr (eventually + b. c.) on Xh by the Theorem of
Riesz.
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Least squares procedure : Tools

• Gradient operator ”au sens faible/distribution” G : Mh ⇒↑ H
→1(!) given by

↘G qh, vh≃ = ↔(↓ · vh, qh)0, ⇐qh ↗ Mh, ⇐vh ↗ Xh. (3)

Note that ↘G qh, vh≃ = ↘↓qh, vh≃ ↔
∫

”N

qh vh · n and thus, if #N = ⇑, the operator G would be the
gradient operator ”au sens faible”.
• Riesz representation : $(k)

h
: H

→1(!) ⇒↑ Xh defined by

($(k)
h

ε, vh)k = ↘ε, vh≃, ⇐ ε ↗ H
→1(!), ⇐vh ↗ Xh, for either k = 0 or k = 1. (4)

Observe that from (4) and (3),

($(k)
h

(G qh), vh)k = ↔(↓ · vh, qh)0, ⇐qh ↗ Mh, ⇐vh ↗ Xh.
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Least squares procedure : Formulation

We propose to obtain the pressure by minimisation of the dual discrete norm of the residual,

pr = arg min
qr ↑Mr

J(qr ) := ⇓Gqr ↔ T (ur )⇓2
X →

h

,

where T (u) = ↔(ωt u + u · ↓u ↔ µ”u ↔ f ).
• The norm in X ↓

h
is computed via a Riesz representation operator:

pr = arg min
qr ↑Mr

J(qr ) := ⇓$(k)
h

(G qr ↔ T (ur )) ⇓2
k , (5)

• $(k)
h

is a supremizer (rather maximizer) operator:

⇓$(k)
h

ε⇓Hk(!) = max
vh↑Xh

($(k)
h

ε, vh)Hk(!)
⇓vh⇓Hk(!)

= max
vh↑Xh

↘ε, vh≃
⇓vh⇓Hk(!)

=⇔ ⇓$(k)
h

ε⇓Hk(!) = ⇓ε⇓X →
h

.
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Least squares procedure

If the FOM (velocity, pressure) spaces satisfy an inf-sup condition, then the pressure recovery problem
admits a unique solution.

• It satisfies the normal equations,

($(k)
h

(↓ pr ) ↔ $(k)
h

T (ur ), $(k)
h

(↓ qr ))Hk(!) = 0, ⇐ qr ↗ Mr .

• It is equivalent to a linear system, that is assembled in the o%-line stage.
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Algebraic expression of pressure recovery problem

Let {ϑi}nh

i=1 be a basis of Xh,
Let {ϖi}nr

i=1 be a basis of Mr ,

then problem (12) is equivalent to : Find pr =
nr∑

i=1
pi ϖi ↗ Mr s. t.

ϱp ↗ Rnr with (ϱp)i = pi is the solution of the linear system:

Mϱp = ϱr with M = B G→1 Bt and ϱr = B G→1 ϱR, (6)

where
B ↗ Rnr ↔nh : Bij = ↔(↓ · ϑj , ϖi),
G ↗ Rnh↔nh : Gij = (ϑj , ϑi)Hk(!)
ϱR ↗ Rnh : ϱRi = ↘T (ur ), ϑi≃.
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The pressure gradient supremisers revisited

The supremisers procedure consists in solving the mixed problem (we consider the Stokes problem with
homogeneous Dirichlet b. c.)






Find ur ↗ X r and pr ↗ Mr such that

(↓ur , ↓v r ) ↔ (↓ · v r , pr ) = ↘f , v r ≃, ⇐ v r ↗ X r ,

(↓ · ur , qr ) = 0, ⇐ qr ↗ Mr ,

where the velocity space X r has been enriched with the pressure gradient supremisers:

X r = Sr ↖ X0r ,

with
Sr = {$(k)

h
(↓qr ) such that qr ↗ Mr } ↙ Xh,

X0r = {vh ↗ X r such that (↓ · v r , qr ) = 0, ⇐qr ↗ Mr }.
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The pressure gradient supremizers revisited

The mixed problem is equivalent to the sequence of two problems

(↓ur , ↓v r ) = ↘f r , v0r ≃, ⇐ v0r ↗ X0r ;

($(k)
h

(↓pr ), $(k)
h

(↓qr ))Hk(!) = ($(k)
h

(T (ur )), $(k)
h

(↓qr ))Hk(!), ⇐ qr ↗ Mr ,

with ur ↗ X0r , pr ↗ Mr .

That is, the pressure obtained by the supremisers procedure is the one obtained by the

least-squares procedure.

• This also occurs for the full-order solution.
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Error estimates

Theorem

Assuming that the discrete inf-sup condition holds, then the pressure obtained by the least-squares

recovery procedure satisfies

⇓ph ↔ pr ⇓0 ∝ Ch

(
dL2(!)(ph, Mr ) + ⇓T (uh) ↔ T (ur )⇓H↑1(!)

)
,

where

If k = 0, Ch is the smallest constant appearing in the inverse estimate

⇓↓ vh⇓0 ∝ Ch ⇓vh⇓0, ⇐ vh ↗ Xh.

If k = 1, Ch is independent of h
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Error estimates for unsteady Navier-Stokes

Assuming that the incompressible flow takes place during a time interval [0, T ], we consider the problem
Find a velocity field u(µ) : ! → (0, T ) ↑ Rd

and a pressure p(µ) : ! → (0, T ) ↑ R such that






ωt u(µ) + u(µ) · ↓u(µ) ↔ µ”u(µ) + ↓p(µ) = f in ! → (0, T ),
↓ · u(µ) = 0 in ! → (0, T ),
u(µ) = 0 on #D → (0, T ),
↔µ ↓u(µ) · n + p(µ)n = 0 on #N → (0, T ),
u(µ, 0) = u0, in !,

(7)

where u0 is a initial field velocity given.



Motivation
Least squares pressure recovery

Error estimates
Numerical results

Error estimates for the evolutionary model

We consider the implicit Euler time discretization of problem (7) with constant time-step size ”t = T/N:
Given the initialization u0(µ) = u0,






Find un(µ) ↗ H
1
D

(!) and p
n(µ) ↗ L

2
0(!) such that

a(un(µ), un(µ), v ; µ) ↔ (↓ · v , p
n(µ)) = ↘f n, v≃, ⇐ v ↗ H

1
D

(!),
(↓ · un(µ), q) = 0 ⇐ q ↗ L

2
0(!),

⇐ n = 1, 2, . . . N.

(8)

where f n = f + 1
#t

un→1.
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Error estimates for the evolutionary model

We consider FE FOM and ROM approximations,
– FOM approximation : (un

h
(µ), p

n

h
(µ)) ↗ Xh → Mh such that

{
a(un

h
(µ), un

h
(µ), vh; µ) ↔ (↓ · vh, p

n

h
(µ)) = ↘f n

h
, vh≃, ⇐ vh ↗ Xh,

(↓ · un

h
(µ), qh) = 0 ⇐ qh ↗ Mh,

(9)

– ROM aproximations : (un
r (µ), p

n
r (µ)) ↗ X r → Mr , where the reduced velocity un

r (µ) is computed by
problem

a(un
r (µ), un

r (µ), v r ; µ) = ↘f n
r , v r ≃, ⇐ v r ↗ X r , (10)

where the reduced pressure p
n
r (µ) is recovered from the reduced velocity by the L-S method (12).
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Error estimates for the evolutionary model

To obtain error estimates for the reduced pressure we introduce the following discrete functions ( we omit
the dependency on the parameters for brevity):

uh : [0, T ] ↑ Xh is the piecewise linear in time function such that uh(tn) = un

h
.

ph : [0, T ] ↑ Mh is the piecewise constant in time function that takes the value p
n

h
on (tn→1, tn).

ur : [0, T ] ↑ X r is the piecewise linear in time function such that ur (tn) = un
r .

pr : [0, T ] ↑ Mr is the piecewise constant in time function that takes the value p
n
r on (tn→1, tn).
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Error estimates for the evolutionary model

Theorem

Assume that the pair of spaces (Xh, Mh) satisfy the discrete inf-sup condition, then

• If k = 0,

⇓ph ↔ pr ⇓L1(L2(!)) ∝ Ch

(
dL1(L2(!))(ph, Mr ) + ⇓uh ↔ ur ⇓L2(H1

D
(!))

)
,

• If k = 1,

⇓ph ↔ pr ⇓L1(L2(!)) ∝ C

(
dL1(L2(!))(ph, Mr ) + ⇓uh ↔ ur ⇓L2(H1

D
(!)) +

+ ⇓Dt(uh ↔ ur )⇓L1(H↑1(!))
)
,

where Dtv = 1
#t

(v(tn) ↔ v(tn→1)).



Motivation
Least squares pressure recovery

Error estimates
Numerical results

Outline

1 Motivation

2 Least squares pressure recovery

3 Error estimates

4 Numerical results



Motivation
Least squares pressure recovery

Error estimates
Numerical results

Treatment of small amplitude modes

Unconstrained LSpROM : find ϱp ↗ Rnr solution of problem

ϱp = arg min
ωq↑Rnr

⇓Dt ϱq ↔ Lt ϱR⇓2
Rnr . (11)

Constrained LSpROM approach 1 : find ϱp ↗ Rnr solution of the constrained problem :

ϱp = arg min
ωq↑Rnr s.t q2

j
↗εϑj

⇓Dt ϱq ↔ Lt ϱR⇓2
Rnr . (12)

Constrained LSpROM approach 2 : find ϱp ↗ Rnr solution of the orthogonality constrained LSpROM :
ϱ[p] = arg min

ω[q↓] ω[q↓]t=Inr

⇓Dt [ς] ϱ[q↘] ↔ Lt [ϱR]⇓2
F , (13)

where || · ||F denotes the Frobenius norm.
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Flow past a cylinder Re = 100.

We have tested the LS pressure recovery using the velocity computed with a POD solution of two
academic flows.

• Test 1: Flow past a cylinder at Re = 100.

The flow is considered in a channel of rectangular shape with height H = 30D and length 45D, with a
cylindric hole of diameter D placed at L1 = 10D from the left boundary and H/2 from the bottom
wall.
At the inflow boundary, a horizontal velocity is imposed. On the remaining boundaries, we set a
free-slip condition on the horizontal walls, a no-slip condition on the cylinder, and a normal stress free
condition on the outflow boundary to allow the fluid to exit through the outlet of the channel.
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Flow past a cylinder Re = 100.

Regarding the computational aspects, we use a space-time discretizations consisting of a non-uniform
triangular mesh made of 21174 cells, and a first order semi-implicit Euler integration scheme of step
”t = 10→2.
The resulting flow shows a creation of alternating low-high pressure vortices downstream the cylinder,
triggering the generation of periodic Von Karman vortex pattern in the wake region.
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Flow past a cylinder Re = 100 : Example of snapshot

Figure: High fidelity velocity (left) and pressure (right) solutions of the flow past a cylinder, Re = 100
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Figure: Pressure errors for the flow past a cylinder at Re = 100.
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Flow past a cylinder Re = 100 : Errors behaviors

(a) POD reconstruction (b) Chacon et al

(c) (k=0) (d) (k=1)

Figure: Flow past a cylinder Re = 100 : Errors behaviors
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Flow in a lid driven cavity Re = 10000

• Test 2: Lid-driven cavity flow at Re = 10.000.
The flow is considered in a cavity of square shape ]0, D[→]0, D[ where the fluid is driven by a
tangential velocity of magnitude acting on its top wall. No-slip conditions are imposed on the
remaining walls.
To perform the numerical computations, we used a triangular mesh composed of 32928 cells and a
first order semi-implicit Euler scheme of step ”t = 10→3 for time integration.
The resulting flow is cyclic, where in the lower and upper left corners, the secondary vortex separates
into two small vortices that periodically reincorporate.
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Flow in a lid driven cavity Re = 10000 : Example of snapshot

Figure: High fidelity velocity (left) and pressure (right) solutions of the cavity flow, Re = 10000
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Figure: Pressure errors for the flow in a Lid Driven Cavity Re = 10000.
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(a) POD (b) Chacon et al

(c) (k=0) (d) (k=1)

Figure: Pressure isovalues errors in the cavity flow Re = 10000, by taking 40 modes for velocity and pressure
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Conclusions & work in progress

We have
Introduced a least-squares method to recover the reduced pressure for incompressible flows.
Given some fundamental theoretical results concerning the existence and uniqueness of the solution
whenever the full-order pair of velocity-pressure spaces is inf-sup stable.
Proved an optimal error estimate for the reduced pressure.
Proved that our method is equivalent to the pressure gradient supremizers and to the Momentum
Equation Recovery techniques.

We intend to
Apply the method to snapshots including time di%erentiation.
Extend to solving general saddle point problems.
Recover the pressure for full model by LS procedures.
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Karhunen-Loève expansion

Proper orthogonal decomposition reduced order model (see Kunish [8])

Considering the time as parameter,
the ensembles of velocity snapshots ωv = span

{
u1

h
, . . . , uN

h

}

and pressure snapshots ωp = span
{

p1
h
, . . . , pN

h

}
.

POD method seeks low-dimensional bases
{
ω1, . . . , ωrv

}
and

{
ε1, . . . , εrp

}
in real Hilbert spaces Hv , Hp

that optimally approximate the velocity and pressure snapshots with respect to the discrete L2(Hv ),
L2(Hp) norms, respectively (cf. [8]).
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Karhunen-Loève expansion

T is a given function in the Lebesgue space L2(X → Y ) . X ↑ Rd and Y ↑ Rs

The integral operator B with kernel T and its adjoint operator B→ expressed as

ϑ ↓↔ B ϑ, (B ϑ)(y) =
∫

X

T (x , y)ϑ(x) dx .

v ↓↔ B→ v , (B→ v)(x) =
∫

Y

T (x , y)v(y)dy .

A = B→B is an integral operator whose kernel K is

K (x , ϖ) =
∫

Y

T (x , y) T (ϖ, y) dy .

↗ a Hilbert basis (ϑm)m↑0 in L2(X ) where ϑm is an eigenvector of A related to a non-negative eigenvalue
ϱm, such as

A ϑm = ϱm ϑm, ↘m ≃ 0. (5)
Using Mercer’s theorem yields the following decomposition

K (x , ϖ) =
∑

m↑0
ϱmϑm(x)ϑm(ϖ), ↘(x , ϖ) ⇐ X → X .
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Karhunen-Loève expansion

• There exists a system (ϑm, vm, ςm)m↑0 such that (ϑm)m↑0 is an orthonormal basis in L2(X ), (vm)m↑0
an orthonormal system in L2(Y ) and (ςm)m↑0 a sequence of nonnegative real numbers such that

B ϑm = ςm vm, B→ vm = ςm ϑm, ςm =
√

ϱm.

The sequence (ςm)m↑0 is ordered decreasingly and decays toward zero.

• A direct result is the Karhunen-Loève/POD expansion (POD)

T (x , y) =
∑

m↑0
ςm ϑm(x)vm(y), ↘(x , y) ⇐ X → Y .

• The (KL-approximation) of function T of order M is denoted TM and is

TM(x , y) =
M∑

m=0
ςm ϑm(x)vm(y), ↘(x , y) ⇐ X → Y .
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Karhunen-Loève expansion

Approximation errors

⇒T ⇑ TM⇒L2(X↓Y )
⇒T⇒L2(X↓Y )

=
√∑

m↑M+1 ϱm∑
m↑0 ϱm

. (6)

Let (εm)m↑0 be a Hilbertian basis in L2(X ). We set um(y) =
∫

X
T (x , y)εm(x) dx and

SM =
∑

0↔m↔M εm ⇓ um.
⇒T ⇑ TM⇒L2(X↓Y ) ⇔ ⇒T ⇑ SM⇒L2(X↓Y ). (7)

Approximation/Rate of convergence

X = I =] ⇑ 1, 1[. Assume that T ⇐ Hω (I, L2(Y )) for φ ≃ 0. Then, the following bound holds

⇒T ⇑ TM⇒L2(I↓Y ) ⇔ CT M↗ω .
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Karhunen-Loève expansion

Proper orthogonal decomposition reduced order model (see Kunish [8])

It can be shown that the following POD projection error formulas hold [7, 8]:

!t
N∑

n=1

∥∥∥∥∥un

h ⇑

rv∑

i=1
(un

h, ωi)Hv
ωi

∥∥∥∥∥

2

Hv

=
Mv∑

i=rv +1
ϱi , (8)

and

!t
N∑

n=1

∥∥∥∥∥pn

h ⇑

rp∑

i=1
(pn

h, εi)Hp
εi

∥∥∥∥∥

2

Hp

=
Mp∑

i=rp+1
↼i , (9)

• Mv , Mp are the rank of ωv and ωp, respectively, and ϱi , ↼i are the associated eigenvalues.
•Hv , Hp can be any real Hilbert spaces, (here Hv = L

2 and Hp = L2).
• In what follows, we are going to take rv = rp = r .
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Karhunen-Loève expansion

Proper orthogonal decomposition reduced order model

We respectively consider the following velocity and pressure spaces for the POD setting:

X r = span {ω1, . . . , ωr } ↑ Xh,

and
Mr = span {ε1, . . . , εr } ↑ Mh

Remark

Since the POD velocity modes are linear combinations of the snapshots obtained from solving (4), they
satisfy the boundary conditions in and are solenoidal. Thus, the POD velocity modes belong to X0h, which
yields X0r ↑ X0h.
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Karhunen-Loève expansion

Galerkin projection-based POD-ROM

u(x, t) ↖ ur (x, t) =
r∑

i=1
ai(t)ωi(x), p(x, t) ↖ pr (x, t) =

r∑

i=1
bi(t)εi(x), r << N (10)

where {ai(t)}r

i=1 and {bi(t)}r

i=1 are the sought time-varying coe”cients representing the POD-Galerkin
velocity and pressure trajectories.
Galerkin Navier-Stokes-POD-ROM problem reads :

Initialization. Set: u0
r =

∑
r

i=1(u0, ωi)ωi .

Iteration. For n = 0, 1, . . . , N ⇑ 1: Given un
r ⇐ X r , find un+1

r ⇐ X r such that:

a(ur , ur , ω; µ) = (f n+1, ω), ↘ω ⇐ X r . (11)

In (11), the pressure term vanishes due to the fact that un
r belongs to X0h.

=↙ We than need a procedure to recover it p
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Thanks for your attention!
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