SOME PROBLEMS ON THE PRIME FACTORS OF CONSECUTIVE INTEGERS II

Ъу

P. Erdős and J. L. Selfridge

G. A. Grimm [3] stated the following interesting conjecture: Let $n+1,\ldots,n+k$ be consecutive composite numbers. Then for each i, $1 \le i \le k$ there is a p_i , $p_i \mid n+i$ $p_i \ne p_i$ for $i_1 \ne i_2$. He also expressed the conjecture in a weaker form stating that any set of k consecutive composite numbers need to have at least k prime factors. We first show that even in this weaker form the conjecture goes far beyond what is known about primes at present.

First we define a few number theoretic functions. Denote by ψ (n, k) the number of distinct prime factors of (n+1)...(n+k). $f_1(n)$ is the smallest integer k so that for every $1 \le \ell \le k$

$$\forall (n, \ell) \ge \ell \text{ but } \forall (n, k+1) = k$$
.

 $f_{\cap}(n)$ is the largest integer k for which

$$v(n, k) \ge k$$
.

Clearly $f_0(n) \ge f_1(n)$ and we shall show that infinitely often $f_0(n) > f_1(n)$.

Following Grimm let $f_2(n)$ be the largest integer k so that for each $1 \le i \le k$ there is a $p_i \mid n+i$, $p_{i_1} \ne p_{i_2}$ if $i_1 \ne i_2$.

Denote by P(m) the greatest prime factor of m. $f_3(n)$ is the greatest integer so that all the primes P(n+i), $1 \le i \le k$ are distinct. $f_{i,j}(n)$ is the largest integer k so that $P(n+i) \ge i$, $1 \le i \le k$ and $f_5(n)$ is the largest integer k so that $P(n+i) \ge k$ for every $1 \le i \le k$. Clearly

$$f_0(n) \ge f_1(n) \ge f_2(n) \ge f_3(n) \ge f_4(n) \ge f_5(n)$$

CONJECTURE: It seems certain to us that for infinitely many n the inequalities are all strict. For example, for n = 9701

$$f_0(n) = 96 > 94 > 90 > 45 > 18 > 11 = f_5(n)$$
.

It seems very difficult to get exact information on these functions which probably behave very irregularly. By a well known theorem of Pólya, $f_3(n)$ tends to infinity. First we prove

THEOREM 1.

$$f_0(n) < c_1 \left(\frac{n}{\log n}\right)^{1/2}$$

To prove (1) assume that $v(n, k) \ge k$. We then would have

(2)
$$\binom{n+k}{k} \ge \prod p_r, \pi(k) < r \le k$$

where $p_1 = 2 < p_2 < \dots$ is the sequence of consecutive primes. On the other hand

A well known theorem of Rosser and Schoenfeld [4] states that for large t

(4)
$$p_t > t \log t + t \log \log t - c_2 t$$

where c_1 , c_2 ... are positive absolute constants.

From (4) we obtain by a simple computation that (exp $z = e^{z}$).

(5)
$$\prod_{r=n(k)+1}^{k} p_r > \exp (k \log k + k \log \log k - c_3 k).$$

From (2), (3), (4) and (5) we have

$$\frac{e(n+k)}{k} > k \log k / e^{\frac{c}{3}}.$$

(6) immediately implies (1) and the proof of Theorem 1 is complete.

We conjecture

$$f_0(n) < n$$

for all $n > n_0(c_4)$, perhaps $f_1(n) > n^5$ for all n. $f_0(n) < n^{1/2-c_4}$ seems to follow from a recent result of Ramachandra (A note on numbers with a large prime factor, Journal London Math. Soc. 1 (1969), pp. 303-306) but we do not give the details here.

Theorem 1 shows that there is not much hope to prove Grimm's conjecture in the "near future" since even its weaker form implies that

$$p_{i+1} - p_i < c(p_i / log p_i)^{1/2}$$

in particular it would imply that there are primes between n^2 and $(n+1)^2$ for all sufficiently large n.

Next we show

THEOREM 2. For infinitely many n

$$f_0(n) < c_6^{n^{1/e}}$$
 and $f_1(n) < c_7^{n^{1/e}}$

Denote by u(m, X) the number of prime factors of m in $(c_8 X^{1/e}, X)$. We evidently have

(7)
$$\sum_{m=1}^{X} u(m, X) = \sum_{\substack{1/e \\ c_8 X}} \left[\frac{X}{p}\right] > X \sum_{\substack{1/e \\ c_8 X}} \frac{1}{p} - \pi(X) > X$$

for sufficiently small c_8 .

From (7) it is easy to see that there is an $c_8 x^{1/e} \le m < x - c_8 x^{1/e}$ so that for every $t \le X - m$

$$\sum_{i=1}^{t} u(m+i, X) \ge t.$$

Choose $t=c_6 x^{1/e}$ and we obtain Theorem 2. In fact for every $t< c_6 x^{1/e}$ t [I (m + i) has at least t prime factors $> c_6 x^{1/e}$. The same method gives i=1 that $f_1(n) < c_7 n^{1/e}$ holds for infinitely many n.

We can improve a result of Grimm by

THEOREM 3.* For every n > n

$$f_2(n) > (1 + o (1)) \log n$$
.

Suppose $f_2(n) < t$. This implies by Hall's theorem that for some $r \le \pi(t)$ there are r primes p_1, \ldots, p_r so that r+1 integers $n+i_1, \ldots, n+i_{r+1}, 1 \le i_1 < \ldots < i_{r+1} \le t$ are entirely composed of p_1, \ldots, p_r . For each p there is at most one of the integers $n+j, 1 < j \le t$ which divide p^{α} with $p^{\alpha} > t$. Thus for at least one index $i_s, 1 \le s \le r+1$

$$n + i_s = \int_{i=1}^{t} p_i^{\alpha_i}, p_i^{\alpha_i} < t, \text{ or } n < t^{\pi(r)} < t^{\pi(t)} < e^{(1+o(1))t}$$

which proves Theorem 3. Probably this proof can be improved to give $f_2(n) / \log n \to \infty \quad \text{but at the moment we can not see how to get}$ $f_2(n) > (\log n)^{1+\epsilon} \quad . \quad \text{Probably}$

(8)
$$f_2(n)/(\log n)^k \to \infty$$

for every k which would make Grimm's conjecture likely in view of the fact that "probably"

^{*} K. Ramachandra just informed us that he can prove $f_2(n) > c \log n$ (log log n) 1/4

(9)
$$\lim (p_{r+1} - p_r) / (\log p_r)^k \to 0$$

for sufficiently large k. We certainly do not see how to prove (8) but this may be due to the fact that we overlook a simple idea. On the other hand the proof of (9) seems beyond human ingenuity at present.

In view of [2]

$$\underline{\lim} \quad \frac{\mathbf{p}_{r+1} - \mathbf{p}_r}{\log \mathbf{p}_r} < 1.$$

Theorem 3 shows that Grimm's conjecture holds for infinitely many sets of composite numbers between consecutive primes.

THEOREM 4. For infinitely many n

$$f_5(n) > \exp(c_9 (\log n \log \log n)^{1/2}).$$

A well known theorem of de Bruijn [1] implies that for an absolute constant c_{g} the number of integers m < n for which

(10)
$$P(m) < \exp(c_9 (\log n \log \log n)^{1/2})$$

is less than

(11)
$$n \exp((c_9) (\log n \log \log n)^{1/2}).$$

(10) and (11) imply that there are $\exp(c_9 (\log n \log \log n)^{1/2})$ consecutive integers not exceeding n all of whose greatest prime factors are greater than $\exp(c_9 (\log n \log \log n)^{1/2})$, which proves Theorem 4.

It seems likely that for infinitely many n $f_3(n) < (\log n)^{c_{10}}$, but it is quite possible that for all n $f_3(n) > (\log n)^{c_{11}}$. We have no non-trivial upper bounds for $f_3(n)$, $f_4(n)$ or $f_5(n)$. It seems certain that $f_3(n) = o(n^6)$ for every $\epsilon > 0$. It is difficult to guess good upper or lower bounds for $f_2(n)$.

Grimm observed that there are integers u and v, u < v, P(u) = P(v) so that there is no prime between u and v e.g. u = 24, v = 27. It is easy to find many other such examples, but we cannot prove that there are infinitely many such pairs u_i , v_i and we cannot get good upper or lower bounds for $v_i - u_i$. Pólya's theorem of course implies $v_i - u_i \rightarrow \infty$.

It has been conjectured (at the present we cannot trace the conjecture) that if n_i and m_i have the same prime factors, then there is always a prime between n_i and m_i . We cannot get good upper or lower bounds on $m_i - n_i$.

Next we prove

THEOREM 5. Each of the inequalities

$$f_{i}(n) > f_{i+1}(n), 0 \le i \le 4$$

have infinitely many solutions.

First we prove $f_0(n) > f_1(n)$ infinitely often. Put n = pq where p and q are distinct primes, q = (1 + o(1)) p, i.e. p and q are both of the form (1 + o(1)) $n^{1/2}$. There is a largest k for which $f_0(pq - k) \ge k$.

By theorem 1 none of the integers $pq-1, \ldots, pq-k+1$ can be multiples of p or q since k=o $(n^{1/2})$. Since k is maximal, by (12) the number of distinct prime factors of the product (pq-k+1)... (pq) equals k. Thus the number of distinct prime factors of $(pq-k+1)\ldots(pq-1)$ is k-2 hence $f_1(pq-k) < k-1$ while $f_0(pq-k) \ge k$.

To prove $f_1(n) > f_2(n)$ infinitely often, observe that $f_1(pq-1) > f_2(pq-1)$ with p and q as above. Since $f_1(pq-1) > \min(p, q)$, the primes p and q cannot both be used for f_2 but can be used for f_1 .

Assume now $f_2(n) = k$ and assume that the set $n+1,\ldots,n+k$ contains no power of a prime. Then $f_2(n) > f_3(n)$. Since $f_2(n) = k$ there must be r numbers $n+i_1,\ldots,n+i_r$ in the set which together with n+k+1 are composed entirely of exactly r primes $q_1 < \ldots < q_r$ (we use Hall's theorem). Now none of these r numbers is a power of q_1 so their largest prime factors cannot all be distinct and thus $f_3(n) < k$.

Now clearly n^2 and $(n+1)^2$ infinitely often have no power between them. This and the fact that $f_2(n^2) = o(n)$ gives infinitely often $f_2(n^2) > f_3(n^2)$. It might be interesting to try to determine the largest n such that $f_2(n) = f_3(n)$. We cannot even prove there is such an n.

Since $f_3(n)$ goes to infinity with n and $f_4(2^k-3)=f_5(2^k-3)=2$, it is clear that $f_3(n)>f_4(n)$ infinitely often. Also $f_4(2^k-1)>2$ if k>1 while $f_5(2^k-1)=2$. In fact it is easy to see that $f_4(2^k-1)$ goes to infinity with k.

THEOREM 6. For all $n > n_0$, $f_1(n) > f_3(n)$.

Proof: Put $f_1(n) = k$. Then (n+1)...(n+k) has exactly k distinct prime factors. If $f_3(n) = k$ then all these k primes must be the greatest prime factor of some n+i, $1 \le i \le k$. In particular 2 must be the greatest prime factor of n+i, $(n+i=2^W)$ and similarly for 3 so that $n+i_2=2^V 3^W$.

Thus by theorem 1

$$|2^{u} - 2^{v}3^{w}| < k < 2^{u/2}$$

A well known theorem states that if p_1, \ldots, p_r are r given primes and $a_1 < a_2 < \ldots$ is the set of integers composed of the p's then $a_{i+1} - a_i > a_i^{1-\epsilon}$ for every $\epsilon > 0$ and i > i (ϵ). This clearly contradicts (13), proving theorem ϵ .

It is not impossible that for every $n > n_{\text{O}}$

$$f_0(n) > f_1(n) > f_2(n) > f_3(n) > f_4(n)$$

but we are far from being able to prove this. It seems certain to us that $f_1(n) > f_2(n) > f_3(n)$ for all $n > n_0$ but we might hazard the guess that $f_0(n) = f_1(n)$ infinitely often, and perhaps $f_3(n) = f_4(n) = f_5(n)$ infinitely often. $f_4(2^k - 3) = f_5(2^k - 3) = 2$, thus $f_4(n) = f_5(n)$ has infinitely many solutions.

We can prove by using the methods of Theorem 4 that

$$f_3(n) < \exp ((2 + o (1)) (\log n \log \log n)^{1/2}$$

for infinitely many n and that

$$f_2(n) < \exp \ (c \log \ n \ \log \log \ n \ / \log \log \ n)$$
 for infinitely many $\ n.$

Perhaps our methods give that $f_0(n) < cn^{1/e}$ holds infinitely often and perhaps $f_0(n) < n$ holds for every $n > n_0$. All these and related questions we hope to investigate.

References

- 1. N.G. de Bruijn, On the number of positive integers < X and free of prime factors > y. Indig. Math. 13 (1951) 50-60.
- 2. P. Erdős, The difference of consecutive prime numbers. Duke Math. J. 6 (1940), 438-441.
- 3. C. A. Grimm, A conjecture on consecutive composite numbers.

 Amer. Math. Monthly 76 (1969), 1126-1128.
- 4. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64-94.
- 5. C. Siegel, Uber Naherungswerte Algebraischer Zahlen, Math. Annalen 84 (1921), 80-99, see also K. Mahler, Math. Annalen, 107 (1933), 691-730.