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SOME PROBLEMS ON THE PRIME FACTORS OF CONSECUTIVE INTEGERS II.
by

P, Erdds and J. L. Selfridge

G. A, Grimm [3] stated the following interesting conjecture: Let
n+1l,..., n+k be consecutive composite numbers. Then for each i,
1 si sk thereisapi,pi|n+i pil;fpi2 for 1, # i, .
He also expressed the conjecture in a weaker form stating that any set of
k consecutive composite numbers need to have at least k prime facters.
We first show that even in this weaker form the conjecture goes far beyond
what is known sbout primes at present.

First we define a few number theoretic functions. Denote by v (n, k)

the number of distinct prime factors of (n + 1)...(n + k). fl(n) is the

smallest integer k so that for every 1 £ {4 £ k
v(n, 4 2 Lbutv(n, k +1) = k .
fo(n) is the largest integer k for which
v(n, k) 2 k .

Clearly fo(n) 2 fl(n) and we shall show that infinitely often
fo(n) > fl(n) .
Following Grimm let fe(n) be the largest integer k 8o that for
each 1 <€ i <€k there is a pi[n+1,,pil # pie if 4 # i, .
Denote by P(m) the greatest prime factor of m. f3(n) is the
greatest integer so that all the primes P(n + i), 1 i <k are distinct.
f“(n) is the largest integer k so thet P(n + i) 21, 1 € 1 £ k and
f5(n) is the largest integer k so that P(n + i) 2k for every 1 <1 £ k.

Clearly



fo(n) 2 fl(n) 2 fe(n) ij(n) 2 fh(n) z f5(n).

CONJECTURE: It seems certain to us that for infinitely meny n the
inequalities are all strict. For example, for n = 9701
fo(n) = 96>91+>9o>1+5>18>11=f5(n) .

It seems very difficult to get exact information on these functions

which probably behave very irregularly. By a well known theorem of Pdlys,

fB(n) tends to infinity. First we prove

THEOREM 1.
n 1/2
(1) fo(n) <e {log n)

To prove (1) assume that y(n, k) 2 k . We then would have

(2) ()= me, s x) <x s

where Py = 2 < P, < ..o 1s the sequence of consecutive primes. On the
other hand

k k
(3) Eu-k} < gn;l;:) < Cegn:k){ .

k

A well known theorem of Rosser and Schoenfeld [4] states that for
large t

(4) p, > t log t + t log log t - c,t

where ... are positive absolute constants.

c, 5 C,
z
From (4) we obtain by a simple computation that (exp z = e”).
k

(5) it p_ > exp (klogk+kloglogk-c3k)a
ren(k)+l T



i5
From (2), (3), (4) and (5) we have

c
(6) -e-@—}-:&l >l«:].ogk/e3

@

(6) immediately implies (1) and the proof of Theorem 1 is complete.
Wé conjecture
1/2"ck
fo(n) <n
cg 1/2-ch

for all n > nO(cu) , perhaps fl(n) >n ~ for all n. fO(n) <n

seems to follow from a recent result of Ramachandra (A note on numbers with
a large prime factor, Journal London Math. Soc., 1 (1969), pp. 303-306) but
we do not give the details here.

Theorem 1 shows that there is not much hope to prove Grimm's conjecture

in the "near future" since even its weaker form implies that

1/2
Py, - Py <clp, / log p,)

in particular it would imply that there are primes between n2 and (n + l)2

for all sufficiently large n .

Next we show
THEOREM 2. For infinitely many n
1/e 1/e
(n) < cgn and fl(n) < c.n R

Denote by u(m, X) the number of prime factors of m in (caxl/e, X).

%

We evidently have

X
X 1
(1 ) ulm X) = Y Zi>x ) o) >x
m=1 1/e 1/e
c8X <p<X c8X <p<X

for sufficiently small cg .




1/e 1/e

From (7) it is easy to see that there is an cglk s m<X - cgX

so that for every t < X - m

t
2? ulm + 1, X) 2t .
i=1

1/e 1/e

Choose t = c6X

t
I (m+ i) has at least t prime factors > c6Xl/e . The same method gives
i=1

that fl(n) < c.n

We can improve a result of Grimm by

and we obtain Theorem 2. In fact for every t < c6X

l/e holds for infinitely many n.

THEOREM 3.* For every n > ng

fe(n) > 1+ o0 (1)) logn .

Suppose f2(n) <t . This implies by Hall's theorem that for some r < n(t)

there are r primes Pyseee,P, SO that r + 1 integers n + il,...,n + ir+l’

1l = i < oo < ir+ ¢ t are entirely composed of PyseeesPy - For each p

1
a
there is at most one of the integers n + j, 1 < J =t which divide p

with pa >t , Thus for at least one index 15, 1l s ssr+1

(04 [0’ ] ]
ii ) pii <t, ornc< () o on(t) o (L+o(1))t

which proves Theorem 3, Probably this proof can be improved to give
f.(n) / log n» @ but at the moment we can not see how to get

1+ €
)

fg(n) > (log n . Probably

(8) £, (n)1og n)* 5 =

for every k which would make Grimm's conjecture likely in view of the fact

that 'probably"

* K. Ramac}handra Just informed us that he can prove f2(n) > ¢ log n (log
log n) 1




(9) lim (p,; - ) / (log pr)k-° 0

for sufficiently large k. We certainly do not see how to prove (8)
out this may be due to the fact that we overlook a simple idea. On

the other hand the proof of (9) seems beyond human ingenuity at
present.
In view of [2]
pr+l © Py

lim —————— ],
-  log pr

Theorem > shows that Grimm's conjecture holds for infinitely many sets

of composite numbers between consecutive primes.

THEOREM 4. For infinitely many n

)1/2).

fs(n) > exp(c9 (log n log log n

A well known theorem of de Bruijn [1] implies that for an absolute

constant ¢ the rumber of integers m < n for which

9
/s 1/2
(10) P(m) < exp(c9 (log n log log n) /)

is less than

(11) n exp~(c9 (log n log logn)l/e).

(10) and (11) imply that there are exp(c9 (log n log log n)l/e)
consecutive integers not exceeding n all of whose greatest prime factors are
greater than exp(c9 (log n log log n)l/e), which proves Theorem k.

It seems likely that for infinitely many n f3(n) < (log n)clo s
but it is quite possible that for all n f(n) > (log n)cll . We have
no non-trivial upper bounds for f3(n), fh(n) or f5(n)n It seems certain
that f'B(n) =0 (ne) for every €> 0. Tt is difficult to guess good

upper or lower bounds for fz(n)a
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Grimm observed that there are integers u and v, u < v,P(u) =
P(v) so that there is no prime between u and v e.g. u = 2k,

v =27, It is easy to find many other such examples, but we cannot

prove that there are infinitely many such pairs uy o, v and we cannot

i

get good upper or lower bounds for vi T uy . Palya's theorem of

course implies v tu @ .

It has been conjectured (at the present we cannot trace the
conjecture) that if ng and m, have the same prime factors, then

there is always a prime between ni and mi . We cannot get good

upper or lower bounds on mo-n, .
Next we prove

THEOREM 5. Each of the inequalities
s i L
fi(n)>f, l(n),O 1 <

have infinitely many solutions.
First we prove fo(n) > fl(n) infiniteiy often. Put n = pq
where p and q are distinct primes, q = (1 + o (1)) p, i.e. p and

q are both of the form (1 + o (1)) nl/2 . There is a largest k for which

(12) £ (pa - k) 2 k.

By theorem 1 none of the integers pgq - 1, ... , pq - k + 1 can
be multiples of p or gq since k = o (nl/g). Since k is maximal,
by (12) the number of distinct prime factors of the product (pg - k + 1) .
.. (pg) equals k . Thus the number of distinct prime factors of
(pg = k + 1).o.(pg - 1) is k = 2 hence fl(pq - k) <k -1 while

fo(pq -k) 2 k.



19

To prove fl(n) > fg(n) infinitely often, observe that
fl(pq -1) > fe(pq - 1) with p and q as ebove. Since
fl(pq = 1) > min (p, q), the primes p and q cannot both be used for
f2 but can be used for fl .

Assume now fg(n) = k and assume that the set n + 1,..., n + k
contains no power of a prime. Then fg(n) > fB(n). Since f,(n) = k

there must be r numbers n + i n + ir in the set which to-

170
gether with n + k + 1 are composed entirely of exactly r primes
ql < vee < qT (we use Hall's theorem). Now none of these r numbers
is a power of ql so their largest prime factors cannot all be distinct
and thus fi(n) <k .
Now clearly n° and (n + 1)2 infinitely often have no power
between them. This and the fact that fg(ne) = o (n) gives infinitely
often fg(ng\ > ff(ne). It might be interesting to try to determine the largest
n such that fz(n) = fi(n). We cannot even prove there i1s such an n.
Since f§(n) goes to infinity with n and fu(Qk - 3) =
1*5(2k - 3) = 2, it is clear that fy(n) > £,(n) infinitely often,
Also fh(‘?k -1)>2 if k> 1 while f5(2k - 1) = 2, 1In fact it is
easy to see that fu(Ek - 1) goes to infinity with k.
THEOREM 6. For all n > n o, fl(n) > fB(n) .
Proof: Put fl(n) = k., Then (n+ 1)...(n + k) has exactly k
distinct prime factors. If f5(n) = k then all these k primes must
be the greatest prime factor of some n+ 1, 1 € 1 S k , In particular
")

2 must be the greatest prime factor of n+ i, (n+ 1 =2 and

similarly for 3 8o that n + i2 = 23",
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Thus by theorem 1

(13) | 2% - 23V | <k < 292

A well known theorem states that if Pysees, P, are r given

primes and a; < a, < ... 1s the set of integers composed of the p 's

1-€ . X
then 841 " 8 > &y for every € > 0 and 1> i (€) . This
clearly contradicts (13), proving theorem 6.

It is not impossible that for every n > ny

fo(n) > fl(n) > fg(n) > fi(n) > fu(n)

but we are far from being able to prove this. It seems certain to us that

fl(n) > f2(n) > f,(n) for all n> n, but we might hazard the guess
J

that fo(n) = fl(n) infinitely often, and perhaps f,(n) fh(n) = fs(n)
e

infinitely often, fh(2k -3) = f5(2k - 3) = 2, thus fh(n) fs(n) has

infinitely many solutions,
We can prove by using the methods of Theorem 4 that
fa(n) <exp ({2 + 0 (1)) (log n log log n)l/2
for infinitely many n and that

fg(n) < exp (clog n log log log n / )

log log n
for infinitely many n.

Perhaps our methods give that fo(n) < cnl/e holds infinitely

€

often and perhaps fo(n) <n nolds for every n > n All these

O ®

and related qQuestions we hope to investigate.
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