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Abstract

We present a nonlinear interpolation technique for parametric fields that exploits optimal transportation
of coherent structures of the solution to achieve accurate performance. The approach generalizes the non-
linear interpolation procedure introduced in [Iollo, Taddei, J. Comput. Phys., 2022] to multi-dimensional
parameter domains and to datasets of several snapshots. Given a library of high-fidelity simulations, we rely
on a scalar testing function and on a point set registration method to identify coherent structures of the so-
lution field in the form of sorted point clouds. Given a new parameter value, we exploit a regression method
to predict the new point cloud; then, we resort to a boundary-aware registration technique to define bijective
mappings that deform the new point cloud into the point clouds of the neighboring elements of the dataset,
while preserving the boundary of the domain; finally, we define the estimate as a weighted combination of
modes obtained by composing the neighboring snapshots with the previously-built mappings. We present
several numerical examples for compressible and incompressible, viscous and inviscid flows to demonstrate
the accuracy of the method. Furthermore, we employ the nonlinear interpolation procedure to augment
the dataset of simulations for linear-subspace projection-based model reduction: our data augmentation
procedure is designed to reduce offline costs — which are dominated by snapshot generation — of model
reduction techniques for nonlinear advection-dominated problems.

Keywords: model order reduction; nonlinear approximations.

1 Introduction

1.1 Nonlinear interpolation of parametric fields

Despite the many recent contributions, model order reduction (MOR) of parametric problems with compactly-
supported features — such as shocks or shear layers — remains an outstanding task for state-of-the-art tech-
niques due to the fundamental inadequacy of linear approximations. The aim of this work is to devise a general
— i.e., independent of the underlying equations — interpolation technique for steady-state parametric problems,
with emphasis on fluid dynamics applications.

During the past decade, several authors have proposed Lagrangian methods to deal with this class of problems
[11, 18, 34, 36, 37, 40, 50, 48]. We denote by µ the vector of model parameters in the region P ⊂ RP and
we denote by Ω ⊂ Rd the open computational domain; then, we introduce the parametric field of interest
u : Ω × P → RD and the solution manifold M = {uµ := u(·;µ) : µ ∈ P}. Lagrangian approximations rely on
the ansatz

ûµ = ũµ ◦ Φ−1
µ , (1a)

where ũµ is a linear (or affine) approximation of the form

ũµ(x) =

n∑
i=1

ω̂i
µζi(x), x ∈ Ω, µ ∈ P, (1b)

for proper choices of the weights ω̂1
µ, . . . , ω̂

n
µ and the parameter-independent fields ζ1, . . . , ζn : Ω → RD, and

Φ : Ω×P → Ω is a suitably-chosen bijection that tracks the coherent structures of the solution; here, D denotes
the number of state variables, while d is the spatial dimension. Lagrangian approaches are motivated by the
observation that in many problems of interest coherent structures that are troublesome for linear approximations
vary smoothly with the parameter and they hence can be tracked through a low-rank parameter-dependent
mapping Φ.

In [19], we (Iollo, Taddei) proposed a general method dubbed convex displacement interpolation (CDI) that
relies on optimal transportation to perform accurate nonlinear interpolations between solution snapshots; the
approach was proposed for databases of two snapshots and one-dimensional parameter domains. Similarly to
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Lagrangian approaches, CDI relies on the assumption that the location of coherent features of the solution field
depends smoothly on the parameter; however, unlike in (1), it does not rely on the definition of a reference
configuration where the location of the coherent features is (approximately) freezed. In this work, we discuss
an extension of CDI to multi-dimensional parameter domains and to datasets of several snapshots.

1.2 Convex displacement interpolation

CDI exploits the standard offline/online decomposition to predict the state map µ ∈ P 7→ uµ ∈ M; Algorithm
1 summarizes the general procedure and highlights the key steps of the methodology that will be discussed in
the next sections. Given the solution manifold M, we introduce the training set Ptrain = {µk}ntrain

k=1 ⊂ P and
the dataset of solutions Dtrain = {uµ : µ ∈ Ptrain}. During the offline (or learning) stage, for each element of

Dtrain, we determine a set of points Xraw
µ = {xraw

i,µ }Nµ

i=1 ⊂ Ω that describe local features of the solution field that
we wish to track: note that the sets {Xraw

µ : µ ∈ Ptrain} do not necessarily have the same number of elements

and are not matched with each other. Then, we define the reference points Xref := {xref
i }Ni=1 and the new

sensors Xµ := {xi,µ = xref
i + vi,µ}Ni=1 such that the set Xµ approximates — in a sense to be defined — Xraw

µ for
all µ ∈ Ptrain. During the online stage, given the new parameter value µ /∈ Ptrain, first, we apply a regression
method to predict the new sensor locations X̂µ = {x̂i,µ = xref

i + v̂i,µ}Ni=1; second, we identify a set of κ nearest
neighbors Pµ

nn = {νi}κi=1 ⊂ Ptrain; third, we define the mappings {Φν : ν ∈ Pµ
nn} such that each mapping Φν is

bijective in Ω and Φν(x̂i,µ) ≈ x̂i,ν for i = 1, . . . , N and ν ∈ Pµ
nn; fourth, we return the (generalized) CDI as

ûµ =
∑

ν∈P
µ
nn

ων
µũν , where ũν = uν ◦ Φν , (2)

for a proper choice of the weights {ων
µ : ν ∈ Pµ

nn}. Figure 1 illustrates the computational procedure for a simple
one-dimensional problem.

Algorithm 1 : offline/online decomposition.

Offline stage performed once

1: Generate the dataset Dtrain = {uµ : µ ∈ Ptrain}.

2: Identify the point clouds {Xraw
µ : µ ∈ Ptrain}. section 2.1

3: Define the template set Xref and the sorted point clouds {Xµ : µ ∈ Ptrain}.
section 2.2

Online stage performed for any µ ∈ P

1: Estimate the new points X̂µ = {x̂i,µ}Ni=1. section 2.3

2: Select the neighboring parameters Pµ
nn = {νi}κi=1 ⊂ Ptrain. section 2.4

3: Compute the mappings Φν based on X̂µ and X̂ν for all ν ∈ Pµ
nn.

section 2.5

4: Compute the weights {ων
µ : ν ∈ Pµ

nn} and return the estimate (2).
section 2.6

xµ1

uµ1

xµ2

uµ2

x̂µ

(a)

x̂µ

ũµ1

ũµ2

(b)

Figure 1: schematic of the CDI procedure. (a) dataset of snapshots {uµ1 , uµ2} and corresponding sensors (shock
location), x̂µ denotes the predicted shock location for the parameter µ. (b) mapped snapshots {ũµ1 , ũµ2} in (2).
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The practical implementation of CDI requires to carefully choose appropriate methods for each step of the
offline and online stages of Algorithm 1.

Sensor selection There is a broad literature in fluid mechanics and scientific computing on the definition
of quantitative criteria for the identification of coherent flow features such as shear layers, shocks, or vortices:
representative examples include shock sensors for high-order methods in CFD [39, 42], and local criteria for
vortex identification [21].

Point cloud matching The problem of determining sorted point clouds based on a dataset of unmatched
point clouds and a template set is referred to as point-set registration (PSR, [17, 27, 28, 29, 56]): PSR methods
implicitly introduce a global smooth mapping that coherently deforms the points of the template set Xref to
match — in a sense to be defined — the target cloud Xµ, for all µ ∈ Ptrain.

Regression The problem of estimating the sensor locations for new parameter values is a standard multi-
target regression problem that can be handled through off-the-shelves machine learning routines including
radial basis function (RBF, [54]) regression. As in non-intrusive MOR methods (e.g., [16]), we first apply
proper orthogonal decomposition (POD, [47, 53]) to determine a low-rank representation of the sorted point
clouds and then we apply RBF to the POD coefficients.

Registration The mapping generated by PSR methods does not fulfill the bijectivity condition Φ(Ω) = Ω;
in order to avoid extrapolation of full-order solutions outside the domain of definition, it is hence necessary to
devise an efficient boundary-aware registration technique that ensures bijectivity in Ω. Note that the registration
step should be significantly less expensive than full-order solves in order for the CDI method to be beneficial.

Choice of the weights The weights {ων
µ : ν ∈ Pµ

nn} should be chosen to ensure relevant properties of the
interpolation method (cf. section 2.7). Since our emphasis is on datasets of very modest size, we rely on the
inverse distance weighting (IDW, [46]) method.

1.3 Contributions and relation to previous works

The past decade has witnessed a surge in the development of nonlinear MOR methods to mitigate the Kol-
mogorov barrier [1, 4, 5, 25, 41]. As discussed in the previous section, our method shares important features
with Lagrangian methods based on the ansatz (1); the ansatz (2) is also formally equivalent to front tracking
methods proposed in [24, 44]. Note also that our approach relies on a piecewise-nonlinear approximation, which
is motivated by the need to reduce the mesh interpolation and registration costs that scale linearly with κ and
also by the particular strategy employed to define the weights {ων

µ : ν ∈ Pµ
nn}. In this respect, the method is

related to previously-proposed localized MOR techniques [2, 13].
The CDI procedure outlined in Algorithm 1 generalizes the method in [19]: in more detail, it reduces to

the two-field CDI estimate for one-dimensional parameters and κ = 2, and a proper choice of the mappings
{Φν : ν ∈ Pµ

nn} (cf. Remark 2.1). We observe that, similarly to Lagrangian approximations, CDI relies on
geometric mappings to track local features of the solution field and ultimately improve state predictions; on the
other hand, CDI does not rely on the definition of a reference domain and the estimate is inherently Eulerian.
We note that the definition of the template Xref is instrumental to the construction of the sorted point clouds
{Xµ : µ ∈ Ptrain}, which enable the application of standard regression algorithms during the online stage for

the prediction of X̂µ. We also observe that during the online stage each mapping Φν is computed based on the

point clouds X̂µ and X̂ν (in lieu of Xν): thanks to this choice, we prove that CDI is an interpolation method
(cf. section 2.7).

In this work, we rely on well-established techniques for sensor selection, point cloud matching, multi-target
regression, and weight selection; on the other hand, we emphasize that the development of boundary-aware
registration techniques to determine bijective mappings in the domain Ω of interest is an active research area
with many recent contributions. In this work, we propose a new elasticity-based method that borrows ideas
from penalization methods for PDE discretization on Cartesian meshes (see, e.g., [10, 3]); we also note that the
method shares important features with morphing techniques for mesh adaptation [51, 52] and image processing
[7, 8]. We further consider the optimization-based method first proposed in [48] and further developed in several
subsequent works.

The ultimate goal of this work is to devise a nonlinear interpolation strategy that can cope with datasets
of very modest size. The evaluation of the CDI estimate (2) is not necessarily online-efficient — that is, the
prediction cost scales with the cost of the underlying high-fidelity (HF) mesh — but it is significantly less
expensive than the solution to the HF model. In this respect, CDI might be employed to initialize nonlinear
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solvers for nonlinear problems [22], or to enrich the snapshot dataset that can later be used to train a projection-
based reduced-order model (PROM) — in effect, data augmentation [6]. We discuss the application of CDI to
data augmentation through the vehicle of a parametric two-dimensional inviscid flow problem.

The outline of the paper is as follows. In section 2, we present the methods for each step of the offline
and online stages of Algorithm 1, and we show relevant properties of the interpolation procedure. In section
3, we present a motivating example that illustrates the many features of the approach in a simplified setting.
In section 4 we present extensive numerical results for three different test cases that cover compressible and
incompressible, viscous and inviscid flows. In section 5, we illustrate the application to data augmentation.
Section 6 completes the paper.

2 Methodology

2.1 Sensor (or feature) selection

We rely on the definition of a problem-dependent scalar testing function T to identify unmatched point clouds
that can be exploited to derive out-of-sample predictions (cf. section 2.3). Given the domain Ω, we define a
discrete set of points Phf ⊂ Ω and we compute {T(x, uhf

µ ) : x ∈ Phf} for all µ ∈ Ptrain, where uhf
µ denotes the

high-fidelity (HF) estimate of the solution field for µ ∈ P; then, we set

Xraw
µ =

{
xraw
i,µ

}
=

{
x ∈ Phf : T(x, uhf

µ ) ≥ tµ
}

(3)

for some threshold tµ that is specified below.
The choice of the scalar testing function is highly problem-dependent and requires a deep understanding

of the underlying physical model and of the features we wish to track. For compressible flow problems in the
transonic or supersonic regime, we rely on the Ducros sensor [35, 39] to identify the shocks: we denote by
Phf = {xhf

k }Ne

k=1 the cell centers of the HF mesh and we compute

T(xhf
k ;uhf

µ ) = sup
x∈Dk

∣∣ϕ(x;uhf
µ )

∣∣ (4a)

where Dk denotes the k-th cell of the mesh with center xhf
k , ϕ is the Ducros sensor

ϕ(x;u) :=
(−∇ · v)+√

(∇ · v)2 + ∥∇ × v∥22 + a2
∥∇p∥2
p + ϵ

∥v∥2, (4b)

v is the velocity field, p is the pressure, a is the sound speed and ϵ > 0 is a user-defined tolerance that is set
equal to 0.01. Finally, the threshold tµ in (3) is chosen equal to the γthr quantile over the training set:

tµ = quantile
(
{T(x, uhf

µ ) : x ∈ Phf}, γthr
)
. (4c)

For the incompressible flow problem of section 4, we rely on the isolines of the streamfunction to identify the
recirculation area, for two-dimensional channel flows. In more detail, we define the streamline function

Ψµ (x = [x1, x2]) =

∫ x2

ybtm(x1)

(uµ(x1, s))1 ds, (5)

where ybtm(x1) = inf{x2 : [x1, x2] ∈ Ω} denotes the bottom boundary of the channel; then, we set T(x, uhf
µ ) =

−Ψµ (x) and tµ ≡ 0; that is,
Xraw

µ = {x ∈ Phf : Ψµ (x) ≤ 0} .
We remark that we also tried to exploit the Q-criterion and the triple decomposition of relative motion (TDM)
[23]: however, in our experience, these two indicators were not able to distinguish between pure shearing motions
and the actual swirling motion of the vortex.

2.2 Point cloud matching

The point clouds in (3) are not necessarily of the same size and are not sorted; therefore, we resort to PSR to
find matched point clouds:

Xµ = PSR
(
Xref , Xraw

µ

)
, Xref := Xraw

µref , µref ∈ Ptrain. (6)

Given the point clouds X = {xi}Ni=1 and Y = {yj}Mj=1, the problem of PSR consists in finding a map T : Rd → Rd

that (approximately) minimizes the distance

dist (Y, T (X)) = max
y∈Y

(
min
x∈X

∥y − T (x)∥2
)

4



in a suitable model class; the output of the algorithm is the deformed set of points T (X). A broad range
of PSR methods — including the approach considered in this work — relies on a probabilistic interpretation
of the problem: these methods rely on the assumption that {xi}Ni=1 and {yj}Mj=1 are independent identically
distributed (iid) samples from a given probability distribution with unknown parameters. As discussed in the
introduction, Algorithm 1 can cope with any PSR technique that can be written in the form (6); we refer to a
future work for the development of a specialized PSR procedure for MOR. In the remainder of this section, we
review the PSR algorithm employed in the numerical experiments of sections 4 and 5.

We rely on Gaussian-based PSR. Given the point cloud X = {xi}Ni=1, we resort to maximum likelihood
estimation (MLE, see, e.g., [45, Chapter 8]) to estimate mean and covariance matrix:

µX =
1

N

N∑
i=1

xi, ΣX =
1

N

N∑
i=1

(xi − µX) (xi − µX)⊤, (7)

where (·)⊤ is the transpose operator, and we define the Gaussian model gX = N(µX ,ΣX). Similarly, given
the point cloud Y = {yj}Mj=1, we define the MLE estimates µY ,ΣY and the corresponding Gaussian model
gY = N(µY ,ΣY ). Finally, we apply the optimal transport map (cf. [31]) from gX to gY

TX,Y (x) = µY + Σ
−1/2
X

(
Σ

1/2
X ΣY Σ

1/2
X

)1/2

Σ
−1/2
X (x− µX). (8)

to define the deformed point cloud X̃ = {x̃i = TX,Y (xi)}Ni=1.

2.3 Regression of sorted point clouds

We rely on RBF regression to determine the approximation µ ∈ P 7→ X̂µ ∈ RN×d. Given the sorted point
clouds {Xµ : µ ∈ Ptrain}, we first apply POD to determine the equivalent representation

Xµk =

M∑
i=1

Ziβ
i
k, with Z1, . . . , ZM ∈ RN×d, β1

1 , . . . , β
M
ntrain

∈ R,

and M = min{N · d, ntrain}. Then, we apply RBF regression to each coefficient of the expansion separately,

β̂i = arg min
β∈Hϕ

λ∥β∥2Hϕ
+

ntrain∑
k=1

(
β(µk) − βi

k

)2
, i = 1, . . . ,M. (9)

Here, Hϕ denotes the native space associated with the kernel ϕ and λ > 0 is a regularization coefficient. We
rely on the Gaussian kernel, and we exploit cross-validation to select λ and the kernel width; furthermore, we
estimate the out-of-sample R-squared indicator and we keep the coefficients of the expansion for which the latter
exceeds the threshold 0.5. In conclusion, we obtain the estimate

X̂µ =

m∑
i=1

Ziβ̂
i
µ, (10)

with m ≤ M .

2.4 Choice of the nearest neighbors

Given the parameter value µ ∈ P, we select the parameters ν1, . . . , νκ ∈ Ptrain that minimize the Euclidean
distance dist(µ, ν) = ∥µ − ν∥2. The Euclidean distance is invariant under rototranslations of the parameters:
as discussed in section 2.7, this property is key to prove the frame indifference of the CDI procedure.

2.5 Boundary-aware registration

The mapping TX,Y in (8) does not preserve the boundary of the domain: for each ν ∈ Pµ
nn, we should hence

find a mapping Φν : Ω → Ω that is bijective in Ω and satisfies Φν(xref
i ) ≈ x̂i,ν for i = 1, . . . , N . Below, we

present two registration techniques to accomplish this task. Note that we here decouple the problem of PSR
(point cloud matching) from the problem of determining a bijective mapping in Ω: this enables the use of
off-the-shelves PSR routines for the matching problem. The development of a general registration procedure
for arbitrary domains is the subject of ongoing research and a thorough review of the subject is beyond the
scope of the present paper. It is straightforward to verify that both registration methods return the identity
map if xref

i = x̂i,µ for i = 1, . . . , N : this observation is instrumental to prove the interpolation property of CDI
in section 2.7.
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2.5.1 Elasticity-based registration

We denote by ṽ = TX,Y − id the spatial displacement field associated with the PSR algorithm where id is the
identity map; we assume that ṽ is defined over Rd — this assumption holds for several PSR algorithms including
the probabilistic method (8) and its generalizations based on Gaussian mixture models (e.g., [38]). Given the
reference point cloud {xi}Ni=1, we define the region Aη such that

Aη =

N⋃
i=1

Bη(xi), (11a)

where Bη(x) denotes the ball of radius η centered in x; we introduce the regularized signed distance function

Hη,δ(x) = fδ (ϕ(x,Aη)) , with


fδ(t) =

1

2

(
tanh

(
t

δ

)
+ 1

)
,

ϕ(x,Aη) =

{
dist(x, ∂Aη) x ∈ Aη

−dist(x, ∂Aη), x ∈ ∂Aη.

(11b)

Finally, we define the modified field ∆v + ∇ (∇ · v) =
1

ϵ
(v − ṽ)Hη,δ x ∈ Ω,

t · (∇vn) = 0, v · n = 0 x ∈ ∂Ω,

(11c)

where n is the normal vector and t denotes the tangent vector to ∂Ω. As in [3], the right-hand-side of (11)1
weakly enforces the condition v = ṽ in the region Aη in (11a); on the other hand, the condition v ·n = 0 ensures
the non-penetration condition, for ϵ ≪ 1.

We observe that the field v depends on the hyper-parameters ϵ, η, δ; we discuss their choice in the numerical
experiments of section 4. Finally, we define the mapping Φ as follows:

Φ(ξ) := X(ξ, 1), where

{
∂tX(ξ, t) = v(X(ξ, t)) t ∈ (0, 1),
X(ξ, 0) = ξ.

(12)

We observe that the field v corresponds to the Eulerian flow velocity, while X(ξ, ·) : (0, 1) → Rd describes the
temporal evolution of the particle located at ξ at time t = 0. The condition v · n = 0 ensures that X(ξ, t) ∈ Ω
for all t > 0 at the continuous level: in practice, we discretize (12) using an explicit Euler scheme and we
properly choose a time step ∆t to ensure that the geometry error is below a given threshold. We remark that
our approach does not ensure that Φ(xi) = yi for i = 1, . . . , N nor it ensures the bijectivity of the mapping
in Ω; nevertheless, the numerical experiments of this manuscript show that in practice the method provides
proper deformations of the domain Ω that approximately satisfy the interpolation condition Φ(xi) = yi for
i = 1, . . . , N . The development of more effective elasticity-based registration techniques as well as their rigorous
analysis is the subject of ongoing research.

2.5.2 Optimization-based registration

An alternative approach consists in formulating the problem of registration as a minimization problem of the
form

min
Φ∈WΩ

1

N

N∑
i=1

∥Φ(xref
i ) − x̂i,µ∥22 + P(Φ), (13)

that can be solved using a gradient-based (quasi-Newton) method. The optimization statement in (13) depends
on the choice of the penalty term P and of the search space WΩ: the former should enforce local bijectivity
in Ω and also promote the smoothness (in a Sobolev sense) of the mapping; the latter should ensure that
locally-bijectivity — i.e., det(∇Φ) > 0 in Ω — implies global bijectivity in Ω and should be minimal for Φ = id

to ensure the interpolation property of CDI. We refer to [48, 15] for a detailed presentation of the registration
procedure for two-dimensional domains: the generalization of the approach to arbitrary domains is the subject
of ongoing research.
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2.6 Choice of the weights

We determine the weights {ων
µ : ν ∈ Pµ

nn} using the inverse distance weighting (IDW, [46]) method. Given the
nearest-neighbor training parameters ν1, . . . , νκ ∈ Ptrain and the new parameter µ ∈ P, we consider

ων
µ =

ων
µ∑

ν′∈P
µ
nn

ων′
µ

, with ων′

µ =
1

distp(µ, ν′)
, if µ /∈ Ptrain;

ων
µ =

{
1 if µ = ν

0 otherwise
if µ ∈ Ptrain.

(14a)

The algorithm can cope with arbitrary choices of the distance dist : P × P → R+. We here consider the
Euclidean distance

dist(µ, ν) = ∥µ− ν∥2. (14b)

The power parameter p ≥ 1 influences the relative importance of neighboring parameters: large values of p assign
greater influence to values closest to the interpolated parameter. Since we consider relatively small values of κ,
we expect that the sensitivity with respect to p is limited. In the numerical experiments, we set p = 1.

Remark 2.1. Let P ⊂ R and let κ = 2. Given µ ∈ [ν0, ν1] with ν0, ν1 ∈ Ptrain, we define s = µ−ν0

ν1−ν0 ; then,
exploiting (14a) with p = 1, we obtain

ûµ = (1 − s)ũν0 + sũν1 ,

which corresponds to the two-field CDI proposed in [19], for a proper choice of the mappings.

2.7 Properties of the interpolation procedure

The CDI (2) with the choice of the weights (14) has four noteworthy properties that are of interest for interpo-
lation of fluid mechanics fields.

1. Interpolation. Let µ ∈ Ptrain. Then, ûµ = uµ.

Proof. The proof exploits the discussion of the previous sections. Recalling the choice of Pµ
nn in section

2.4, we find µ ∈ Pµ
nn. Then, exploiting (14a), we find ûµ = ũµ = uµ ◦ Φµ. Recalling the correction in

section 2.3, we have X̂µ = Xµ and hence (cf. section 2.5) Φµ = id.

2. Maximum principle. Let b ∈ RD; then, supx∈Ω

∣∣b · ûµ(x)
∣∣ ≤ supx∈Ω,ν∈P

∣∣b · uν(x)
∣∣ for all µ ∈ P.

Proof. We have ∣∣b · ûµ(x)
∣∣ (i)

≤
∑

ν∈P
µ
nn

ων
µ

∣∣b · ũν(x)
∣∣ (ii)

≤ max
ν∈P

µ
nn

(
sup
x∈Ω

∣∣b · ũν(x)
∣∣)

(iii)
= max

ν∈P
µ
nn

(
sup
x∈Ω

∣∣b · uν(x)
∣∣) ≤ sup

ν∈P,x∈Ω

∣∣b · uν(x)
∣∣.

In (i), we applied the definition of CDI, the triangle inequality and the positivity of the weights {ων
µ}ν ; in

(ii), we used the fact that
∑

ν∈P
µ
nn

ων
µ = 1; in (iii), we used that Φν(Ω) = Ω for all ν ∈ P.

3. Minimum principle. Let b ∈ RD; then, infx∈Ω b · ûµ(x) ≥ infx∈Ω,ν∈P b · uν(x) for all µ ∈ P.

Proof. Given x ∈ Ω, µ ∈ P, we have indeed that ων
µ ≥ 0,

∑
ν∈P

µ
nn

ων
µ = 1, and b · ũν(x) ≥ c :=

infx∈Ω,ν∈P (b · uν(x)) for all ν ∈ Pµ
nn. Therefore,

b · ûµ(x) =
∑

ν∈P
µ
nn

ων
µ (b · ũν(x)) ≥ c

∑
ν∈P

µ
nn

ων
µ = c.

4. Frame indifference. Given the parametric field µ 7→ uµ, consider the rototranslation p(µ) = Rµ + b for
some rotation matrix R and vector b ∈ RP , and the parametric field p 7→ vp = uµ(p). Then, ûp(µ) = ûµ

for all µ ∈ P.
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Proof. It suffices to check that all the steps of the CDI procedure are invariant under roto-translations.
First, we observe that RBF interpolation/regression is invariant under rototranslations (cf. [54]). Second,
since the choice of the neighboring elements and the choice of the CDI weights (14) are both based
on the Euclidean distance, we find that both steps also invariant under roto-translations. Finally, the
registration procedure is independent of the parameterization considered and in particular is invariant
under roto-translations.

The maximum and minimum principles can be used to ensure that the CDI prediction is physically mean-
ingful for out-of-sample parameters. To provide a concrete reference, if we apply CDI to the solution to the
Euler or Navier-Stokes equations in primitive variables, we can guarantee that density and pressure are strictly
positive and do not exceed the maximum value attained in the training set. Similarly, since the mappings
{Φν}ν in (2) are bijective in Ω, if the far-field conditions are parameter-independent and constant on ∂Ω, we
can exploit the same argument to prove that the CDI is consistent with the far-field conditions.

3 Motivating example

3.1 Model problem

We consider the parametric problem: −∂2uµ

∂x2
= fµ in Ω = (−1, 1),

uµ(−1) = uµ(1) = 0;

fµ(x) =
1

σ
exp

(
(x− µ)2

σ2

)
, (15)

with µ ∈ P = [−0.9, 0.9] and σ > 0. We introduce the space U = H1
0 (Ω) endowed with the inner product

(w, v) =

∫ 1

−1

∂xw∂xv + wv dx, (16a)

and the induced norm ∥ · ∥ =
√

(·, ·). Exploiting integration by part, we find the variational problem associated
with (15):

find uµ ∈ U : a(uµ, v) = Fµ(v) ∀ v ∈ U, (16b)

where

a(w, v) =

∫ 1

−1

∂xw ∂xv dx, Fµ(v) =

∫ 1

−1

fµv dx. (16c)

By tedious but straightforward calculations, we can show that

π

2 + π
∥u∥2 ≤ a(u, u) ≤ ∥u∥2 ∀u ∈ U. (17)

3.2 Linear method

We denote by Z ⊂ U an n-dimensional linear subspace of U; we further introduce the Galerkin reduced-order
model:

find ûµ ∈ Z : a(ûµ, v) = Fµ(v) ∀ v ∈ Z. (18)

Exploiting Cèa Lemma for symmetric coercive problems (e.g., [43, Lemma 4.3]) and the estimate (17), we find

∥ûµ − uµ∥ ≤
√

1 +
2

π
min
v∈Z

∥v − uµ∥, ∀µ ∈ P. (19)

We conclude that for this model problem Galerkin projection achieves near optimal performance over the entire
parameter domain, for any choice of the reduced space Z.

We generate ntrain = 15 snapshots for equispaced parameter values Ptrain ⊂ P and for two values of σ,
σ = 10−1 and σ = 10−3. For each value of σ, we assess performance of the POD Galerkin ROM (18) for three
values of the reduced basis size n, n = 5, 10, 15. Figure 2(a) shows the behavior of the relative H1 error over P

for three choices of n for σ = 10−1, while Figure 2(b) shows the solution and the Galerkin approximations for
the parameter that maximizes the prediction error for n = 15. Figure 3 replicates the results for σ = 10−3.
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(a) (b)

Figure 2: motivating example; linear ROM for σ = 10−1. (a) H1 relative error. (b) comparison of HF and
ROM solutions for the parameter that maximizes the error for n = ntrain.

(a) (b)

Figure 3: motivating example; linear ROM for σ = 10−3. (a) H1 relative error. (b) comparison of HF and
ROM solutions for the parameter that maximizes the error for n = ntrain.

We observe that the ROM for n = ntrain provides exact reconstructions for in-sample parameters: this
immediately follows from (19). We note, however, that for σ = 10−3 the error is large — in the order of 20% —
and does not decrease as we increase n from n = 10 to n = 15. We hence conclude that the available snapshot
set is not sufficient to achieve an accurate linear representation of the elements of the solution manifold.

We draw two important conclusions. First, the inadequacy of linear approximations primarily depends on
the geometry of the solution manifold — which depends on the PDE model and on the parameterization —
rather than on the class of PDEs of interest (hyperbolic, elliptic, parabolic); on the other hand, the PDE
model affects the sub-optimality (cf. (19)) of Galerkin projection. Second, we observe that several nonlinear
MOR methods (e.g., [4, 5]) seek state estimates that are nonlinear functions of the generalized coordinates but,
nevertheless, belong to the span of the training snapshots: these methods hence do not overcome the issue of
the inaccuracy of the snapshot set.

3.3 Convex displacement interpolation

Figures 4 and 5 show the performance of CDI for the model problem (16) for σ = 10−1 and σ = 10−3: Figures
4(a) and 5(a) show the relative H1 error, while Figures 4(b) and 5(b) show the behavior of the solution and its
estimate for the parameter that maximizes the prediction error. We here set Xµ = {µ}, we consider κ = 2 and
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we define the bijective maps Φν for ν ∈ Pµ
nn so that Φν(Ω) = Ω, Φν is piecewise linear in the intervals (−1, µ)

and (µ, 1) and Φν(µ) = ν. We notice that the error is below 0.5% for both values of σ.

(a) (b)

Figure 4: motivating example; CDI for σ = 10−1. (a) H1 relative error. (b) comparison of HF and ROM
solutions for the parameter that maximizes the prediction error.

(a) (b)

Figure 5: motivating example; CDI for σ = 10−3. (a) H1 relative error. (b) comparison of HF and ROM
solutions for the parameter that maximizes the prediction error.

3.4 Data augmentation

As final test, we perform Galerkin projection based on the parameter-dependent reduced space

Zµ = span
{
ûcdi
µ , uν1 , uν2

}
, with Pµ

nn = {ν1, ν2}.

Figures 6 and 7 show the results: we observe that the error is roughly three times lower than the error associated
with CDI. This result suggests the potential of data augmentation for Galerkin ROMs: nonlinear interpolation is
employed to rapidly enhance the accuracy of the reduced space, while Galerkin projection is employed to ensure
stable and near-optimal estimates. We further investigate the combination of CDI and data augmentation in
the next section.
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(a) (b)

Figure 6: motivating example; Galerkin ROM with data augmentation for σ = 10−1. (a) H1 relative error. (b)
comparison of HF and ROM solutions for the parameter that maximizes the prediction error.

(a) (b)

Figure 7: motivating example; Galerkin ROM with data augmentation for σ = 10−3. (a) H1 relative error. (b)
comparison of HF and ROM solutions for the parameter that maximizes the prediction error.

4 Nonlinear interpolation of parametric flow fields

In this section, we illustrate the performance of our nonlinear interpolation procedure for three model problems.
We rely on the elasticity-based approach for registration (cf. section 2.5.1): in all our tests, we set ϵ = 10−8,
δ = 50, and η = 10−2 in (11a) and (11c); we further consider the time step ∆t = 5 · 10−3 for the integration
of (12). We study the sensitivity of the interpolation parameter s, for datasets with two parameters µ0, µ1 and
P = 1. Given the point clouds Xi = {xi

j}Nj=1 ⊂ Ω for i = 0, 1, we define X(s) = {(1 − s)x0
j + sx1

j}Nj=1 and the
mappings Φi(s) such that Φi(X(s), s) ≈ Xi for i = 0, 1; finally, we define the two-field CDI

û(s) = (1 − s)u0 ◦ Φ0(s) + su1 ◦ Φ1(s). (20)

and the linear counterpart (convex interpolation, CI)

û(s) = (1 − s)u0 + su1. (21)

In the absence of prior information, we here set s = µ−µ0

µ1−µ0
(“linear relation”, cf. Remark 2.1); however, we also

investigate the behavior of the optimal choice of s as a function of µ,

soptµ = arg min
s∈[0,1]

∥û(s) − uµ∥⋆, (22)
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where the norm ∥ · ∥⋆ is introduced below for each model problem.

4.1 Compressible flow past a RAE2822 airfoil

4.1.1 Model problem

We study the compressible viscous flow past a RAE2822 airfoil for varying inflow Mach number Ma∞ and
angle of attack α. We model the flow using the compressible Reynolds-averaged Navier-Stokes equations with
Menter’s SST closure model [33]; we rely on the open-source solver SU2 [12] for snapshot generation. In the
remainder, we apply the nonlinear interpolation procedure to estimate the pressure coefficient

Cp =
p− p∞

1
2ρ∞∥v∞∥22

, (23)

where p, ρ, v denote flow pressure, density and velocity, and the subscript (•)∞ denotes the free-stream value of
the flow quantity •.

4.1.2 One-dimensional parameterization

We first study variations of the free-stream Mach number in the range [0.81, 0.85] for α = 2o. Figure 8(a)
shows the computational domain; Figures 8(b) and (c) illustrate the behavior of the pressure coefficients for
Ma∞ = 0.81 and Ma∞ = 0.85. We observe that the solution develops two shocks on the lower and upper sides
of the airfoil whose position and intensity strongly depend on the parameter value.

(a) (b) (c)

Figure 8: Compressible flow past a RAE2822 airfoil. (a) computational domain. (b)-(c) pressure coefficients
for Ma∞ = 0.81 and Ma∞ = 0.85, α = 2o.

We rely on the Ducros sensor (4) to identify the markers, with γthr = 99.6% (cf. (4c)). Figure 9 shows
the marked cells of the mesh for two parameter values. Since the flow exhibits two distinct coherent structures
(shocks), we apply the procedure of section 2.2 to the lower and upper sides of the domain separately (see also
[19, section 5.2.2]).
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(a) (b)

Figure 9: compressible flow past a RAE2822 airfoil. Marked cells for Ma∞ = 0.81 and Ma∞ = 0.85, α = 2o.

Figure 10 investigates the performance of CDI (20) and CI (21) over Ma∞ ∈ [0.81, 0.85] for linear choice
of the interpolation parameter s on the boundary Γ2. We observe that CDI preserves the structure of the
solution and is also significantly more accurate. Figure 11 compares the behavior of the optimal choice of s
(“experimental”) with the linear relationship — optimality is measured with respect to the L2(Γ2) norm over
the airfoil (“integral error”). We observe that for this model problem soptµ varies linearly with respect to the
parameter µ = Ma∞.

(a) Ma∞ = 0.82 (b) Ma∞ = 0.83

(c) Ma∞ = 0.82 (d) Ma∞ = 0.83

Figure 10: compressible flow past a RAE2822 airfoil, one-dimensional parameterization. Behavior of truth and
predicted pressure coefficient on lower (LOW) and upper (UP) sides of the blade, for two values of Ma∞ and
α = 2o. (a)-(b) convex interpolation. (c)-(d) convex displacement interpolation.
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(a) (b)

Figure 11: compressible flow past a RAE2822 airfoil, one-dimensional parameterization. (a) behavior of the
optimal value of s in (22) for CDI and CI. (b) behavior of the integral error over the airfoil.

4.1.3 Two-dimensional parameterization

We consider the problem of estimating the solution for µ = (Ma∞, α) = [0.83, 2], based on the training points
µ1 = [0.82, 2], µ2 = [0.84, 1.5] and µ3 = [0.84, 2.5]. We compare the performance of convex interpolation and
CDI. Given the (very) modest amount of datapoints, we rely on linear interpolation for the regression step
(cf. Algorithm 1, Line 1, Online stage). Figure 12 compares the predictions of truth and predicted pressure
coefficient for the out-of-sample parameter µ. We observe that nonlinear interpolation is qualitatively more
accurate, especially in the neighborhood of the shock. We observe that the L2(Ω) error is 5.62% for CI and
4.10% for CDI; the L2(Γ2) error is 2.69% for CI and 2.14% for CDI. We emphasize that the L2 metric does not
fully capture local improvements in the regions where the shocks develop.

(a) linear (b) nonlinear

Figure 12: compressible flow past a RAE2822 airfoil, two-dimensional parameterization. Behavior of truth
and predicted pressure coefficient for an out-of-sample configuration. (a) convex interpolation. (b) convex
displacement interpolation.

4.2 Incompressible flow past a backward facing step

4.2.1 Model problem

We study the incompressible flow past a backflow facing step for varying inflow Reynolds number Re and step’s
inclination angle α; we model the flow using the incompressible Navier-Stokes equations and we rely on the
open-source software OpenFOAM [20]. Mesh morphing is based on the Optimad proprietary software mimic1.
The coherent structures of interest are recirculation bubbles (vortices), whose extensions and positions vary as
a function of the parameters. We apply the nonlinear interpolation procedure to the velocity field.

1See https://optimad.github.io/mimmo/.
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4.2.2 One-dimensional parameterization

We first study variations of the inflow Reynolds number in the range [50, 200] for α = 90o. Figure 13 shows
the velocity magnitude for two parameter values, while Figure 14 shows the recirculation area as predicted by
the indicator (5). We observe that the recirculation area is very sensitive to the value of the inflow Reynolds
number.

(a) Re = 50

(b) Re = 200

Figure 13: incompressible flow past a backward facing step. Velocity magnitude for two values of Re and
α = 90o.
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(a) Re = 50

(b) Re = 200

Figure 14: incompressible flow past a backward facing step. Marked cells for two values of Re and α = 90o.

Figure 15 compares of CDI (20) and CI (21) for Re = 100. We observe that the nonlinear interpolation
is qualitatively more accurate to represent the recirculation area. Figure 16 investigates the behavior of the
optimal choice of s (“experimental”) and compares it with the linear relationship — optimality is measured with
respect to the L2(Ω) norm. We observe that soptµ depends almost linearly on Re; we further observe that the
improvement due to the nonlinear interpolation is less significant than for the previous case; we again emphasize
that the global L2 norm does not properly capture local-in-space features of the error.
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(a) high-fidelity model

(b) nonlinear interpolation

(c) linear interpolation

Figure 15: incompressible flow past a backward facing step, one-dimensional parameterization. Predictions of
velocity streamlines for Re = 100 based on the high-fidelity model, nonlinear interpolation and linear interpo-
lation.
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(a) (b)

Figure 16: incompressible flow past a backward facing step, one-dimensional parameterization. (a) behavior of
the optimal value of s in (22) for CDI and CI. (b) behavior of the relative L2(Ω) error for the velocity field.

4.2.3 Two-dimensional parameterization

We consider the problem of estimating the solution for µ = (Re, α) = [120, 70o] based on the training points
µ1 = [100, 50o], µ2 = [100, 90o] and µ3 = [180, 70o]. We compare performance of convex interpolation and
CDI in terms of streamlines and horizontal velocity prediction. As in the previous test case, prediction of the
markers’ locations for out-of-sample configurations is performed through linear interpolation. Figure 17 shows
the results.

We observe that the improvement due to nonlinear interpolation in terms of global L2(Ω) relative error in
velocity prediction is very modest (1.31% vs 1.29%). However, we notice that the streamlines of the flow field
that are predicted through nonlinear interpolation are qualitatively more accurate than the ones associated
with linear interpolation; similarly, the prediction of the horizontal velocity based on the nonlinear model over
the horizontal slice {x : x1 ∈ (0.1, 0.7), x2 = −0.01} are significantly more accurate in the recirculation region,
especially in the proximity of the minimum of the horizontal velocity.
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(a) high-fidelity model (b) nonlinear interpolation

(c) linear interpolation (d)

Figure 17: incompressible flow past a backward facing step two-dimensional parameterization. Comparison of
high-fidelity, nonlinear interpolation, and linear interpolation predictions. (a)-(b)-(c) streamlines of the velocity
field. (d) horizontal velocity over the horizontal slice {x : x1 ∈ (0.1, 0.7), x2 = −0.01}.

4.3 Compressible flow past a sphere

4.3.1 Model problem

We study the compressible supersonic inviscid flow past a sphere for inflow Mach number Ma∞ ∈ [2, 5]. We
model the flow using the compressible Euler equations for ideal gases and we rely on SU2 for snapshot generation.
As in section 4.1, we apply the nonlinear interpolation strategy to estimate the pressure coefficient (23) and we
rely on the Ducros sensor with γthr = 99.6% to identify the coherent structure. Figure 18 shows the behavior of
Cp for Ma∞ = 2 and Ma∞ = 5: we observe that the solution exhibits a bow shock ahead of the sphere whose
location depends on the parameter. Figure 19 shows the marked cells for the same parameter values.

19



(a) Ma∞ = 2 (b) Ma∞ = 5

Figure 18: compressible flow past a sphere. Pressure coefficients for two values of Ma∞.

(a) Ma∞ = 2 (b) Ma∞ = 5

Figure 19: compressible flow past a sphere. Marked cells for Ma∞ = 2 and Ma∞ = 5.

Figure 20 illustrates the performance of CDI (20) and CI (21) for Ma∞ ∈ [2, 5]: Figure 20(a) investigates the
behavior of the optimal value of s in (22) for CDI and CI; Figure 20(b) shows the behavior of the relative L2(Ω)
error for the pressure coefficient. Interestingly, we observe that the behavior of soptµ is strongly nonlinear with
respect to the Mach number. As for the previous cases, nonlinear interpolation is superior to linear interpolation,
especially when the parameter s in (20) is chosen in an optimal manner.
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(a) (b)

Figure 20: compressible flow past a sphere. (a) behavior of the optimal value of s in (22) for CDI and CI. (b)
behavior of the relative L2(Ω) error for the pressure coefficient.

5 Data augmentation

5.1 Model problem: inviscid flow past a bump

We consider the problem of estimating the solution to the two-dimensional Euler equations in the transonic
regime in a channel with a Gaussian bump. We denote by ρ the density, by v the velocity field, by E the
total energy, and by p = (γ − 1)

(
E − 1

2ρ∥v∥
2
2

)
the pressure, where γ > 0 is the ratio of specific heats; we

further denote by u = [ρ, ρv,E] the vector of conserved variables. We introduce the computational domain

Ωµ = {x ∈ (−1.5, 1.5)× (0, 0.8) : x2 > he−25x2
1} where h > 0 is a given parameter. We consider the conservation

law:

∇ · F (utrue) = 0, where F (u) =

 ρv⊤

ρvv⊤

(E + p)v⊤

 , (24)

completed with wall boundary conditions on top and bottom boundaries, subsonic inlet condition (total tem-
perature, total pressure and flow direction) at the left boundary and subsonic outlet condition (static pressure)
at the right boundary. We express the free-stream field u∞ in terms of the Mach number Ma∞,

T∞ = 1, p∞ =
1

γ
, ρ∞ = 1, u∞ = [Ma∞, 0],

where T = p
Rρ is the temperature and R = γ − 1 is the (non-dimensional) specific gas constant. Finally, we

introduce the parameter vector µ = [h,Ma∞] and the parameter region P = [0.05, 0.065] × [0.68, 0.78]. Figures
21(a) and (b) show the behavior of the Mach field for two values of the parameters in P.

(a) µ = (0.05, 0.78) (b) µ = (0.065, 0.78)

Figure 21: inviscid flow over a Gaussian bump. Visualization of the Mach field for two parameter values.
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5.2 Geometric parameterization and high-fidelity solver

The computational domain Ωµ depends on the geometric parameter h; therefore, we should introduce a geometric
mapping to recast the problem over a parameter-independent configuration. We here resort to a Gordon-Hall
transformation: we denote by Φgeo,µ the geometric mapping from the rectangle Ω̃ = (−1.5, 1.5)× (0, 0.8) to the
physical domain Ωµ (see, e.g., [15, section 2]). We further define the domain Ω := Ωµ̄, where µ̄ is the centroid
of P and the additional geometric mapping Ψgeo,µ := Φgeo,µ ◦ Φ−1

geo,µ̄ : Ω → Ωµ.

The reference configuration Ω̃ is used below to define the sensors and the regression procedure; on the other
hand, the HF mesh is defined in the domain Ω. The latter choice is justified by the observation that for small
variations of h the mapping Ψgeo is (significantly) closer to the identity map than Φgeo; therefore, defining the
mesh in Ω offers significantly enhanced control over the quality of the deformed mesh.

Simulations are performed in Matlab 2022a [30] based on an in-house code, and executed over a commodity
Linux workstation (RAM 32 GB, Intel i7 CPU 3.20 GHz x 12). We consider a P2 mesh with Ne = 12748
elements; given a new value of the parameter µ, we define the deformed mesh using the geometric mapping
Ψgeo, and then we call the DG solver to compute the solution field. We measure performance and we compute

reduced spaces in the reference domain Ω; we denote by (·, ·) the [L2(Ω)]4 inner product and by ∥ · ∥ =
√

(·, ·)
the induced norm.

5.3 Model order reduction

We rely on a projection-based ROM based on a least-square Petrov-Galerkin (LSPG, [9]) formulation and
empirical quadrature (EQ, [14, 55]) hyper-reduction; we refer to [15] for a detailed presentation of the method.

5.4 Convex displacement interpolation

We apply Algorithm 1 to construct the CDI estimate.
Feature selection. We rely on the Ducros sensor (4) to identify the elements of the mesh that contain the shock.
We set γthr = 99% in (4c) to determine the threshold tµ. In order to take into account geometric variations, we

define the “mapped” point clouds X̃raw
µ = {Φ−1

geo,µ(xraw
i,µ )}Nµ

i=1 ⊂ Ω̃, where Φgeo,µ : Ω̃ → Ωµ is the Gordon-Hall

map. Then, we set X̃ref = X̃raw
µref where µref is the parameter in Ptrain that minimizes the distance from the

centroid of P, and we rely on Gaussian-based PSR to determine the sorted point clouds {X̃µ : µ ∈ Ptrain}.
Regression. We apply the regression procedure described in section 2.3 to find the RBF model µ ∈ P 7→
X̂⋆

µ = {x̂⋆
i,µ}Ni=1 ⊂ Ω̃. Then, we define the point cloud in physical domain using the geometric mapping Φgeo:

X̂µ = {x̂i,µ = Φgeo,µ(x̂⋆
i,µ)}Ni=1. The choice of applying RBF and PSR in the reference (parameter-independent)

domain Ω̃ robustifies the learning process and ultimately improves prediction performance.
Nearest neighbors, registration, and choice of the weights. We build the CDI based on κ = 4 neighbors; we
consider the Euclidean distance to identify the neighbors and also in the IDW strategy for the weights (cf.
section 2.6). Finally, we resort to optimization-based registration (cf. (13)) to determine the mapping Φ: we
consider the penalty term fjac ([49, section 4.3]) that penalizes small values of the Jacobian determinant, and
we rely on a piecewise-polynomial search space with M = 198 degrees of freedom.

5.5 Data augmentation procedure

We denote by Ptrain = {µi}ntrain
i=1 ⊂ P the training set of parameters for which HF simulations are available

and by Ptrain,cdi = {νi}ntrain,cdi

i=1 ⊂ P an additional set of parameters. We first define the Lagrangian space
Z0 = span{uhf

µi}ntrain
i=1 and the projection operator ΠZ0

: [L2(Ω)]4 → Z0; then, we define the POD space

Zn = Z0 ⊕Zlf , Zlf = POD (Dtrain,lf , n− ntrain, (·, ·)) , (25)

where ⊕ indicates the direct sum of orthogonal spaces, Dtrain,lf = {ûµ − ΠZ0 ûµ : µ ∈ Ptrain,cdi} and Zlf is
the POD space of size n− ntrain associated with the snapshots Dtrain,lf and the L2(Ω) inner product (·, ·). We
observe that the space Zn contains the HF training set: potential inaccuracies of the CDI estimates do not
pollute the performance of the reduced space for µ ∈ Ptrain.

5.6 Numerical results: nonlinear interpolation

We first investigate the performance of CDI for this model problem. Towards this end, we study the behavior of
the average relative L2(Ω) state prediction error of the projection-based linear ROM (LSPG), CDI, and convex
interpolation (CI), for tensorized grids of increasing size ntrain; in all our experiments we set κ = 4 for CDI
and CI, while the reduced space of LSPG includes all the training snapshots (n = ntrain). Figure 22 shows the
results.
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We observe that CDI outperforms CI for all parameter values and all training set sizes ntrain. Interestingly,
CDI is more accurate than LSPG for ntrain = 4: this can be explained by observing that, unlike the LSPG
ROM, CDI provides estimates that do not belong to the span of the dataset of HF simulations; for small values
of ntrain, CDI can hence compensate the fact that it does not exploit the knowledge of the PDE model for
prediction.

Figure 22: nonlinear interpolation. Behavior of the average relative L2 error for LSPG, CDI and CI for snapshot
sets of increasing size ntrain.

5.7 Numerical results: data augmentation

Figure 23 illustrates the performance for ntrain = 9, ntrain,cdi = 20. We consider a tensorized 3×3 grid for Ptrain

and we generate Ptrain,cdi using latin hyper-cube sampling [32]. We consider a POD space in (25) of dimension
n = 29; as for the previous experiment, we assess performance based on a dataset of ntest = 20 out-of-sample
parameters. Figure 23(a) shows boxplots of the relative L2(Ω) error for LSPG ROM, CDI and LSPG ROM
based on n = 9 modes (i.e., without data augmentation) (LSPG-0). We observe that CDI is not as accurate
as LSPG-0; however, it can be used to augment the dataset of simulations and ultimately contribute to reduce
the prediction error. Figure 23(b) shows the projection error over the test for the POD space built using (25)
(“mixed training”), the POD space based on ntrain + ntrain,cdi HF simulations (“HF training”) and the POD
space based ntrain HF simulations (“HF training (ntrain = 9)”): we observe that the mixed training strategy
based on CDI is not as accurate as HF training, particularly for large values of n; however, it enables significant
reduction of the projection error without resorting to new simulations.
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(a) (b)

Figure 23: data augmentation ntrain = 9, ntrain,cdi = 20. Behavior of LSPG ROM with CDI-based data
augmentation. (a) boxplots of relative L2 error for LSPG ROM, CDI and projection error (n = 29). (b)
projection error.

Figure 24 replicates the results of Figure 23 for ntrain = 4, ntrain,cdi = 25. Note that CDI is more accurate
than LSPG-0, which is consistent with the results of Figure 22.

(a) (b)

Figure 24: data augmentation ntrain = 4, ntrain,cdi = 25. Behavior of LSPG ROM with CDI-based data
augmentation. (a) boxplots of relative L2 error for LSPG ROM, CDI and projection error (n = 29). (b)
projection error.

Table 1 provides an overview of the computational costs. The HF solver is roughly 14 times slower than
CDI and 625 times slower than the LSPG ROM; the construction of the LSPG ROM, which comprises the
construction of the trial and test spaces and hyper-reduction, is roughly as expensive as a single full-order
solve. We remark that approximately 99% of the total cost of CDI is associated with mesh interpolation: we
hence envision that more sophisticated implementations of this step (see, e.g., [26]) might lead to a significant
reduction of the overall CDI cost.

cost [s]

HF solver (avg) 481.21

ROM generation (data compression+hyperreduction) 431.24

Convex displacement interpolation (avg) 33.49

LSPG ROM (n = 29, avg) 0.77

Table 1: data augmentation. Wall-clock costs of HF and MOR procedures (ntrain = 9, ntrain,cdi = 20).
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6 Conclusions

We presented a general (i.e., independent of the underlying equations) nonlinear interpolation procedure for
parametric fields with local compactly-supported coherent structures; the approach is dubbed convex displace-
ment interpolation (CDI) and extends the previous proposal of [19]. The methodology comprises five main
building blocks that were all discussed in section 2: sensor selection, point cloud matching, regression of sorted
point clouds, boundary-aware registration, and piecewise-multivariate interpolation. CDI assumes that coherent
structures of the solution field — such as shocks, shear layers, vortices — vary smoothly with the parameter.
The numerical experiments suggest that this assumption holds for a broad and diverse range of parametric
problems in continuum mechanics.

We illustrated the application of CDI to data augmentation. Since CDI generates estimates that do not
belong to the span of the training snapshots, we can exploit predictions for out-of-sample parameters to augment
the dataset of simulations that are later used for the construction of projection-based ROMs. We envision that
combination of lower and higher fidelity snapshots for MOR training has the potential to significantly reduce
offline costs, and ultimately enable the application of MOR techniques to complex engineering problems for
which extensive parameter explorations based on HF solves are not practical.
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[23] V. Kolář. Vortex identification: New requirements and limitations. International journal of heat and fluid
flow, 28(4):638–652, 2007.
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